CHARACTERIZATION AND APPLICATION OF NEW EFFICIENT NANOSORBENT Fe2O3 PREPARED BY A MODIFIED LOW-TEMPERATURE UREA METHOD

Authors

  • Miljana RADOVIĆ VUČIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com. https://orcid.org/0000-0001-6820-5844
  • Jelena MITROVIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Email: jelenam81@gmail.com. https://orcid.org/0000-0003-0147-7719
  • Miloš KOSTIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com.
  • Nena VELINOV Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com. https://orcid.org/0000-0001-9043-8521
  • Slobodan NAJDANOVIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com. https://orcid.org/0000-0001-9383-4394
  • Danijela BOJIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com. https://orcid.org/0000-0003-0737-4550
  • Aleksandar BOJIĆ Department of Chemistry, Faculty of Sciences and Mathematics, The University of Niš, Niš, Serbia. Corresponding author: mimaradovic@gmail.com. https://orcid.org/0000-0002-9853-2747

DOI:

https://doi.org/10.24193/subbchem.2020.2.14

Keywords:

Amorphous materials, Nanostructures, Iron oxide, Chemical synthesis, Thermogravimetric analysis (TGA), X-ray diffraction

Abstract

In this work, low-cost non-conventional nanostructured Fe2O3 was produced by a modified low-temperature urea method (MLTUM-Fe2O3). Non-magnetic amorphous nanoparticle MLTUM-Fe2O3 with a bouquet like morphology is found to play as an effective sorbent media to remove textile dye Reactive Blue 19 from textile industries dye effluents over a wide range of pH. The nanoparticles were characterized by X-ray powder diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), FTIR and TGA. The surface area was measured by Brunauer-Emmett-Teller (BET) analysis. SEM image reveals bouquet like morphology with average particle size about 50 nm. The maximum sorption capacity of the sorbent is found to be 271.00 mg g–1 for Reactive Blue 19 and the data fitted with different isotherm models. Study on sorption kinetics shows that sorption of Reactive Blue 19 onto iron oxide follows pseudo-second-order kinetic.

References

C. O’Neill; F.R. Hawkes; D.L. Hawkes; N.D. Lourenco; H.M. Pinheiro; W. Delee; Chem. Technol. Biot., 1999, 74, 1009-1018.

I. Arslan-Alaton; B.H. Gursoy; J.E. Schmidt; Dyes Pigm., 2008, 78, 117-130.

J. (Ed.) Shore; Dyeing with Reactive Dyes, Formerly of BTTG-Shirley and ICI (now Zeneca), Manchester, UK, 1995.

P. (Ed.) Gregory; Toxicology of Textile Dyes, Heriot-Watt University, UK, 2007.

Y. Verma; Toxicol. Ind. Health, 2011, 27, 41-49.

J.E.B. McCallum; S.A. Madison; S. Alkan; R.L. Depinto; R.U. Rohas Wahl; Environ. Sci. Technol., 2000, 34, 5157-5164.

M. Siddique; R. Farooq; Z.M. Khan; Z. Khan; S.F. Shaukat; Ultrason. Sonochem., 2011, 18, 190-196.

A. Dabrowski; Adv. Coll. Interface Sci., 2001, 93, 135-224.

T. Robinson; G. McMullan; R. Marchant; P. Nigam; Bioresour. Technol., 2001, 77, 247-255.

O. Aktas; F. Cecen; Int. Biodeterior. Biodegrad., 2007, 59, 257-272.

E. Hosseini Koupaie; M.R. Alavi Moghaddam; S.H. Hashemi; Int. Biodeterior. Biodegrad., 2012, 71, 43-49.

J. Zolgharnein; N. Asanjarani; T. Shariatmanesh; Int. Biodeterior. Biodegrad., 2013, 85, 66-77.

R.S. Juang; R.L. Tseng; F.C. Wu; S.H. Lee; J. Chem. Technol. Biot., 1997, 70, 391-399.

K.Y. Ho; G. McKay; K.L. Yeung, Langmuir, 2003, 19, 3019-3024.

Q.Y. Sun; L.Z. Yang; Water Res., 2003, 37, 1535-1544.

M. Valix; W.H. Cheung; G. McKay; Langmuir, 2006, 22, 4574-4582.

B.H. Hameed; A.A. Ahmad; N. Aziz; Chem. Eng. J., 2007, 133, 195-203.

I.A. W. Tan; B.H. Hameed; A.L. Ahmad; Chem. Eng. J., 2007,127, 111-119.

A. Mittal; L. Kurup; J. Mittal; J. Hazard. Mater., 2007, 146, 243-248.

I.A. W. Tan; A.L. Ahmad; B.H. Hameed; J. Hazard. Mater., 2008, 154, 337-346.

E. Eren; B. Afsin; Dyes Pigments, 2008, 76, 220-225.

A.P. Vieira; S.A.A. Santana; C.W.B. Bezerra; H.A.S. Silva; J.A.P. Chaves; J.C.P. de Melo; E.C. da Silva Filho; C. Airoldi; J. Hazard. Mater., 2009, 166, 1272-1278.

B.K. Nandi; A. Goswami; M.K. Purkait; Appl. Clay. Sci., 2009, 42, 583-590.

O. Gok; A.S. Ozcan; A. Ozcan; Appl. Surf. Sci., 2010, 256, 5439-5443.

A.R. Khataee; F. Vafaei; M. Jannatkhah; Int. Biodeterior. Biodegrad., 2013, 83, 33-40.

R. Darvishi Cheshmeh Soltani; A.R. Khataee; M. Safari, S.W. Joo; Int. Biodeterior. Biodegrad., 2013, 85, 383-391.

N.K. Nga; P.T.T. Hong; T.D. Lam; T.Q. Huy; J. Colloid. Interf. Sci., 2013, 398, 210-216.

U. A. Isah; G. Abdulraheem; S. Bala; S. Muhammad; M. Abdullahi; Int. Biodeterior. Biodegrad., 2015, 102, 265-273.

D.C. dos Santos; M.A. Adebayo; E.C. Lima; S.F.P. Pereira; R. Cataluna; C. Saucier; P.S. Thue; F.M. Machado; J. Braz. Chem. Soc., 2015, 26, 924-938.

S. Karimifard; M. R. A. Moghaddam; Process Saf. Environ. Prot., 2016, 99, 20-29.

N.K. Nga; H.D. Chinh; P.T.T. Hong; T.Q. Huy; J. Polym. Environ., 2017, 25, 146-155.

G. Ciobanu; S. Barna; M. Harja; Arch. Environ. Protec., 2016, 42, 3-11.

Y. Liu; M. Yan; Y. Geng; J. Huang; Appl. Sci., 2016, 6, 232-245.

M. Shanehsaz; S. Seidi; Y. Ghorbani; S.M.R. Shoja; S. Rouhani; Spectrochim. Acta., Part A, 2015, 149, 481-486.

G. Moussavi; M. Mahmoudi; J. Hazard. Mater., 2009, 168, 806-812.

Z.M. Khoshhesab; M. Ahmadi; Desalination Water Treat., 2016, 57, 20037-

R.D. Purohit; B.P. Sharma; K.T. Pillai; A.K.Tyagi; Mater. Res. Bull., 2001, 36, 2711-2721.

J.C. Toniolo; M.D. Lima; A.S. Takimi; C.P. Bergmann; Mater. Res. Bull., 2005, 40, 561-571.

L.M. Song; S.J. Zhang; Colloids Surf. A: Physicochem. Eng. Asp., 2010, 360, 1-5.

R.M. Cornell; U. Schwertmann; The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, New York, 2003.

P. Balderas-Hernandez; J.G. Ibanez; J.J. Godinez-Ramirez; F. Almada-Calvo; Chem. Educator, 2006, 11, 267-270.

J.G. Ibanez; M. Hernandez-Esparza; C. Doria-Serrano; A. Fregoso-Infante; M.M. Singh; Environmental Chemistry: Microscale Laboratory Experiments, Springer, New York, 2008.

D. Savova; N. Petrov; M. Yardim; E. Ekinci; T. Budinova; M. Razvigorova; V. Minkova; Carbon, 2003, 41, 1897-1903.

S. Al-Qaradawi; S. R. Salman; J. Photochem. Photobiol. A: Chem., 2002, 148, 161-168.

W.J. Jr. Weber; J.C. Morris; J. Sanit. Eng. Div., 1964, 89, 31-60.

J. Chrastil; Text. Res. J., 1990, 60, 413-416.

F. Carrillo; M.J. Lis; X. Colom; M. Lopez-Mesas; J. Valldeperas; Process Biochem., 2005, 40, 3360-3364.

I. Langmuir; J. Am. Chem. Soc., 1916, 38, 2221-2295.

H.Z. Freundlich; J. Phys. Chem., 1906, 57A, 385-470.

A.A. Ismaiel; M.K. Aroua; R. Yusoff; Chem. Eng. J., 2013, 225, 306-314.

H.K. Boparai; M. Joseph; D.M. O’Caroll; J. Hazard. Mater., 2011, 186, 458-465.

G. Vazquez; M. Sonia Freire; J. Gonzalez-Alvarez; G. Antorrena; Desalination, 2009, 249, 855-860.

N. Asasian; T. Kaghazchi; M. Soleimani; J. Ind. Eng. Chem., 2012, 18, 283-289.

M.I. Temkin; V. Pyzhev; Acta Physicochim., 1940, 12, 217-222.

L.V. Radushkevich; Zhurnal Fizicheskoi Khimii 1949, 23, 1410-1420.

M.M. Dubinin; Chem. Rev., 1960, 60, 235-266.

R. Sips; J. Chem. Phys., 1948, 16, 490-495.

Downloads

Published

2020-06-30

How to Cite

RADOVIĆ VUČIĆ, M. ., MITROVIĆ, J. ., KOSTIĆ, M. ., VELINOV, N. ., NAJDANOVIĆ, S. ., BOJIĆ, D. ., & BOJIĆ, A. . (2020). CHARACTERIZATION AND APPLICATION OF NEW EFFICIENT NANOSORBENT Fe2O3 PREPARED BY A MODIFIED LOW-TEMPERATURE UREA METHOD. Studia Universitatis Babeș-Bolyai Chemia, 65(2), 171–186. https://doi.org/10.24193/subbchem.2020.2.14

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 64 65 66 67 68 69 

You may also start an advanced similarity search for this article.