TRACKING THE GROWING RINGS IN BIOGENIC ARAGONITE FROM FISH OTOLITH USING CONFOCAL RAMAN MICROSPECTROSCOPY AND IMAGING

Authors

  • Geza LAZAR Babes-Bolyai University, Biomolecular Physics Department, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania
  • Calin FIRTA Babes-Bolyai University, Biomolecular Physics Department, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
  • Sanja MATIĆ-SKOKO Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia
  • Melita PEHARDA Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia https://orcid.org/0000-0002-9486-9633
  • Dario VRDOLJAK Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia https://orcid.org/0000-0002-1259-6230
  • Hana UVANOVIĆ Institute of Oceanography and Fisheries, Šetalište I. Meštrovića 63, 21000 Split, Croatia https://orcid.org/0000-0003-1752-1673
  • Fran NEKVAPIL National Institute for Research and Development of Isotopic and Molecular Technologies; Universitatea Babes-Bolyai Facultatea de Fizica https://orcid.org/0000-0001-8652-8292
  • Branko GLAMUZINA University of Dubrovnik, Department for Aquaculture, Ćira Carića 4, 20000 Dubrovnik, Croatia https://orcid.org/0000-0002-5066-4599
  • Simona CINTA PINZARU Babes-Bolyai University, Biomolecular Physics Department, Kogalniceanu 1, RO-400084 Cluj-Napoca, Romania. *Corresponding author: simona.cinta@phys.ubbcluj.ro https://orcid.org/0000-0001-8016-4408

Keywords:

Confocal Raman micro-spectroscopy, fish otoliths, Raman mapping, growth rings, aragonite.

Abstract

Fish otoliths pose increasing interest due to their potential
of rendering information about environmental changes, underlined in their non-linear time-dependent biogenic crystal growth. Otoliths are acellular, metabolically inert and continuously grow in a complex process which still needs to be understood. In the present work confocal Raman micro-spectroscopy (CRM) and imaging is employed to investigate the growth pattern in otoliths from Sparus aurata of Mediterranean provenance. CRM signal acquired from otolith sagittal section is exploited to associate it with the periodic growth increments denoted as rings. Raman signal collected from the core to the margins with micrometer spatial resolution invariably revealed characteristic signal of aragonite. Relative intensity variability was observed particularly for the lattice modes, indicating changes in crystalline orientation relative to incident laser. Bands associated with organic fraction were absent in the 90-1840 cm-1 spectral range. Daily growth rings were further studied using the Raman mapping of main aragonite bands intensities at 1083, 704 and the lattice modes in the 100-350 cm-1 range. The spectral intensity pattern closely follows the daily growth pattern. Traces of toxic or heavy metals incorporated in biogenic carbonate mineral were spuriously detected in the mapped areas, according to the position and width of the Raman bands of witherite (BaCO3), strontianite (SrCO3), along with the main aragonite and trace of its calcite polymorph.

References

S. E. Campana, Mar. Ecol. Prog. Ser., 1999, 188, 263-297.

S. E. Campana, S. R. Thorrold, Can. J. Fish. Aquat. Sci., 2001, 58(1), 30-38.

S. Cinta Pinzaru, S. Matić-Skoko, M. Peharda, D. Vrdoljak, H. Uvanović, C. Firta, G. Lazar, F. Nekvapil, L. Barbu-Tudoran, M. Suciu, B. Glamuzina, in Peharda, M., Ezgeta-Balić, D., Uvanović, H. (Eds). “5th Int. Sclerochronology Conf., 16-20th June 2019, Split, Croatia. Book of Abstracts”, 2019, p. 144.

R. P. Rodríguez Mendoza, Croat. J. Fish., 2006, 64 (3), 89- 102.

G. Behrens, L.T. Kuhn, R. Ubic, A. H. Heuer, Spectrosc. Lett., 1995, 28, 983-995.

S. E. Campana, Comp. Biochem. Physiol., 1983, 75A, 215‑220.

R. W. Gauldie, J. Mar. Fish. Res.,1985, 20, 209–217.

J. M. Casselman, J. M. Gunn, Can. J. Fish. Aquat., Sci., 1992, 49(Supp1.1), 102-111.

J. Tomás, A. J. Geffen, J. Fish Biol., 2003, 63(6), 1383-1401.

R. Brown, K. P. Severin, Can. J. Fish. Aquat. Sci., 1999, 56,1898–1903.

S. Melancon, B. J. Fryer, J. E Gagnon, S. A. Ludsin, and Z. Yang, Can. J. Fish. Aquat. Sci., 2005, 62, 2609-2619.

G. Nehrke, H. Poigner, D. Wilhelms-Dick, T. Brey, D. Abele, Geochem. Geophys. Geosyst., 2012, 13, Q05014.

R. W. Gauldie, S. K. Sharma, E. Volk, Comp. Biochem. Physiol. A-Physiol.,1997, 118, 753-757.

W. Kaabar, S. Bott, R. Devonshire, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78,136–141.

N. Buzgar, Al. Apopei, An. Stiint Univ. AI. I. Cuza Iasi, Geol., 2009, 55, 97–112.

U. Wehrmeister, A. L Soldati, D. E. Jacob, T. Häger, W. Hofmeister, J. Raman Spectrosc., 2010, 41, 193-201.

F. C. Donnelly, F. Purcell-Milton, V. Framont, O. Cleary, P. W. Dunne, Y. K. Gun’ko, Chem. Commun., 2017, 53, 6657–6660.

S. Farsang, S. Béclin, S. Redfern, Am. Min., 2018, 103, 1988–1998.

M. De La Pierre, C. Carteret, L. Maschio, E. André, R.Orlando, R. Dovesi, J. Chem. Phys., 2014, 140, 164509.

Downloads

Published

2020-03-20

How to Cite

LAZAR, G., FIRTA, C., MATIĆ-SKOKO, S., PEHARDA, M., VRDOLJAK, D., UVANOVIĆ, H., … CINTA PINZARU, S. (2020). TRACKING THE GROWING RINGS IN BIOGENIC ARAGONITE FROM FISH OTOLITH USING CONFOCAL RAMAN MICROSPECTROSCOPY AND IMAGING. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 125–136. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/7961

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.