C-C CHEMOKINE RECEPTOR TYPE 3 INHIBITORS: BIOACTIVITY PREDICTION USING LOCAL VERTEX INVARIANTS BASED ON THERMAL CONDUCTIVITY LAYER MATRIX

Authors

  • Claudiu N. LUNGU Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University; Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Romania. Email: lunguclaudiu5555@gmail.com. https://orcid.org/0000-0002-5416-3142

DOI:

https://doi.org/10.24193/subbchem.2018.1.13

Keywords:

Topological descriptors; QSAR; Regeression model; CCR3 inhibitors

Abstract

A series of compounds with known inhibitory activity for C-C chemokine receptor type 3 (CCR3) was considered in order to build a predictive model useful in further development of novel CCR3 inhibitors. Model was built using topological descriptors (Cluj indices included) and multiple linear regression. Principal component analysis was applied in order to enhance the model. Errors were taken into consideration and discussed. Finally, vertex invariants based on thermal conductivity layer matrix proved to be a valuable tool in bioactivity prediction of CCR3 inhibitors.

References

K.D. Dyer, K.E. Garcia-Crespo, K. E. Killoran and H. F. Rosenberg, Journal of Immunological Methods, 2011, 369 (1-2), 91.

J. Reckless, D.J. Grainger, Biochemical Journal 1999, 340 (3), 803.

D.J. Fox, J. Reckless, S.G. Warren, D.J. Grainger, Journal of Medicinal Chemistry, 2002, 45 (2), 360.

D.J. Grainger, A.M. Lever, Medicinal Chemistry, 2005, 2 (1), 23.

Entrez Gene, CCR3 chemokine (C-C motif) receptor 3.

H. González-Díaz, S. Vilar, L. Santana, E Uriarte, Current Topics in Medicinal Chemistry, 2007, 7 (10), 1015.

L. Jäntschi, G. Katona, M.V. Diudea MATCH Communications in Mathematical and Computer Chemistry 2000, 41, 151.

P.V. Khadikar, S. Karmarkar, V.K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits, M.V. Diudea, Letters in Drug Design & Discovery, 2005, 2 (8), 606.

O.M. Minailiuc, G. Katona, M.V. Diudea, M. Strunje, A. Graovac, I. Gutman, Croatica Chemical Acta, 1998, 71 (3), 473.

Jain V1, Pandey A, Gupta S, Mohan CG, Journal of Molecular Modeling, 2010,16 (4), 669.

M.V. Diudea, M. Topan, A. Graovac, Journal Chemical Information and Computer Science, 1994, 34 (5), 1072.

M.V. Diudea, O. Ursu, Indian Journal of Chemistry A, 2003, 42 (6), 1283.

M.V. Diudea, O.M. Minailiuc, G. Katona, I. Gutman, Szeged matrices and related numbers, MATCH Communications in Mathematical and Computer Chemistry, 1997, 35, 129.

M.H. Kutner, C.J. Nachtsheim, and J. Neter, “Applied Linear Regression Models”, 4th ed., McGraw-Hill/Irwin, Boston, 2004, p. 25.

H. Abdi, L.J. Williams, “Principal component analysis”. Wiley Interdisciplinary Reviews: Computational Statistics. 2010, 2 (4), 433.

A.F. Zuur, E.N. Ieno, C.S. Elphick, Methods in Ecology and Evolution. 2010, 1, 3.

S. Menard, Applied Logistic Regression Analysis: Sage University Series on Quantitative Applications in the Social Sciences. Thousand Oaks, CA. Sage, 1995.

Downloads

Published

2018-03-30

How to Cite

LUNGU, C. N. . (2018). C-C CHEMOKINE RECEPTOR TYPE 3 INHIBITORS: BIOACTIVITY PREDICTION USING LOCAL VERTEX INVARIANTS BASED ON THERMAL CONDUCTIVITY LAYER MATRIX. Studia Universitatis Babeș-Bolyai Chemia, 63(1), 177–188. https://doi.org/10.24193/subbchem.2018.1.13

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.