EFFECTS OF HEATING TEMPERATURE AND β-CAROTENE ON QUALITY AND FATTY ACIDS COMPOSITION OF VEGETABLE OILS
DOI:
https://doi.org/10.24193/subbchem.2021.4.12Keywords:
corn oil, palm oil, heating, fatty acids profile, peroxide index, total polar compounds.Abstract
The purpose of the study was to investigate the effects of temperature and β-carotene addition on the quality parameters of corn and palm oils subjected to heating. Vegetable oils and 0.005% β-caroten additivated oils were heated at varying temperatures (100, 130, 160, 190 and 220°C for 30 minutes) to follow quality alterations. Peroxide value, total polar compounds, refractive index value, iodine value and fatty acids composition were determined to measure the degree of oxidative rancidity. Peroxide value was significantly (p < 0.001) influenced by the type of oil, additivation and heating temperature. Palm oil with added antioxidant showed the smallest increase in polar compounds during the heat treatment. Corn oil fatty acids profile was rich in oleic (C18:1), arachidonic (C20:4), eicosenoic (C20:1), and linoleic (C18:2) fatty acids, followed by alphalinolenic (C18:3) and palmitoleic (C16:1) acids. Polyunsaturated fatty acids and monounsaturated fatty acids content decreased during heat treatment. Statistical analysis of the data revealed that the development of rancidity in vegetable oils subjected to heating was significantly (p < 0.01) reduced by the addition of β-carotene in concentration of 0.005%.
References
V. K. Tyagi; A. K. Vasishtha; J. Am. Oil Chem. Soc., 1996, 73, 499-507.
C. A. Costa; A. S. Carlos; G. P. Gonzalez; R. P. Reis; Eur. J. Nutr., 2012, 51, 191-198.
S. Wang; K. A. Meckling; M. F. Marcone; Y. Kakuda; R. Tsao; J. Agric. Food Chem., 2011, 59, 960-967.
E. Valantina; S. Sahayararaj; A. Prema; Rasayan J. Chem., 2010, 3, 44-53.
Z. P. Pai; T. B. Khlebnikova; Y. V. Mattsat; V.N. Parmon; React. Kinet. Catal. Lett., 2009, 98, 1-8.
O. Roman; B. Heyd; B. Broyart; R. Castillo; M. N. Maillard; LWT - Food Sci. Technol., 2013, 52, 49-58.
A. H. Noor Armylisas; M. F. Siti Hazirah; S. K. Yeong; A. H. Hazimah; Grasas Aceites, 2017, 68, 130-136.
R. De Guzman; S. Haiying Tang; K. Y. S. Salley; J. Am. Oil Chem. Soc., 2009, 86, 459-467.
M. Wroniak; K. Krygier; M. Kaczmarczyk; Pol. J. Food Nutr. Sci., 2008, 58, 85-93.
A. Biswas; A. Adhvaryu; D. G. Stevenson; B. K. Sharma; Ind. Crops Prod., 2007, 25, 1-9.
A. Bendini; E. Valli; L. Cerretani; E. Chiavaro; G. Lercker; J. Agric. Food Chem., 2009, 57, 1055-1063.
A. M. El Anany; Electron. J. Food Plants Chem., 2007, 2, 14-21.
S. Ernest; P. Kavitha; Int. J. Chem. Environ. Pharm. Res., 2011, 2, 111-118.
A. Zeb; M. Murkovic; J. Am. Oil Chem. Soc., 2013, 90, 881-889.
A. Zeb; M. Murkovic; Food Res. Int., 2013, 50, 534-544.
N. Rodrigues; R. Malheiro; S. Casal; M. C. Manzanera; Food Chem. Toxicol., 2012, 50, 2894-2902.
E. S. Shaker; LWT - Food Sci. Technol., 2006, 39, 883-892.
K. Warner; J. Agric. Food Chem., 2005, 23, 9906-9913.
H. Yoshida; S. Takagi; J. Sci. Food Agric., 1999, 62, 41-50.
F. A. Aladedunye; Eur J. Lipid Sci. Technol., 2014, 116, 688-695.
F. Caponio; A. Pasqualone; T. Gomes; Int. J. Food Sci. Technol., 2003, 38, 481-488.
F. Kreps; L. Vrbiková; S. Schmidt; S. Sekretár; O. Híreš; Eur. J. Lipid Sci. Technol., 2014, 116, 1685-1694.
S. Filip; J. Hribar; R. Vidrih; Eur. J. Lipid Sci. Technol., 2011, 113, 224-233.
M. Banu; N. Prasad; N. Siddaramaiah; Int. Food Res. J., 2016, 23, 528-537.
W. W. Nawar, Lipids. In: Fennema COR (ed.) Food chemistry, 3rd edn. Marcel Dekker, New York, 1996, pp. 225-234.
M. Stojanovski; A. Čakarova; A. Kuzelov; E. Joshevska; G. Dimitrovska; D. Tomovska; K. Bojkovska; J. Agric. Plant Sci., 2018, 16, 103-112.
F. Pop; Studia UBB Chemia, 2009, LIV(4), 187-193.
F. Pop; Studia UBB Chemia, 2018, LXIII(2), 43-52.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.