MODELLING OF ACIDS AND BASES REVISITED

Authors

  • Lorentz JÄNTSCHI Department of Physics and Chemistry, Faculty of Engineering of Materials and Environment, Technical University of Cluj-Napoca, RO-400641, Cluj-Napoca, Romania, lorentz.jantschi@chem.utcluj.ro Doctoral School of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania, lorentz.jantschi@ubbcluj.ro https://orcid.org/0000-0001-8524-743X

DOI:

https://doi.org/10.24193/subbchem.2022.4.05

Keywords:

dilution, acids, bases, 3D visualization, simulation software

Abstract

Models for dissociation and mixing of acids and bases are the main subject of many analytical chemistry textbooks. Preparing the solutions for any titration generally involves diluting acids and bases. The mathematics behind precise calculation of pH and pOH is treacherous even for monoprotic acids and bases, becoming mathematically complex when processes of chemical complexation are considered and one should consider any simplifying approximation when available.

References

T. Hodişan; Analiza titrimetrică. In Curs de Chimie Analitică: Analiza cantitativă. Universitatea Babeş-Bolyai: Cluj-Napoca, Romania, 1989; Chapter 3, pp. 92-226.

L. Jäntschi; H.I. Naşcu; Leonardo J. Sci., 2002, 1, 53–68.

D. Midgley; C. McCallum; Talanta, 1974, 21, 723–733.

M. Celeste; C. Azevedo; Ana M. V. Cavaleiro; J. Chem. Educ., 2012, 89, 767–770.

R.M. Caraballo; L.M. Saleh Medina; S.G.J. Gomez; P. Vensaus; M. Hamer; J. Chem. Educ., 2021, 98, 958−965.

F.E. Critchfield; J.B. Johnson; Anal. Chem., 1958, 30, 1247–1249.

B. García; S. Ibeas; F.J. Hoyuelos; J.M. Leal; F. Secco; M. Venturini; J. Org. Chem., 2001, 66, 7986–7993.

J.G. Mayeka; F.P. Mabiki; J. Chem. Pharm. Res., 2019, 11, 117-126.

R.A. Stairs; J. Chem. Educ., 1978, 55, 99.

N. Kapilraj; S. Keerthanan; M. Sithambaresan; J. Chem., 2019, 2019, 2031342.

M. Arocena; Chem. Teach. Int., 2021, 4, 47-54.

H.I. Naşcu; L. Jäntschi; Metode chimice de analiză - interferenţe cu analizele instrumentale. In Chimie Analitică şi Instrumentală. AcademicPres & AcademicDirect: Cluj-Napoca & Internet, Romania, 2006; Chapter 3, pp. 43-58.

M. Sarfraz; N. Sultana; M.I. Tariq; Studia UBB Chemia, 2018, 63, 125-136.

I. Helm; L. Jalukse; M. Vilbaste; I. Leito; Anal. Chim. Acta, 2009, 648, 167-173.

A. Manzoli; I.N. Tomita; F.L. Fertonani; G. de Oliveira‐Neto; M. Mascini; H. Yamanaka; Anal. Lett., 2004, 37, 1823-1832.

A. Johansson; L. Pehrsson; Analyst, 1970, 95, 652-656.

D.M. King; A.J. Bard; Anal. Chem., 1964, 36, 2351-2352.

J.T. Wang; Z.H. Li; C.Y. Chen; L. Tong; Z.Y. Liu; X.S. Bao; X.H. Zhao; Sens. Lett., 2015, 13, 888-894.

F.A. Chowdhury; H. Yamada; T. Higashii; K. Goto; M. Onoda; Ind. Eng. Chem. Res., 2013, 52, 8323-8331.

B. Rasmus; D.J. Sijmen; J. Chemom. 1997, 11, 393–401.

J.R. Sharma; D. Kumar; L. Jäntschi; Symmetry, 2019, 11, 891.

D.Kumar; J.R. Sharma; L. Jäntschi; Mathematics, 2019, 7, 919.

J.R. Sharma; S. Kumar; L. Jäntschi; Symmetry, 2019, 11, 1452.

J.R. Sharma; S. Kumar; L. Jäntschi; Mathematics, 2020, 8, 1091.

S. Kumar; J. Bhagwan; L. Jäntschi; Symmetry, 2022, 14, 1881.

K.R. Asmis; N.L. Pivonka; G. Santambrogio; M. Brümmer; C. Kaposta; D.M. Neumark; L. Wöste; Science, 2003, 299, 1375–1377.

L.L. Pruteanu; L. Jäntschi; M.L. Ungureşan; S.D. Bolboacă; Studia UBB Chemia, 2016, 61, 151–162.

M.V. Fedotova; S.E. Kruchinin; J. Mol. Liq., 2011, 164, 201–206.

L. Jäntschi. In General Chemistry Course. AcademicDirect: Cluj-Napoca, Romania, 2013. http://ph.academicdirect.org/GCC_v10.pdf

G.N. Lewis; Proc. Am. Acad. Arts Sci., 1907, 43, 259–293. http://doi.org/10.2307/20022322

IUPAC, Activity (relative activity), a. In: Compendium of chemical terminology: IUPAC recommendations, 2nd ed. Blackwell Science: Oxford, UK 1997, p. 49. http://doi.org/10.1351/goldbook.A00115

J. Inczédy, T. Lengyel, A.M. Ure. In: IUPAC Compendium of analytical nomenclature: definitive rules 1997, 1998, § 3.1. http://media.iupac.org/publications/analytical_compendium/

A.V. Bandura; S.N. Lvov; J. Phys. Chem. Ref. Data, 2006, 35, 15–30. http://doi.org/10.1063/1.1928231

L. Jäntschi. In Prezentarea şi prelucrarea datelor experimentale. U.U.Pres: Cluj-Napoca, Romania, 2013.

Y.K. Lau; S. Ikuta; P. Kebarle; J. Am. Chem. Soc., 1982, 104, 1462-1469.

PubChem. Hydrofluoric acid (CID 14917, CAS 7664-39-3). URL: https://pubchem.ncbi.nlm.nih.gov/compound/14917

D.R. Lide (Ed.) Dissociation Constants of Inorganic Acids and Bases. In CRC Handbook of Chemistry and Physics. Taylor & Francis Group: Boca Raton & Internet, FL, USA, 2009; Chapter 8, pp. 1194-1195.

A.V. Levanov; O.Y. Isaikina; U.D. Gurbanova; V.V. Lunin; J. Phys. Chem. B, 2018, 122, 6277-6286.

E.A. Guggenheim; Trans. Faraday Soc., 1966, 62, 2750-2753.

T.M. Townsend; A. Allanic; C. Noonan; J.R. Sodeau; J. Phys. Chem. A, 2012, 116, 4035–4046.

Y. Chiang; AJ Kresge; Can. J. Chem., 2000, 78, 1627–1628.

A.V. Levanov; U.D. Gurbanova; O.Y. Isaikina; V.V. Lunin; Russ. J. Phys. Chem. A, 2019, 93, 93-101.

N.J. Tro; A General Chemistry Textmap. Supplant to Chemistry: A Molecular Approach (5th Ed). Pearson Education, Inc.: Hoboken, NJ, USA, 2020; Chapter 16, Section 4.

R.S. Macomber; J. Chem. Educ., 1984, 61, 128.

W.B. Jensen; J. Chem. Educ., 2006, 83, 1130.

S. Arrhenius; Ann. Phys., 1886, 266, 51-76.

J.N. Brönsted; Recl. Trav. Chim. Pays-Bas, 1923, 42, 718–728.

T.M. Lowry; J. Soc. Chem. Ind. London, 1923, 42, 43–47.

G.N. Lewis. In: Valence and the Structure of Atoms and Molecules. Chemical Catalog Company: NY, NY, U.S.A. 1923, p. 142.

Downloads

Published

2022-12-30

How to Cite

JÄNTSCHI, L. (2022). MODELLING OF ACIDS AND BASES REVISITED. Studia Universitatis Babeș-Bolyai Chemia, 67(4), 73–92. https://doi.org/10.24193/subbchem.2022.4.05

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.