ASSESSMENT OF FLEXIBLE CARBON CAPTURE AND UTILIZATION OPTIONS APPLIED TO GASIFICATION PLANTS

Authors

  • Letitia PETRESCU Department of Chemical Engineering, Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj-Napoca, Romania. Email: letitiapetrescu@chem.ubbcluj.ro. https://orcid.org/0000-0002-0763-0561
  • Cristian DINCĂ Faculty of Power Engineering, Politehnica University, Bucharest, Romania. Email: crisflor75@yahoo.com. https://orcid.org/0000-0002-4625-6525
  • Călin-Cristian CORMOS Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: cormos@ubbcluj.ro. https://orcid.org/0000-0003-1215-1167

DOI:

https://doi.org/10.24193/subbchem.2020.4.02

Keywords:

Carbon capture and utilization (CCU) technologies, Gasification, Energy vectors poly-generation, Technical and environmental assessment

Abstract

The aim of this work is to assess the energy vector poly-generation capabilities of gasification plants equipped with carbon capture and utilization (CCU) features. As evaluated energy carriers, various total or partial decarbonized vectors were investigated (e.g., power, hydrogen, synthetic natural gas, methanol, Fischer-Tropsch fuel). As illustrative examples, the gasification concepts with 100 MW net energy output were considered having an overall plant decarbonization rate of 90%. As decarbonization technologies, the gas – liquid absorption based on chemical and physical scrubbing was assessed. A broad range of process system engineering tools were used (e.g., modeling and simulation, process integration, plant flexibility elements, technical and environmental evaluation). As results show, the application of carbon capture and utilization technologies for gasification-based poly-generation has promising results in term of increasing the overall energy efficiency (up to 68%), reducing CO2 emissions (down to 7 kg/MWh) and improving cycling capabilities.

References

Intergovernmental Panel on Climate Change (IPCC); Climate Change 2014. In Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland, 2014

C. Ye; Q. Ye; X. Shi; Y. Sun; Energy Policy, 2020, 137, 111094

European Commission; A policy framework for climate and energy in the period from 2020 to 2030, 2014, COM (2014) 15 final, Brussels, Belgium

K. Wang; Y. Mao; J. Chen; S. Yu; J. Clean. Prod., 2018, 1761, 1065-1077

F. Vega; F.M. Baena-Moreno; L.M. Gallego Fernández; E. Portillo; B. Navarrete; Z. Zhang; Appl. Energy, 2020, 260, 114313

G. Leonzio; D. Bogle; P.U. Foscolo; E. Zondervan; Chem. Eng. Res. Des., 2020, 155, 211-228

Z. Zhang; S.Y.Pan; H. Li; J. Cai; A.G. Olabi; E.J. Anthony; V. Manovic; Renew. Sust. Energ. Rev., 2020, 125, 109799

A. AlNouss; G. McKay; T. Al-Ansari; Energy Convers. Manag., 2019, 196, 664-676

A.M. Cormos; C. Dinca; C.C. Cormos; Appl. Therm. Eng., 2015, 74, 20-27

J. Nyári; M. Magdeldin; M. Larmi; M. Järvinen; A. Santasalo-Aarnio; J. CO2 Util., 2020, 39, 101166

A.L. Kohl; R.B. Nielsen; Gas Purification, Gulf Professional Publishing, Huston, Texas, USA, 1997, pp. 40-187

H. Mikulčić; I.R. Skov; D.F. Dominković; S.R. Wan Alwi; Z.A. Manan; R. Tan; N. Duić; S.N. Mohamad; X. Wang; Renew. Sust. Energ. Rev., 2019, 114, 109338

S. Szima; S.M. Nazir; S. Cloete; S. Amini; S. Fogarasi; A.M. Cormos; C.C. Cormos; Renew. Sust. Energ. Rev., 2019, 110, 207-219

A.M. Cormos; C. Dinca; L. Petrescu; D.A. Chisalita; S. Szima; C.C. Cormos; Fuel, 2018, 211, 883-890

S. Zeng; J. Gu; S. Yang; H. Zhou; Y. Qian; J. Clean. Prod., 2019, 215, 544-556

T.G. Kreutz; E.D. Larson; C. Elsido; E. Martelli; C. Greiga; R.H. Williams; Appl. Energy, 2020, 279, 115841

M. Pérez-Fortes; J.C. Schöneberger; A. Boulamanti; E. Tzimas; Appl. Energy, 2016, 161, 718-732

S. Szima; C.C. Cormos; J. CO2 Util., 2018, 24, 555-563

R. Smith; Chemical Process Design and Integration, 2nd ed., Wiley, Chichester, West Sussex, UK, 2016, pp. 457-499

International Energy Agency, Greenhouse Gas R&D Programme (IEAGHG); Potential for improvement in gasification combined cycle power generation with CO2 capture, Report PH4/19, Cheltenham, UK, 2003

U.S. Department of Energy, National Energy Technology Laboratory (NETL); Cost and performance baseline for fossil energy plants. Volume 1a: Bituminous coal (PC) and natural gas to electricity, Report DOE/NETL-2015/1723, USA, 2015

G. Cau; V. Tola; F. Ferrara; A. Porcu; A. Pettinau; Fuel, 2018, 214, 423-35

S. Budinis; S. Krevor; N. Mac Dowell; N. Brandon; A. Hawkes; Energy Strateg. Rev., 2018, 22, 61-81

C.C. Cormos; Energy, 2012, 42, 434-445

F. Starr; E. Tzimas; S. Peteves; Int. J. Hydrog. Energy, 2007, 32, 1477-1485

T.G. Walmsley; M.R.W. Walmsley; P.S. Varbanov; J.J. Klemeš; Renew. Sust. Energ. Rev., 2018, 98, 328-345

A.S. Brouwer; M. van den Broek; A. Seebregts; A. Faaij; Appl. Energy, 2015, 156, 107-128.

C.C. Cormos, Int. J. Hydrog. Energy, 2013, 38, 7855-7866.

Downloads

Published

2020-12-30

How to Cite

PETRESCU, L., DINCĂ, C. ., & CORMOS, C.-C. . (2020). ASSESSMENT OF FLEXIBLE CARBON CAPTURE AND UTILIZATION OPTIONS APPLIED TO GASIFICATION PLANTS . Studia Universitatis Babeș-Bolyai Chemia, 65(4), 21–34. https://doi.org/10.24193/subbchem.2020.4.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.