THEORETICAL CALCULATION OF THERMODYNAMIC PROPERTIES AND DIFFUSION COEFFICIENTS FOR PURE ETHANOL, PURE WATER AND BINARY MIXTURE OF (ETHANOL + WATER) AS FUNCTION OF TEMPERATURE BY MOLECULAR DYNAMIC SIMULATION

Authors

  • Nahid SOHREVARDI Department of Chemistry, Faculty of Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. Email: nahid_sohrevardi@yahoo.com. https://orcid.org/0000-0003-2838-7879
  • Farhoush KIANI Department of Chemistry, Faculty of Science, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran. Email: farhoush_kiani@yahoo.com. https://orcid.org/0000-0002-2291-2313
  • Fardad KOOHYAR Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam. Email: fardadkoohyar@tdt.edu.vn. https://orcid.org/0000-0003-3394-019X

DOI:

https://doi.org/10.24193/subbchem.2018.2.03

Keywords:

water, ethanol, mixture, interaction, thermodynamic properties, temperature, MD simulation

Abstract

In this research work, we presented the results of theoretical calculations for the change of thermodynamic properties such as enthalpy ∆H, entropy ∆S, heat capacity ∆Cp, and Gibbs free energy ∆G, for pure water, pure ethanol and interaction of mixture (50% water + 50% ethanol) and binary mixture of (water + ethanol) under thermal equilibrium condition at T = (273.15, 283.15, 293.15, 298.15, 305.15, 311.15, 320.15, 333.15) K and at atmospheric pressure. This theoretical calculation was done using Molecular Dynamic (MD) simulation. The results show that the values of ∆H and ∆S increase and also value of ∆Cp decreases by temperature growth. The obtained value of change of Gibbs free energy for interaction of mixture (50% water + 50% ethanol) shows that this interaction is possible at T = (298.15, 311.15, 320.15, 333.15) K. Also, it showed that the self-diffusion coefficient and the mutual diffusion coefficients increase by increasing temperature.

References

JC. Meyer, S. Kurasch, HJ. Park, V. Skakalova, D. Künzel, A. Groß, A. Chuvilin, G. Algara-Siller, S. Roth, T. Iwasaki, U. Starke, JH. Smet, U. Kaiser, Nature Materials, 2011, 10, 209.

Y. Maréchal, Journal of Molecular Structure, 2011, 1004, 146.

E. Yamamoto, T. Akimoto, M. Yasui, K. Yasuoka, Scientific Reports, 2014, 4, 4720.

S. Le Caër, Water, 2011, 3, 235.

S. Jamil, S. Rauf Khan, MRS. Ashraf Janjua, Journal of the Chinese Chemical Society, 2018, 1-9.

H. Mevadaa, D. Patel, Procedia Engineering, 2016, 144, 110.

JS. Alakali, SO. Eze, MO. Ngadi, 2nd International Conference on Environment, Energy and Biotechnology IPCBEE, IACSIT Press, Singapore, 2013, 51, 149, doi:10.7763/IPCBEE.2013.V51.28.

T. Makarewicz, R. Kaźmierkiewicz, Journal of Chemical Information and Modeling, 2013, 53, 1229.

H. Dong, F. Zonta, S. Wang, K. Song, X. He, M. He, Y. Nie, S. Li, International Journal of Molecular Sciences, 2018, 19, 60.

Y. Zhang, Y. Ding, BMC Bioinformatics, 2016, 17, 28.

JA. Lemkul, WJ. Allen, DR. Bevan, Journal of Chemical Information and Modeling, 2010, 50, 2221.

A. Elengoe, MA. Naser, S. Hamdan, International journal of molecular Science, 2014, 15, 6797.

M. Lundborg, E. Lindahl, Journal of Physical Chemistry, 2015, 22, 810.

TT. Nguyen, MH. Viet, MS. Li, The Scientific World Journal, vol. 2014, Article ID 536084, 14 pages, 2014, doi.org/10.1155/2014/536084.

SMJ. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen, G. Maurin, V. Van Speybroeck, Journal of Chemical Theory and Computation, 2015, 11, 5583.

M. Fernandez-Pendas, B. Escribano, T. Radivojevi´c, E. Akhmatskaya, Journal of Molecular Modeling, 2014, 20, 2487.

RC. Walker, MF. Crowley, DA Case. Journal of Computational Chemistry, 2008, 29, 1019.

P. Johansson, A. Carlson, B. Hess, Journal of Fluid Mechanics, 2015, 781, 695.

PS. Krstic, L. Han, S. Irle, H, Nakai, Chemical Science, 2018, 9, 3803.

J. Yeow, KW. Tan, DA. Holdbrook, ZS. Chong, JK. Marzinek, PJ. Bond, SS. Chng, Journal of Biological Chemistry, 2018, ASAP, doi: 10.1074/jbc.RA118.

S. Toxvaerd, OJ. Heilmann, JC. Dyre, The Journal of Chemical Physics, 2012, 136, 224106.

MP. Gajula, A. Kumar, J. Ijaq, Protocol for Molecular Dynamics Simulations of Proteins. Bio-protocol, 2016, 6: e2051, doi: 10.21769/BioProtoc.2051.

D. Yu, X. Ma, Y. Tu, L. Lai, Scientific Reports, 2015, 5, Article number: 8640.

F. Vitalini, F. Noé, BG. Keller, Data in Brief, 2016, 7, 582.

D. van der Spoel, AR. van Buuren, MEF. Apol, PJ. Meulenhoff, DP. Tieleman, ALTM. Sijbers, B. Hess, KA. Feenstra, E. Lindahl, R. van Drunen, HJC. Berendsen, GROMACS User Manual version 3.3, Department of Biophysical Chemistry, University of Groningen, The Netherlands, 2001.

F. Koohyar, AA. Rostami, MJ. Chaichi, F. Kiani, Journal of Solution Chemistry, 2011, 40, 1361.

Downloads

Published

2018-06-29

How to Cite

SOHREVARDI, N. ., KIANI, F. ., & KOOHYAR, F. . (2018). THEORETICAL CALCULATION OF THERMODYNAMIC PROPERTIES AND DIFFUSION COEFFICIENTS FOR PURE ETHANOL, PURE WATER AND BINARY MIXTURE OF (ETHANOL + WATER) AS FUNCTION OF TEMPERATURE BY MOLECULAR DYNAMIC SIMULATION. Studia Universitatis Babeș-Bolyai Chemia, 63(2), 31–42. https://doi.org/10.24193/subbchem.2018.2.03

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 15 16 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.