CHARACTERIZATION AND APPLICATION OF NEW EFFICIENT NANOSORBENT Fe2O3 PREPARED BY A MODIFIED LOW-TEMPERATURE UREA METHOD
DOI:
https://doi.org/10.24193/subbchem.2020.2.14Keywords:
Amorphous materials, Nanostructures, Iron oxide, Chemical synthesis, Thermogravimetric analysis (TGA), X-ray diffractionAbstract
In this work, low-cost non-conventional nanostructured Fe2O3 was produced by a modified low-temperature urea method (MLTUM-Fe2O3). Non-magnetic amorphous nanoparticle MLTUM-Fe2O3 with a bouquet like morphology is found to play as an effective sorbent media to remove textile dye Reactive Blue 19 from textile industries dye effluents over a wide range of pH. The nanoparticles were characterized by X-ray powder diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), FTIR and TGA. The surface area was measured by Brunauer-Emmett-Teller (BET) analysis. SEM image reveals bouquet like morphology with average particle size about 50 nm. The maximum sorption capacity of the sorbent is found to be 271.00 mg g–1 for Reactive Blue 19 and the data fitted with different isotherm models. Study on sorption kinetics shows that sorption of Reactive Blue 19 onto iron oxide follows pseudo-second-order kinetic.
References
C. O’Neill; F.R. Hawkes; D.L. Hawkes; N.D. Lourenco; H.M. Pinheiro; W. Delee; Chem. Technol. Biot., 1999, 74, 1009-1018.
I. Arslan-Alaton; B.H. Gursoy; J.E. Schmidt; Dyes Pigm., 2008, 78, 117-130.
J. (Ed.) Shore; Dyeing with Reactive Dyes, Formerly of BTTG-Shirley and ICI (now Zeneca), Manchester, UK, 1995.
P. (Ed.) Gregory; Toxicology of Textile Dyes, Heriot-Watt University, UK, 2007.
Y. Verma; Toxicol. Ind. Health, 2011, 27, 41-49.
J.E.B. McCallum; S.A. Madison; S. Alkan; R.L. Depinto; R.U. Rohas Wahl; Environ. Sci. Technol., 2000, 34, 5157-5164.
M. Siddique; R. Farooq; Z.M. Khan; Z. Khan; S.F. Shaukat; Ultrason. Sonochem., 2011, 18, 190-196.
A. Dabrowski; Adv. Coll. Interface Sci., 2001, 93, 135-224.
T. Robinson; G. McMullan; R. Marchant; P. Nigam; Bioresour. Technol., 2001, 77, 247-255.
O. Aktas; F. Cecen; Int. Biodeterior. Biodegrad., 2007, 59, 257-272.
E. Hosseini Koupaie; M.R. Alavi Moghaddam; S.H. Hashemi; Int. Biodeterior. Biodegrad., 2012, 71, 43-49.
J. Zolgharnein; N. Asanjarani; T. Shariatmanesh; Int. Biodeterior. Biodegrad., 2013, 85, 66-77.
R.S. Juang; R.L. Tseng; F.C. Wu; S.H. Lee; J. Chem. Technol. Biot., 1997, 70, 391-399.
K.Y. Ho; G. McKay; K.L. Yeung, Langmuir, 2003, 19, 3019-3024.
Q.Y. Sun; L.Z. Yang; Water Res., 2003, 37, 1535-1544.
M. Valix; W.H. Cheung; G. McKay; Langmuir, 2006, 22, 4574-4582.
B.H. Hameed; A.A. Ahmad; N. Aziz; Chem. Eng. J., 2007, 133, 195-203.
I.A. W. Tan; B.H. Hameed; A.L. Ahmad; Chem. Eng. J., 2007,127, 111-119.
A. Mittal; L. Kurup; J. Mittal; J. Hazard. Mater., 2007, 146, 243-248.
I.A. W. Tan; A.L. Ahmad; B.H. Hameed; J. Hazard. Mater., 2008, 154, 337-346.
E. Eren; B. Afsin; Dyes Pigments, 2008, 76, 220-225.
A.P. Vieira; S.A.A. Santana; C.W.B. Bezerra; H.A.S. Silva; J.A.P. Chaves; J.C.P. de Melo; E.C. da Silva Filho; C. Airoldi; J. Hazard. Mater., 2009, 166, 1272-1278.
B.K. Nandi; A. Goswami; M.K. Purkait; Appl. Clay. Sci., 2009, 42, 583-590.
O. Gok; A.S. Ozcan; A. Ozcan; Appl. Surf. Sci., 2010, 256, 5439-5443.
A.R. Khataee; F. Vafaei; M. Jannatkhah; Int. Biodeterior. Biodegrad., 2013, 83, 33-40.
R. Darvishi Cheshmeh Soltani; A.R. Khataee; M. Safari, S.W. Joo; Int. Biodeterior. Biodegrad., 2013, 85, 383-391.
N.K. Nga; P.T.T. Hong; T.D. Lam; T.Q. Huy; J. Colloid. Interf. Sci., 2013, 398, 210-216.
U. A. Isah; G. Abdulraheem; S. Bala; S. Muhammad; M. Abdullahi; Int. Biodeterior. Biodegrad., 2015, 102, 265-273.
D.C. dos Santos; M.A. Adebayo; E.C. Lima; S.F.P. Pereira; R. Cataluna; C. Saucier; P.S. Thue; F.M. Machado; J. Braz. Chem. Soc., 2015, 26, 924-938.
S. Karimifard; M. R. A. Moghaddam; Process Saf. Environ. Prot., 2016, 99, 20-29.
N.K. Nga; H.D. Chinh; P.T.T. Hong; T.Q. Huy; J. Polym. Environ., 2017, 25, 146-155.
G. Ciobanu; S. Barna; M. Harja; Arch. Environ. Protec., 2016, 42, 3-11.
Y. Liu; M. Yan; Y. Geng; J. Huang; Appl. Sci., 2016, 6, 232-245.
M. Shanehsaz; S. Seidi; Y. Ghorbani; S.M.R. Shoja; S. Rouhani; Spectrochim. Acta., Part A, 2015, 149, 481-486.
G. Moussavi; M. Mahmoudi; J. Hazard. Mater., 2009, 168, 806-812.
Z.M. Khoshhesab; M. Ahmadi; Desalination Water Treat., 2016, 57, 20037-
R.D. Purohit; B.P. Sharma; K.T. Pillai; A.K.Tyagi; Mater. Res. Bull., 2001, 36, 2711-2721.
J.C. Toniolo; M.D. Lima; A.S. Takimi; C.P. Bergmann; Mater. Res. Bull., 2005, 40, 561-571.
L.M. Song; S.J. Zhang; Colloids Surf. A: Physicochem. Eng. Asp., 2010, 360, 1-5.
R.M. Cornell; U. Schwertmann; The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, Wiley-VCH, New York, 2003.
P. Balderas-Hernandez; J.G. Ibanez; J.J. Godinez-Ramirez; F. Almada-Calvo; Chem. Educator, 2006, 11, 267-270.
J.G. Ibanez; M. Hernandez-Esparza; C. Doria-Serrano; A. Fregoso-Infante; M.M. Singh; Environmental Chemistry: Microscale Laboratory Experiments, Springer, New York, 2008.
D. Savova; N. Petrov; M. Yardim; E. Ekinci; T. Budinova; M. Razvigorova; V. Minkova; Carbon, 2003, 41, 1897-1903.
S. Al-Qaradawi; S. R. Salman; J. Photochem. Photobiol. A: Chem., 2002, 148, 161-168.
W.J. Jr. Weber; J.C. Morris; J. Sanit. Eng. Div., 1964, 89, 31-60.
J. Chrastil; Text. Res. J., 1990, 60, 413-416.
F. Carrillo; M.J. Lis; X. Colom; M. Lopez-Mesas; J. Valldeperas; Process Biochem., 2005, 40, 3360-3364.
I. Langmuir; J. Am. Chem. Soc., 1916, 38, 2221-2295.
H.Z. Freundlich; J. Phys. Chem., 1906, 57A, 385-470.
A.A. Ismaiel; M.K. Aroua; R. Yusoff; Chem. Eng. J., 2013, 225, 306-314.
H.K. Boparai; M. Joseph; D.M. O’Caroll; J. Hazard. Mater., 2011, 186, 458-465.
G. Vazquez; M. Sonia Freire; J. Gonzalez-Alvarez; G. Antorrena; Desalination, 2009, 249, 855-860.
N. Asasian; T. Kaghazchi; M. Soleimani; J. Ind. Eng. Chem., 2012, 18, 283-289.
M.I. Temkin; V. Pyzhev; Acta Physicochim., 1940, 12, 217-222.
L.V. Radushkevich; Zhurnal Fizicheskoi Khimii 1949, 23, 1410-1420.
M.M. Dubinin; Chem. Rev., 1960, 60, 235-266.
R. Sips; J. Chem. Phys., 1948, 16, 490-495.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.