CHARACTERIZATION OF ACTIVATED BEECH WOOD CHAR – METHANE STORAGE APPLICATION

Authors

  • Katarzyna PSTROWSKA Faculty of Chemistry, Division of Fuels Chemistry and Technology, Wroclaw University of Science and Technology, Wrocław, Poland. Email: katarzyna.pstrowska@pwr.edu.pl. https://orcid.org/0000-0003-2082-4624
  • Jan KACZMARCZYK Faculty of Chemistry, Division of Fuels Chemistry and Technology, Wroclaw University of Science and Technology, Wrocław, Poland. Email: jan.kaczmarczyk@pwr.edu.pl. https://orcid.org/0000-0002-1629-3675
  • Hanna CZAPOR-IRZABEK Faculty of Pharmacy, Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Wrocław, Poland. Email: hanna.czapor-irzabek@umw.edu.pl. https://orcid.org/0000-0001-8689-8314
  • Marek KUŁAŻYŃSKI Faculty of Chemistry, Division of Fuels Chemistry and Technology, Wroclaw University of Science and Technology, Wrocław, Poland. Email: marek.kulazynski@pwr.edu.pl. https://orcid.org/0000-0002-9316-0630

DOI:

https://doi.org/10.24193/subbchem.2018.3.02

Keywords:

adsorption; biomass; active carbon; steam activation; carbonization

Abstract

Commercial beech wood char characterized by low volatile matter (5.3%) and high carbon content (94.5 %) was initially used as a potential feedstock to obtain the activated carbon for methane sorption. Micro- and mesopores volumes were determined to be at the level of 0.21 cm3∙g-1, while the specific surface area of the material was determined to be at the level of 416 m2∙g-1. Carbonization carried out at the temperature range of 750-900 oC resulted in slight increase of the pore volume (up to the value of 0.23 cm3∙g-1) and the specific surface area (up to the value of 480 m2∙g-1). Upon the steam activation (up to the 50 % loss of the organic mass) the specific surface area increased substantially and was within the range of 887 - 943 m2∙g-1 together with mico- and mesopores volumes that was within the range of 0.54 - 0.58 cm3∙g-1. The maximum methane adsorption was determined for the sample activated at a temperature of 800 oC – 17.7 g∙kg-1 with a process reversibility of 84.2%. Considering the beech wood char price, its availability and well-known methods of its surface structure improvement, the obtained active carbons are interesting for their testing on a larger scale.

References

D. Lozano-Castello, J. Alcaniz-Monge, M.A.M de la Casa-Lillo, D. Cazorla-Amoros, A. Linares-Solano, Fuel, 2002, 81, 1777.

S.E. Manahan, ”Environmental Science and Technology: A Sustainable Approach to Green Science and Technology”, Second Edition, Taylor & Francis, Boca Raton/USA, 2006, chapter 18.

T. Düren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Langmuir, 2004, 20, 2683.

D. Bazer-Bachi, L. Assie, V. Lecocq, B. Harbuzaru, V. Falk, V., Power Technology, 2014, 255, 52.

M.I. Nandasiri, S.R. Jambovane, B.P. McGrail, H.T. Schaef, S.K. Nune, Coordination Chemistry Reviews, 2016, 311, 38.

J.A. Mason, M. Veenstra, J.R. Long, Chemical Science, 2014, 5, 32.

Y. He, W. Zhou, G. Qian, B. Chen, Chemical Society Reviews, 2014, 43, 5657.

J. Shen, J. Sulkowski, M. Beckner, A. Dailly, Microporous and Mesoporous Materials, 2015, 212, 80.

O.M. Yanghi, M. O’Keefe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature, 2003, 423, 705.

H. Furukawa, O.M. Yaghi, Journal of the American Chemical Society, 2009, 131, 8875.

J.H. Guo, H. Zhang, Y. Miyamoto, Physical Chemistry Chemical Physics, 2013, 15, 8199.

H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortes, A.P. Cote, R.E. Taylor, M. O’Keeffe, O.M. Yanhi, Science, 2007, 316, 268.

J.H. Hu, J.F. Zhao, T.Y. Yan, Journal of the Physical Chemistry, 2015, 119 (4), 2010.

J.L. Mendoza-Cortes, T.A. Pascal, W.A. Goddard III, Journal of the Physical Chemistry A, 2011, 115, 13852.

J. Zhao, T. Yan, RSC Advances, 2014, 4, 15542.

X.H. Zhang, Z.Q. Song, X.L. Zhou, C.L. Li, L.Y Xu, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2016, 38(2), 202.

T.J. Grey, K.P. Travis, J.D. Gale, D. Nicholson, Microporous and Mesoporous Materials, 2001, 48, 203.

R. Hernandez-Huesca, L. Diaz, G. Aguilar-Armenta, Separation and Purification Technology, 1999, 15, 163.

M. Sakizci, O.L. Tanriverdi, Turkish Journal of Chemistry, 2015, 39 (5), 970.

M.E. Casco, M. Martinez-Escandell, K. Kaneko, J. Silvestre-Albero, F. Rodriguez-Reinoso, Carbon, 2015, 93, 11.

D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, D.F. Quinn, Carbon, 2002, 40, 989.

J. Sreńscek-Nazzal, W. Kamińska, B. Michalkiewicz, Z.C. Koren, Industrial Crops and Products, 2013, 47, 153.

J. Alcaniz-Monge, M.A. De la Casa-Lillo, D. Cazorla-Amoros, A. Linares-Solano, Carbon, 1997, 35 (2), 291.

H.M.B.M. Herath, A.A.P. De Alwis, MERCon 2015 - Moratuwa Engineering Research Conference, article number: 7112310, 2015, available online: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7112310, Accessed 11 March 2018

J. Sun, M.J. Rood, M. Rostam-Abadi, A.A. Lizzio, Gas Separation & Purification, 1996, 10 (2), 91.

H. Fałtynowicz, J. Kaczmarczyk, M. Kułażyński, Open Chemistry, 2015, 13, 1150.

D.C.S. Azevedo, J.C.S. Araujo, M. Bastos-Neto, E.B. Torres, E.F. Jaguaribe, C.L. Cavalcante, Microporous and Mesoporous Materials, 2007, 100, 361.

S. Meyer, B. Glaser, P. Quicker, Environmental Science & Technology, 2011, 45, 9473.

K. Zeng, D.P. Minh, D. Gauthier, E. Weiss-Hortala, A. Nzihou, D. Flamant, Bioresource Technology, 2015, 182, 114.

C. Guizani, F.J. Escudero Sanz, M. Jeguirim, R. Gadiou, S. Salvador, Fuel Processing Technology, 2015, 138, 687.

M.M. Dieme, A. Villot, C. Gerente, Y. Andres, S.N. Fiop, C.K. Diawara, Environmental Technology, 2017, 38 (3), 353.

E. Lorenc-Grabowska, Adsorption, 2016, 22, 599.

K. Sapag, A. Vallone, G.A. Blanco, C. Solar, “Adsorption of Methane in Porous Materials as the Basis for the Storage of Natural Gas, Natural Gas”, InTech, Primoz Potocnik (Ed.), 2010, Available from: http://www.intechopen.com/books/natural-gas/adsorption-of-methane-in-porous-materials-as-the-basis-for-the-storage-of-natural-gas.

K. Wu, Z. Chen, X. Li, X. Dong, Scientific Reports, 2016, 6, 33461.

M.M. Dubinin, Carbon, 1989, 27, 457.

Y. Toda, M. Hatami, Y. Toyoda, Y. Yoshida, H. Honda, Fuel, 1971, 50, 187.

S. Brunauer, P.H. Emmet, E. Teller, Journal of the American Chemical Society, 1938, 60, 309.

T. Siemieniewska, K. Tomków, J. Kaczmarczyk, A. Albiniak, E. Broniek, A. Jankowska, Y. Grillet, M. François, Studies in surface science and catalysis, 1994, 87, 695.

C. Pierce, Journal of Physical Chemistry, 1953, 57, 149.

C. Orr, J.M. DallaValle, “Fine particle measurement: Size, Surface, and Pore Volume”, The McMillan Company, New York, 1959, chapter 8.

S.J. Gregg, K.S. Sing, “Adsorption, Surface Area and Porosity”, Academic Press London - New York, 1982, chapter 4.

A. Filozof-Nieścior, J. Kaczmarczyk, T. Siemieniewska, Conference on Catalysis and Adsorption in Fuels Processing and Environmental Protection, Kudowa, pp. 69 – 74 (2002).

Downloads

Published

2018-09-28

How to Cite

PSTROWSKA, K. ., KACZMARCZYK, J. ., CZAPOR-IRZABEK, H. ., & KUŁAŻYŃSKI, M. . (2018). CHARACTERIZATION OF ACTIVATED BEECH WOOD CHAR – METHANE STORAGE APPLICATION. Studia Universitatis Babeș-Bolyai Chemia, 63(3), 21–39. https://doi.org/10.24193/subbchem.2018.3.02

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.