WATER SPLITTING STUDIES IN ALKALINE MEDIUM USING GRAPHITE ELECTRODES MODIFIED WITH TRANSITION METAL OXIDES AND COMPOSITIONS CONTAINING THEM

Authors

  • Bogdan-Ovidiu TARANU National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu street, No. 144, 300569, Timisoara, Romania. *Corresponding author: b.taranu84@gmail.com https://orcid.org/0000-0003-1515-8065
  • Paulina VLAZAN National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu street, No. 144, 300569, Timisoara, Romania.
  • Andrei RACU National Institute for Research and Development in Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu street, No. 144, 300569, Timisoara, Romania.

DOI:

https://doi.org/10.24193/subbchem.2022.2.05

Keywords:

water splitting, oxygen evolution reaction, hydrogen evolution reaction, metal oxide, electrocatalysis.

Abstract

Present day scientific research is focused on the identification of renewable and clean alternatives to fossil fuels, with hydrogen being a promising energy source that fulfills both requirements. Given this context, the current work investigates the water splitting electrocatalytic properties of two hydrothermally synthesized transition metal oxides: MnO2 and Fe3O4. Electrodes were obtained by modifying graphite substrates with suspensions in ethanol containing the catalytic materials as such or in compositions, and their activity for the O2 and H2 evolution reactions (OER and HER) was studied in alkaline medium. Out of the MnO2-based electrodes, the one modified with the suspension containing 2 mg MnO2, 1 mg Carbon Black and 10 µL Nafion solution displayed an OER overpotential (ηO2) value, at i = 10 mA/cm2, of 0.53 V, while the one manufactured using the suspension with 4 mg MnO2 and 10 µL Nafion solution showed a HER overpotential (ηH2) of 0.427 V (at i = -10 mA/cm2). From the Fe3O4-based electrodes, the one modified with the suspension containing 2 mg Fe3O4 and 2 mg Carbon Black evidenced the highest catalytic activity for both reactions (ηO2 = 0.51 V and ηH2 = 0.43 V).

References

M. F. Sapountzi; M. J. Gracia; C. J. Weststrate; O. A. H. Fredriksson; J. W. Niemantsverdriet; Prog. Energy Combust. Sci., 2017, 58, 1-35.

S. Wang; A. Lu; C. J. Zhong; Nano Converg., 2021, 8, 1-23.

N. Dubouis; A. Grimaud; Chem. Sci., 2019, 10, 9165-9181.

L. Li; P. Wang; Q. Shao; X. Huang; Chem. Soc. Rev., 2020, 49, 3072–3106.

D. Yao; L. Gu; B. Zuo; S. Weng; S. Deng; W. Hao; Nanoscale, 2021, 13, 10624-1064.

Q. Tang; D. Jiang; ACS Catal., 2016, 6, 4953−4961.

M. I. Jamesh; J. Power Sources, 2016, 333, 213-236.

R. L. Doyle; M. E. G. Lyons; Phys. Chem. Chem. Phys., 2013, 15, 5224-5237.

S. K. Ghosh; H. Rahaman; Noble metal–manganese oxide hybrid nanocatalysts, in Noble Metal-Metal Oxide Hybrid Nanoparticles. Fundamentals and Applications. Micro and Nano Technologies, S. Mohapatra, T. A. Nguyen, P. Nguyen-Tri Eds.; Woodhead Publishing, Sawston, UK, 2019, Chapter 16, pp. 313-340.

I. Concina; Z. H. Ibupoto; A. Vomiero; Adv. Energy Mater., 2017, 7, 1-29.

M. Chhetri; S. Sultan; C. N. R. Rao; PNAS, 2017, 114, 8986-8990.

P. W. Menezes; C. Panda; S. Loos; F. Bunschei-Bruns; C. Walter; M. Schwarze; X. Deng; H. Dau; M. Driess; Energy Environ. Sci., 2018, 11, 1287-1298.

W. Li; D. Xiong; X. Gao; L. Liu; Chem. Commun., 2019, 55, 8744-8763.

T. Priamushko; R. Guillet-Nicolas; F. Kleitz; Inorganics, 2019, 7, 1-21.

P. Xiao; W. Chen; X. Wang; Adv. Energy Mater., 2015, 5, 1-13.

M. Zeng; Y. Li; J. Mater. Chem. A, 2015, 3, 14942-14962.

J. Li; J. Li; X. Zhou; Z. Xia; W. Gao; Y. Ma; Y. Qu; ACS Appl. Mater. Interfaces, 2016, 8, 10826–10834.

X. Wang; W. Li; D. Xiong; D.Y. Petrovykh; L. Liu; Adv. Funct. Mater., 2016, 26, 4067–4077.

S. Ghosh; R. N. Basu; Nanoscale, 2018, 10, 11241-11280.

J. Melder; P. Bogdanoff; I. Zaharieva; S. Fiechter; H. Dau; P. Kurz; Z. fur Phys. Chem., 2020, 234, 925–978.

Y. Meng; W. Song; H. Huang; Z. Ren; S.-Y. Chen; S.L. Suib; J. Am. Chem. Soc., 2014, 136, 11452–11464.

R. Pokhrel; M. K. Goetz; S. E. Shaner; X. Wu; S. Stahl; J. Am. Chem. Soc., 2015, 137, 8384–8387.

F. Speck; P. Santori; F. Jaouen; S. Cherevko; J. Phys. Chem., 2019, 123, 25267–25277.

Y. Zhao; C. Chang; F. Teng; Y. Zhao; G. Chen; R. Shi; G. I. N. Waterhouse; W. Huang; T. Zhang; Adv. Energy Mater., 2017, 7, 1-7.

M. Mullner; M. Riva; F. Kraushofer; M. Schmid; G. S. Parkinson; S. F. L. Mertens; U. Diebold; J. Phys. Chem., 2019, 123, 8304–8311.

R. Phul; M. A. M. Khan; M. Sardar; J. Ahmed; T. Ahmad; Crystals, 2020, 10, 1-14.

R. H. Tammam; A. M. Fekry; M. M. Saleh; Korean J. Chem. Eng., 2019, 36, 1932-1939.

M. B. Askari; A. Beheshti-Marnani; M. Seifi; S. M. Rozatia; P. Salarizadeh; J. Colloid Interface Sci., 2019, 537, 186-196.

S. Han; S. Liu; S. Yin; L. Chen; Z. He; Electrochim. Acta, 2016, 210, 942-949.

F. Mirabella; M. Müllner; T. Touzalin; M. Riva; Zdenek Jakub; F. Kraushofer; Michael Schmid; M.T.M. Koper; G.S. Parkinson; U. Diebold; Electrochim. Acta, 2021, 389, 1-11.

J. Yang; Q. Shao; B. Huang; M. Sun; X. Huang; iScience, 2019, 11, 492-504.

V. Mani; S. Anantharaj; S. Mishra; N. Kalaiselvi; S. Kundu; Catal. Sci. Technol., 2017, 7, 5092–5104.

I. Barauskien; E. Valatka; Mater. Renew. Sustain. Energy, 2018, 7, 1-10.

I. Sebarchievici; B.-O. Taranu; M. Birdeanu; S. F. Rus; E. Fagadar-Cosma; Appl. Surf. Sci., 2016, 39, 131-140.

B.-O. Taranu; M. G. Ivanovici; P. Svera; P. Vlazan; P. Sfirloaga; M. Poienar; J. Alloys Compd., 2020, 848, 1-11.

Z.-Y. Wu; B.-C. Hu; P. Wu; H.-W. Liang; Z.-L. Yu; Y. Lin; Y.-R. Zheng; Z. Li; S.-H. Yu; NPG Asia Mater., 2016, 8, 1-8.

X. Wang; YV Kolen'ko; X.-Q. Bao; K. Kovnir; L. Liu; Angew. Chem. Int. Ed., 2015, 54, 8188–8192.

Z. Liu; H. Tan; D. Liu; X. Liu; J. Xin; J. Xie; M. Zhao; L. Song; L. Dai; H. Liu; Adv. Sci., 2019, 6, 1-11.

H. Wang; H.-W. Lee; Y. Deng; Z. Lu; P.-C. Hsu; Y. Liu; D. Lin; Y. Cui; Nat. Comm., 2015, 6, 1-8.

Y. Li; H. Wang; L. Xie; Y. Liang; G. Hong; H. Dai; J. Am. Chem. Soc., 2011, 133, 7296–7299.

A. Lahiri; G. Li; F. Endres; J. Solid State Electrochem., 2020, 24, 2763–2771.

I. Boshnakova; E. Lefterova; E. Slavcheva; Int. J. Hydrog. Energy, 2018, 43, 16897-16904.

H. Begum; M. S. Ahmed; S. Jeon; Electrochim. Acta, 2019, 296, 235-242.

R. Hatel; S. E. Majdoub; A. Bakour; M. Khenfouch; M. Baitoul; IOP Conf. Series: Journal of Physics: Conf. Series, 2018, 1081, 1-7.

C. Guo; Y. Hu; H. Qian; J. Ning; S. Xu; Mater. Charact., 2011, 62, 148-151.

B. Yin; S. Zhang; H. Jiang; F. Qu; X. Wu; J. Mater. Chem. A, 2015, 3, 5722-5729.

Z. Zhao; H. Wu; H. He; X. Xu; Y. Jin; J. Mater. Chem. A, 2015, 3, 7179-7186.

A. Baciu; A. Remes; E. Ilinoiu; F. Manea; S.J. Picken; J. Schoonman; Environm. Eng. Manag. J., 2012, 11, 239-246.

E.C. Ilinoiu; F. Manea; P.A. Serra; R. Pode; Sensors, 2013, 13, 7296-7307.

M. Yang; Y. Yang; Y. Liu; G. Shen; R. Yu; Biosens. Bioelectron., 2006, 21, 1125–1131.

Downloads

Published

2022-06-30

How to Cite

TARANU, B.-O., VLAZAN, P., & RACU, A. (2022). WATER SPLITTING STUDIES IN ALKALINE MEDIUM USING GRAPHITE ELECTRODES MODIFIED WITH TRANSITION METAL OXIDES AND COMPOSITIONS CONTAINING THEM. Studia Universitatis Babeș-Bolyai Chemia, 67(2), 79–95. https://doi.org/10.24193/subbchem.2022.2.05

Issue

Section

Articles

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.