HEAT TRANSFER INFLUENCE ON FRACTIONATION IN FLOODED PACKED COLUMNS
DOI:
https://doi.org/10.24193/subbchem.2019.3.12Keywords:
fractionation, flooded columns, boiling heat transferAbstract
In packed fractionation, the liquid phase can be forced to become continuous, and the vapor phase dispersed, realizing emulsification regime. The paper presents the efficiency comparing results of packed fractionation with respect to the fractionation in an empty flooded column, as well as the influence of the heat flux and of the temperature inside the column’s jacket. Experiments for determining the boiling heat transfer of the different methanol – ethanol concentration mixtures were performed. The variation of the boiling heat transfer coefficient at different concentrations of methanol-ethanol mixtures has a minimum, corresponding to the maximum of the difference between concentrations of vapor phase in equilibrium with the liquid phase.
References
S. Bhatia, A.L. Ahmad, A.R. Mohamed, S.Y. Chin, Chem. Eng. Sci., 2006, 61(22), 7436.
Z. Olujic, M. Jödecke, A. Shilkin, G. Schuch, B. Kaibel, Equipment improvement trends in distillation, Chem. Eng. Process., 2009, 48(6), 1089.
A.A. Kiss, Z. Olujic, Chem. Eng. Process., 2014, 86, 125.
S. Popa, C. Csunderlik, S. Florea, V. Jascanu, N. Plesu, Revista de Chimie, 2002, 53(4), 259
S. Popa, C. Csunderlik, V. Jascanu, D. Jurcau, N. Plesu, Materiale Plastice, 2003, 40(4), 177-181.
S. Popa, V. Jascanu, D. Jurcau, N. Plesu, Revista de Chimie, 2003, 54(7), 595.
S. Popa, C. Csunderlik, V. Jascanu, D. Jurcau, N. Plesu, Materiale Plastice, 2004, 41(2), 62.
E. Özcan, S. Sargin, Y. Göksungur, Biochem. Eng. J., 2014, 92, 9.
C.J. Stacy, C.A. Melick, R.A. Cairncross, Fuel Process. Technol., 2014, 124, 70.
P.C. Wankat, Chem. Eng. Sci., 2015, 137, 955.
L. Bodisz, M. Hahn, A. Rix, J. Schallenberg, Chem. Eng. Res. Des., 2015, 99, 208.
C. Stratula, "Fractionation. Principles and calculating methods", Editura Tehnica, Bucharest, 1986.
H.Z. Kister, D. R. Gill, Chem. Eng. Prog., 1991, 87(2), 32.
A.K. Coker, Chem. Eng. Prog., 1991, 87(11), 93.
M. Leva, Chem. Eng. Prog., 1992, 88(1), 65.
A. Badea, "Basis of heat and mass transfer", Editura Academiei Romane, Bucharest, 2004.
R.E. Strigle, Chem. Eng. Prog., 1993, 89(8), 79.
M. Kotora, J. Markos, V. Camaj, Chem. Eng. Sci., 2007, 62, 5193.
L.L. Simon, H. Kencse, K. Hungerbuhler, Chem. Eng. Process., 2009, 48(4), 938.
Q. Qian, H. Wang, P. Bai, G. Yuan, Chem. Eng. Res. Des., 2011, 89(12), 2560.
T. Chen, B. Zhang, Q. Chen, Energy, 2014, 72, 311.
Y.J. Chung, K.H. Bae, K.K. Kim, W.J. Lee, Ann. Nucl. Eng., 2014, 71, 298.
E. Demir, T. Izci, A. S. Alagoz, T. Karabacak, A. Kosar, Int. J. Therm. Sci., 2014, 82, 111.
G.M. Chen, V.P. Zhelezny, A.V. Melnyk, K.O. Shestopalov, Int. J. Refrig., 2015, 58, 137.
S.J. Thiagarajan, R. Yang, C. King, S. Narumanchi, Int. J. Heat Mass Transfer, 2015, 89, 1297.
X. Zheng, C.W. Park, Appl. Therm. Eng., 2015, 86, 14.
S. Popa, S. Boran, Rev. Roum. Chim., 2016, 61(11-12), 851.
S. Popa, S. Boran, Thermal Science, 2017, 21(5), 2031.
S. Nanu, T. L. Dragomir, Control Eng. Appl. Inf., 2001, 3(2), 1.
S. Popa, S. Boran, Rev. Roum. Chim., 2015, 60(10), 991.
M. Asadollahzadeh, M. Torab-Mostaedi, R. Torkaman, Chem. Eng. Process., 2016, 109, 97.
P. Amani, J. Safdari, H. Abolghasemi, M.H. Mallah, A. Davari, Int. J. Heat. Fluid Fl., 2017, 65, 266.
T.L. Dragomir, I. Silea, S. Nanu, Control performances improving by interpolator controllers, 6th World Multiconference On Systemics, Cybernetics and Informatics, Orlando, Florida, USA, 2002, p.208.
D. Kohn, S. Popa, Exp. Heat Transfer, 1999, 12(3), 193.
R.J.P. Brierley, Chem. Eng. Progress, 1994, 90, 68.
I. Bratu, "Procese si aparate in industria chimica, vol. III. ", Editura Tehnica, Bucharest, 1985.
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.