IMPROVEMENTS NECESSARY FOR A RIVER POLLUTANT TRANSPORT MODEL TO OBTAIN A BETTER PERFORMANCE

Authors

  • Elisabeta Cristina TIMIS Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Computer Aided Process Engineering Research Centre, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: elisabeta.timis@ubbcluj.ro https://orcid.org/0000-0002-9671-9014

DOI:

https://doi.org/10.24193/subbchem.2022.1.05

Keywords:

ADModel, in-river pollutant transport model, river water quality, phosphorus prediction, rating equations.

Abstract

A wealth of field facts, including the high human pressure on rivers, the eutrophication danger and the complexity of in-river phenomena (causing difficulties in water quality modelling) revealed the need to offer reliable tools for the pollutant transport modelling and for the understanding and estimation of the complex in-river pollutant behaviour. This paper presents an application of ADModel (a detailed advection dispersion pollutant transport model) for the case of River Swale (UK), in order to show why an improved representation (a) of the hydrodynamic river characteristics and (b) of the pollutant transformations; is very important for the advection-dispersion models, as it generates a major gain in the modelling skills (e.g. prediction improvement) and on the understanding of in-river phenomena. ADModel obtained good results during calibration against field measurements of concentration, showing that an improved version (using detailed representation of the river stretch and pollutant transformations) facilitates a better model performance and a wider applicability, including the identification of additional phenomena along the river stretch, of importance in ordinary situations and also during un-controlled pollution situations.

References

M.G. Hutchins; R.J. Williams; C. Prudhomme; M.J. Bowes; H., Brown; A.J. Waylett; M. Loewenthal; Hydrol Sci J.; 2016, 61, 16, 2818-2833.

H. Koraqi; I., Luzha; F. Tërmkolli; Studia U Babes-Bol. Che.; 2016, LXI, 4, 267 – 276.

B.J. Robson; Environ Model Softw.; 2014, 61,339-359.

S. Giri, Env. Pollut.; 2021, 271, 116332.

E.C. Ani; M.G. Hutchins; A. Kraslawski; P.Ş. Agachi; River Res Appl., 2011, 27, 1216-1236.

E.C. Ani; G. Wallis; A. Kraslawski; P.Ş. Agachi; Comput. Aided Chem. Eng.; 2009, 26, 731-736.

Ani E.C.; M.G. Hutchins; A. Kraslawski; P.Ş. Agachi; Assessment of pollutant transport and river water quality using mathematical models, Rev Roum Chim.; 2010, 55, 4, 285-291.

E.C. Ani; V.M. Cristea; P.Ş. Agachi; A. Kraslawski; Rev. Chim.; 2010, 61, 1108-1112.

B.H. Hoang; H.A. Hien; N.T.N. Dinh; N.A. Thao; P.T.T. Ha; J. Kandasamy; T.V. Nguyen; Ecohydrol. Hydrobiol.; 2019, 19, 210–223.

E.C. Ani; V.M. Cristea; P.Ş. Agachi; Chem. Eng. Trans.; 2011, 24, part 3, 1075-1080.

C.Von Schiller; V. Acuña; I. Aristi; M. Arroita; A. Basaguren; A. Bellin; L. Boyero; A. Butturini; A. Ginebreda; E. Kalogianni; A. Larrañaga; B. Majone; A. Martínez; S. Monroy; I. Muñoz; M. Paunović; O. Pereda; M. Petrovic; J. Pozo; S. Rodríguez-Mozaz; D. Rivas; S. Sabater; F. Sabater; N. Skoulikidis; L. Solagaistua; L. Vardakas; A. Elosegi; Sci. Total Environ.; 2017, 596-597, 465-480.

E.C. Timis (Ani); M.V. Cristea; P.Ş. Agachi; Rev. Chim., 2015, 66, 9, 1495-1503.

E.C. Timis (Ani); M.V. Cristea; P.Ş. Agachi; Environ. Res. Eng. Manag., 2012, 11, 1, 13-20.

V.M. Cristea; J. Environ. Manage., 2013, 128, 828–836.

E.C. Timis; [software] ADModel for phosphorus compounds, HydroShare, 2020, doi.org/10.4211/hs.ec5a38dcb26f4e0a855bb9c1010fa083

M.G. Hutchins; E.C. Timis; [dataset] Field data for the development of ADModel, HydroShare, 2020, doi.org/10.4211/hs.858aaf445ca645f5948a7bd73c16cdd6

M.T. van Genuchten; W.J. Alves; United States Department of Agriculture, Technical Bulletin, 1982, 1661.

E.C. Timis; M.G. Hutchins; M.V. Cristea; J. Hydrol., 2022, submitted for publication after minor revisions.

Downloads

Published

2021-12-30

How to Cite

TIMIS, E. C. (2021). IMPROVEMENTS NECESSARY FOR A RIVER POLLUTANT TRANSPORT MODEL TO OBTAIN A BETTER PERFORMANCE. Studia Universitatis Babeș-Bolyai Chemia, 67(1), 75–87. https://doi.org/10.24193/subbchem.2022.1.05

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.