SYNTHESIS AND ANTIBACTERIAL EVALUATION OF NEW PYRROLO[3’,4’:3,4]PYRROLO[1,2-a]QUINOLINE AND PYRROLO[3',4':3,4]PYRROLO[2,1-a]ISOQUINOLINE DERIVATIVES
DOI:
https://doi.org/10.24193/subbchem.2019.3.06Keywords:
heterocycles, cycloaddition, quinolines, isoquinolines, antibacterialAbstract
Two series of new fused pyrrolo[3’,4’:3,4]pyrrolo[1,2-a]quinoline and pyrrolo[3',4':3,4]pyrrolo[2,1-a]isoquinoline derivatives were synthesized and evaluated for the antimicrobial activity. The synthetic approach involves cycloimmonium ylides as 1,3-dipol intermediates. The structures of all synthesized compounds were proved by analytical and spectroscopic data. Crystal structure of compound 11a has been also determined by single crystal XRD. The synthesized compounds were evaluated for their expected antimicrobial activity against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922 and Candida albicans ATCC10231, but no one showed activity against all the reference strains.
References
I.M. Gould; Int. J. Antimicrob. Ag., 2008, 32S, S2-S9.
G L. French; Int. J. Antimicrob.Ag., 2010, 36S3, S3–S7.
M.G. Ferlin; C. Marzano; L. Dalla Via; A. Chilin; G. Zagotto; A. Guiotto; S. Moro; Bioorg. Med. Chem., 2005, 13, 4733–4739.
J. Krishnan; B. Vedhanarayanan; B. S. Sasidhar; S. Varughese; V. Nai; Chem. Asian J., 2017, 12, 623 – 627.
J.W. Daly; B. Witkop; T. Tokuyama; T. Nishikawa; I.L. Karle; Helv. Chim. Acta, 1977, 60, 1128-1140.
H. Ishibashi; S. Harada; K. Sato; M. Ikeda; S. Akai; Y. Tamura; V.U. Ahmad; A. Rahman; T. Rasheed; H. Rehman; Heterocycles ,1987, 26, 1251.
D.S. Allgäuer; H. Mayr; Eur. J. Org. Chem., 2014, 14, 2956–2963.
Y. Liu; Y. Zhang; Y.-M.Shen; H.-W. Hu; J.-H.Xu; Org. Biomol. Chem., 2010, 8, 2449–2456.
J. An; Q.-Q. Yang; Q. Wang; W.-J. Xiao; Tetrahedron Lett., 2013, 54, 3834–3837.
R.S. Dhivare; S.S. Rajput; Int. J. Chem. Tech. Res., 2016, 9(3), 325-331.
A.M. Al- Azzawi; K.K.H. Al-Obiadi; Int. J. Res. Pharm. &Chem., 2016, 6(1), 1-8.
C. Jin; R. Alenazy; Y. Wang; R. Mowla; Y. Qin; J. Quan; E. Tan; N.D. Modi; X. Gu; S.W. Polyak; H. Venter; S. Ma; Bioorg. Med. Chem. Let., 2019, 19(7), 882-889.
T.H. Largani; G. Imanzadeh; S. Zahri; N.N. Pesyan; E. Şahin; Green Chem. Lett. Rev., 2017, 10, 387-392.
R. Danac; T. Daniloaia; V. Antoci; V. Vasilache; I.I. Mangalagiu; Lett. Drug Des. Discov., 2015, 12, 14-17.
A. Rotaru; R. Danac; I. Druta; G. Drochioiu; I. Cretescu; Rev. Chim. (Bucharest, Romania), 2005, 56(2), 179-183.
C.M. Al Matarneh, C.I. Ciobanu; I.I. Mangalagiu; R. Danac; J. Serb. Chem. Soc., 2016, 81(2), 133-140.
C.M. Al Matarneh; I.I. Mangalagiu; S. Shova; R. Danac; J. Enz. Inhib. Med. Chem., 2016, 31(3), 470-480.
A.-M. Olaru; V. Vasilache; R. Danac; I.I. Mangalagiu; J. Enz. Inhib. Med. Chem., 2017, 32(1), 1291-1298.
S. Mondal; A. Maity; R. Paira; M. Banerjee; Y.P. Bharitkar; A. Hazra; S. Banerjee; N.B. Mondal; Tet. Lett., 2012, 53, 6288-6291.
C.M. Al Matarneh; C.I. Ciobanu; M.O. Apostu; I. I. Mangalagiu; R. Danac; C.R. Chimie, 2018, 21(1), 1-8.
C.M. Al Matarneh; M.O. Apostu; I.I. Mangalagiu; R. Danac; Tetrahedron, 2016, 72, 4230-4238.
R. Danac; L. Leontie; A. Carlescu; G.I. Rusu; Mat. Chem. Phys., 2012, 134(2-3), 1042-1048.
I. Druta; R. Danac; M. Ungureanu; G. Drochioiu; Ann. Pharm. Fr., 2002, 60, 348-351.
K.M. Khan; Z.S. Saify; Z.A. Khan; M. Ahmed; M. Saeed; M. Schick; H.J. Kohlbau; W. Voelter; Arzneim.-Forsch., 2000, 50(10), 915-924.
D.F. Brown; D. Kothari; J. Clin. Pathol., 1975, 28, 779–783.
CrysAlis RED, Oxford Diffraction Ltd.,Version 1.171.36.32, 2003.
O.V. Dolomanov; L.J. Bourhis; R.J. Gildea; J A.K. Howard; H.J. Puschmann; Appl. Cryst., 2009, 42, 339-341.
G.M. Sheldrick; SHELXS, Acta Crystallogr. A, 2008, 64, 112-122.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.