MODELING AND PREDICTION OF AMINO ACIDS LIPOPHYLICITY USING MULTIPLE LINEAR REGRESSION COUPLED WITH GENETIC ALGORITHM

Authors

  • Alexandrina GUIDEA Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: Email: guideaaxc@gmail.com.
  • Costel SÂRBU Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: csarbu@chem.ubbcluj.ro. https://orcid.org/0000-0001-9374-2078

DOI:

https://doi.org/10.24193/subbchem.2019.2.20

Keywords:

chromatographic lipophilicity, amino acids, multiple linear regression, genetic algorithm, molecular descriptors, modeling, prediction

Abstract

Quantitative structure-retention relationships (QSRR) approach was used to model chromatographic lipophilicity of sixteen proteinogenic amino acids using molecular descriptors computed with DRAGON and ALCHEMY software packages. Modeling was performed applying multiple linear regression (MLR) coupled with genetic algorithms (GA) methodology (MLR-GA). The most important descriptors, highly significant in the predictive models of amino acids lipophilicity (RM0), were related to atomic polarizabilities (MATS3p; Ap; H1p), atomic van der Waals volume (MATS3v), Sanderson electronegativity (RDF070e) and Randic molecular profiles (DP11; DP12) calculated with Dragon software. The internal statistical evaluation procedure highlighted some appropriate models for the chromatographic lipophilicity prediction. Moreover, the statistical parameters of regression in order to evaluate the relationship between experimental and predicted values, in case of the test set (four amino acids), revealed three statistically valid models (model A, E and F) that can be successfully used in lipophilicity prediction of amino acids.

References

C. Hansch, A. Leo (eds), Exploring QSAR: fundamentals and applications in chemistry and biology, American Chemical Society, Washington, D.C., 1995.

M. Karelson, Molecular Descriptors in QSAR/QSPR, John Wiley & Sons, New York, 2000.

M. Karthikeyan, V. Renu, Practical Bioinformatics, Springer, India, 2014.

R. Kaliszan, Quantitative structure–chromatographic retention relationships, Wiley–Interscience, New York, 1987.

R. Kaliszan, Structure and Retention in Chromatography. A Chemometric Approach, Harwood Academic Publishers, Amsterdam, 1997.

Test No. 107, Partition coefficient (n-octanol/water), Shake-flask method, OECD, Paris, 1995.

Test No. 123, Partition coefficient (n-octanol/water), Slow-stirring method, OECD, Paris, 2005.

Test No. 117, Partition coefficient (n-octanol/water), HPLC method, OECD, Paris, 2004.

A. Leo, C. Hansch, D. Elkins, Chem. Rev., 1971, 71, 525–616.

J. Sangster, Octanol-water partition coefficients: fundamentals and physical chemistry, John Wiley & Sons, Inc., New York, 1997.

H. Van de Waterbeemd, M. Kansy, B. Wagner, H. Fischer, Lipophilicity measurement by high-performance liquid chromatography (RP-HPLC). In: V. Pilska, B. Testa, H. Van de Waterbeemd (eds), Lipophilicity in drug action and toxicology, VCH, Weinheim, 1996.

C. Sârbu, B. Malawska, J. Liq. Chromatogr. Relat. Technol., 2000, 23, 2143-2154.

C. Sârbu, R. D. Naşcu-Briciu, Studia UBB CHEMIA, 2015, LX, 1, 265-280.

R. D. Briciu, C. Sârbu, Studia UBB CHEMIA, 2010, LV, 3, 105-118.

D. Casoni, C. Sârbu, J. Sep. Sci., 2012, 35, 915-921.

D. Casoni, C. Sârbu, Studia UBB CHEMIA, 2011, LVI, 1, 45-61.

L. Xing, R.C. Glen, J. Chem. Inf. Comput. Sci., 2002, 47, 796-805.

R. Todeschini, V. Consonni, Handbook of Molecules Descriptors, Wiley, Weinheim, 2000.

Talete SRL, DRAGON for windows (software for molecular descriptor calculations). Version 5.4-2006. http://www.talete.mi.it

SciQSAR Application, Version 3.0, 1998 SciVision, Method: Alchemy 2000 (software for molecular descriptor calculations). http://www.tripos.com

R. Kaliszan, J. Chromatogr. A, 1993, 656, 417-435.

R. Put, Y. Vander Heyden, Anal. Chim. Acta, 2007, 602, 164-172.

R. Todeschini, Moby Digs Academic version software for variable subset selection by genetic algorithms, Rel. 1.0 for Windows, Talete, Milan, 2004.

R. Leardi, R. Boggia, M. Terrile, J. Chemom., 1992, 6, 267–281.

S. Riahi, M.R. Ganjali, E. Pourbasheer, P. Norouzi, Chromatographia, 2008, 67, 917-922.

J. Devillers, Genetic algorithms in molecular modeling, Academic Press, Inc., San Diego, 1996.

H. Kubinyi, Quant. Struct.-Act. Relat., 1994, 13, 285–294.

P. Gramatica, A. Sangion, J. Chem. Inf. Model., 2016, 56, 1127−1131.

Downloads

Published

2019-06-03

How to Cite

GUIDEA, A. ., & SÂRBU, C. . (2019). MODELING AND PREDICTION OF AMINO ACIDS LIPOPHYLICITY USING MULTIPLE LINEAR REGRESSION COUPLED WITH GENETIC ALGORITHM. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 243–254. https://doi.org/10.24193/subbchem.2019.2.20

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.