STUDIES REGARDING COPPER IONS REMOVAL FROM WASTEWATERS USING OAK WOOD ASH AND THE EFFECT OF EXHAUSTED ASH AS SOIL AMENDMENT
DOI:
https://doi.org/10.24193/subbchem.2023.1.14Keywords:
Cu²⁺ adsorption; Oak woods ash; Mathematical correlation; Equilibrum; Kinetics; Soil amendment.Abstract
In this work it was studied the removal of copper ions from wastewater by adsorption on oak wood ash and the effect of the ash resulting from adsorption process as a soil amendment. The process variables such as pH, contact time and adsorbent dose were optimized for maximum Cu2+ removal. It was establishing the mathematical correlation between this factors and the metal ions removal efficiency using specific 3D software. Adsorption process is described by Freundlich isotherm and pseudo-first order kinetic model. The effect of the wood ash, previously used as adsorbent, as soil amendment was studied using barley crop, Hordeum vulgare L. The values of the specific parameters: germination percent, plant average length, biomass and relative growth rate proving the beneficial effect of the use of wood ash (resulted from the adsorption process) on plant growth.
References
M. G. Ghoniem; M. A. Ben Aissa; F. A. M. Ali; M. Khairy; Inorganics, 2022, 10, 256.
A. B. S. Aguiar; J. M. Costa; G. E. Santos; G. P. Sancinetti; R. P. Rodriguez; Sustain. Chem., 2022, 3, 535-550.
F. Altaf; S. Ahmed; M. Usman; T. Batool; J. Shamshad; P. Bocchetta; R. Batool; Processes, 2021, 9, 2120.
C. Tejada-Tovar; A. Villabona-Ortíz; R. Ortega-Toro; Appl. Sci. 2021, 11, 9355.
N. Bakhtiari; S. Azizian; S. M. Alshehri; N. L. Torad; V. Malgras; Y. Yamauchi; Micropor. Mesopor. Mat., 2017, 217, 173-177.
M. Mushtaq; H. N. Bhatti; M. Iqbal; S. Noreen; J. Environ. Manage., 2016, 176, 21-33.
A. Labidi; A. M. Salaberria; S. C. M. Fernandes; J. Labidi; M. Abderrabba; J. Taiwan Inst. Chem. E., 2016, 65, 140–188.
T. C. Totito; K. Laatikainen; O. Pereao; C. Bode-Aluko; L. Petrik; Appl. Sci., 2021, 11, 11912.
M. Rapa; A. A. Turcanu; E. Matei; A. M. Predescu; M. C. Pantilimon; G. Coman; C. Predescu; Materials, 2021, 14, 7187.
E. Mosayebi; S. Azizian; J. Mol. Liq., 2016, 214, 384–389.
P. Kong; J. Wang; Appl. Surf. Sci., 2016, 389, 316–323.
M. H. Morcali; B. Zeytuncu; A. Baysal; S. Akman; O. Yucel; J. Environ. Chem. Eng., 2014, 2, 1655–1662.
Q. Wu; J. Chen; M. Clark; Y. Yu, Appl. Surf. Sci., 2014, 311, 264–272.
N. Demirkiran; Trans. Nonferrous Met. Soc. China, 2015, 25, 647−653.
L. Xia; Y. Hu; B. Zhang; Trans. Nonferrous Met. Soc. China, 2014, 24, 868−875.
A. Ahmad; M. Rafatullah; O. Sulaiman; M. H. Ibrahim; Y. Y. Chii; B. M. Siddique, Desalination, 2009, 247, 636–646.
M. H. Morcali; B. Zeytuncu; A. Baysal; S. Akman; O. Yucel; J. Environ. Chem. Eng., 2014, 2, 1655–1662.
M. Fouladgar; M. Beheshti; H. Sabzyan; J. Mol. Liq., 2015, 211, 1060–1073.
M. Fernandez-Delgado Juárez; B. Prahauser; A.nWalter; H. Insam; I.H. Franke-Whittle; Waste Manage., 2015, 46, 155–164.
E. Oburger; A. Jager; A. Pasch; A. Dellantonio; K. Stampfer; W. W. Wenzel; Sci. Total Environ., 2016, 544, 711–721.
Y. Guo; C. Zhao; X. Chen; C. Li; Appl. Energ., 2015, 137, 26–36.
E. Pehlivan; H. Kahraman; E. Pehlivan; Fuel Process. Technol., 2011, 92, 65–70.
T. Chirenje; L. Q. Ma; L. Lu; Water Air Soil Poll., 2006, 171, 301-314.
N. Tewari; V. K. Verma; J. P. N. Rai; J. Sci. Ind. Res., 2006, 65, 935-938.
G. Mosoarca; C. Vancea; S. Popa; S. Boran; C. Tanasie; J. Chem. Technol. Biotechnol., 2020, 95, 1781–1789.
P. K. Pandey; S. K. Sharma; S. S. Sambi; Int. J. Environ. Sci. Tech., 2010, 7, 395-404.
C. Cobzaru; V. Inglezakis; Environ. Eng. Manag. J., 2012, 11, 2059-2063.
H. Cho; D. Oh; K. Kim; J. Hazard. Mat. B., 2005, 127, 187-195.
K. Chojnacka; I. Michalak; Global NEST J., 2009, 11, 205-217.
G. Mosoarca; C. Vancea; S. Popa; M. Gheju; S. Boran; Sci. Rep., 2020, 10, 17676.
G. Mosoarca; C. Vancea; S. Popa; S. Boran; Materials, 2021, 14, 5861.
B. Liu; H. Luo; H. Rong; X. Zeng; K. Wu; Z. Chen; H. Lu; D. Xu; Desalin. Water Treat., 2019, 160, 260–267
E. Rosales; L. Ferreira; M. Ángeles Sanromán; T. Tavares; M. Pazos; Bioresour. Technol., 2015, 182, 41-49.
M. A. Hossain; H. H. Ngo; W. S. Guo; T. Setiadi; Bioresour. Technol., 2012, 121, 386-395.
S. Sachan; H. Kumar; Int. J. Sci. Eng. Res., 2015, 6(6), 499-504.
M. Ghasemi; N. Ghasemi; G. Zahedi; S. R. W. Alwi; M. Goodarzi; H. Javadian, Int. J. Environ. Sci. Technol., 2014, 11, 1835–1844.
G. L. Dotto; L. Meili; A. K. de Souza Abud; E. H. Tanabe; D. A. Bertuol; E. L. Foletto; Water Sci. Technol., 2016, 73(11), 2713–2721.
V. F. Meseguer; J. F. Ortuño; M. I. Aguilar; M. L. Pinzón-Bedoya; M. Lloréns; J. Sáez; A. B. Pérez-Marín; Environ. Sci. Pollut. Res., 2016, 23, 24032–24046.
F. J. M. Maathuis; E. Diatloff; Roles and Functions of Plant Mineral Nutrients, in Plant Mineral Nutrients: Methods and Protocols, Methods in Molecular Biology, F. J. M. Maathuis Eds.; Humana Press, Totowa, USA, 2013, vol. 953, pp 1-21.
S. Aras; S. S. Aydin; D. A. Korpe; C. Donmez; Comparative Genotoxicity Analysis of Heavy Metal Contamination in Higher Plants, in Ecotoxicology, G. Begum Eds.; InTechOpen, Rijeka, Croatia, 2012, pp. 107-124.
C. S. Fontanetti; L. R. Nogarol; R. B. de Souza; D. G. Perez; G.T. Maziviero; Bioindicators and Biomarkers in the Assessment of Soil Toxicity, in Soil Contamination, S. Pascucci Eds.; InTechOpen, Rijeka, Croatia, 2011, p 143-168.
P. Saha; O. Shinde; S. Sarkar; Int. J. Phytoremediat., 2017, 19, 87-96.
J. S. Piccin; T. R. S. Cadaval; L. A. A. de Pinto; G. L. Dotto; Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations, In Adsorption Processes for Water Treatment and Purification, A. Bonilla-Petriciolet, D. Mendoza-Castillo, H. Reynel-Avila Eds.; Springer, Cham, Switzerland, 2017, pp. 19-51.
G. L. Dotto; N. P. G. Salau; J. S. Piccin; T. R. S. Cadaval; L. A. A. de Pinto, Adsorption kinetics in liquid phase: Modeling for discontinuous and continuous systems, In Adsorption Processes for Water Treatment and Purification, A. Bonilla-Petriciolet, D. Mendoza-Castillo, H. Reynel-Avila Eds.; Springer, Cham, Switzerland, 2017, pp. 53–76.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.