GRAPHITE PASTE ELECTRODE MODIFIED WITH ZEOLITIC IMIDAZOLATE FRAMEWORK (ZIF-67) FOR THE DETERMINATION OF ACETAMINOPHEN
DOI:
https://doi.org/10.24193/subbchem.2023.1.01Keywords:
Zeolitic imidazolate framework, graphite paste modified electrode, acetaminophenAbstract
A zeolitic imidazolate framework ZIF-67 was synthesized by an eco-friendly solvothermal method, using ethanol as solvent at room temperature. The morphology and structure of obtained ZIF-67 were characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherm, energy dispersive spectroscopy (EDS), and Fourier-transform infrared spectroscopy (FTIR). The ZIF-67 modified graphite paste electrode (ZIF-67-GPE) was prepared and used for the electrochemical detection of acetaminophen (AC). Cyclic voltammetry (CV) and square wave voltammetry (SWV) were employed to investigate the electrochemical behavior of AC at ZIF-67-GPE modified electrode. At the optimal working conditions, the limit of detection was 0.2 μM (S/N = 3) in the linear range of 2 - 10 μM AC. The good analytical parameters indicated its applicability for AC determination in real samples.References
J. Lee; O. K. Farha; J. Roberts; K. A. Scheidt; S. T. Nguyen; J. T. Hupp; Chem. Soc. Rev., 2009, 38, 1450–1459.
F. Zhang; Y. Wei; X. Wu; H. Jiang; W. Wang; H. Li, J. Am. Chem. Soc., 2014, 136, 13963–13966.
C. Dey; R. Banerjee; Chem. Commun., 2013, 49, 6617–6619.
J. Qian; F. Sun; L. Qin; Mater. Lett., 2012, 82, 220–223.
D.-Z. Shen; T.-T. Cai; X.-L. Zhu; X.-L. Ma; L.-Q. Kong; Q. Kang; Chin. Chem. Lett., 2015, 26, 1022–1025.
D. Yu; L. Ge; B. Wu; L. Wu; H. Wang; T. Xu; J. Mater. Chem. A, 2015, 3, 16688–16694.
Y.-Y. Zheng; C.-X. Li; X.-T. Ding; Q. Yang; Y.-M. Qi; H.-M. Zhang; L.-T. Qu; Chin. Chem. Lett., 2017, 28, 1473–1478.
D. Bradshaw; S. El-Hankari; L. Lupica-Spagnolo; Chem. Soc. Rev., 2014, 43, 5431–5443.
A. Phan; C. J. Doonan; F. J. Uribe-Romo; C. B. Knobler; M. O'Keeffe; O. M. Yaghi; Acc. Chem. Res., 2010, 43, 58–67.
B. Pattengale; S. Yang; J. Ludwig; Z. Huang; X. Zhang; J. Huang; J. Am. Chem. Soc., 2016, 138, 8072–8075.
R. R. Kuruppathparambil; T. Jose; R. Babu; G. Y. Hwang; A. C. Kathalikkattil; D. W. Kim; D. W. Park; Appl. Catal. B, 2016, 182, 562-569.
Y. Xiao; A. N. Hong; D. Hu; Y. Wang; X. Bu; P. Feng; Chem. Eur. J., 2019, 25, 1 – 9.
A. F. Gross; E. Sherman; J. J. Vajo; Dalton Trans., 2012, 41, 5458–5460.
Z. Öztürk; M. Filez; B.M. Weckhuyse; Chem. Eur. J., 2017, 23, 10915–10924.
S. Gadipelli; W. Travis; W. Zhou; Z. Guo; Energy Environ. Sci., 2014, 7, 2232–2238.
T. Zhang; X. Zhang; X. Yan; L. Kong; G. Zhang; H. Liu;J. Qiu; K. L. Yeung; Chem. Eng. J., 2013, 228, 398–404.
Z. Zhang; J. Zhang; J. Liu; Z. Xiong; X. Chen; Water Air Soil Pollut., 2016, 227, 471–482.
M. J. C. Ordonez; K. J. Balkus; J. P. Ferraris; I. H. Musselman; J. Membr. Sci., 2010, 36, 28–37.
S. Saeed; R. Bashir; S. U. Rehman; M. T. Nazir; Z. A. AL Othman; A. Muteb Aljuwayid; A. Abid; A. Adnan; Front. Bioeng. Biotechnol., 2022, 10, 891549.
I. Noviandri; R. Rakhmana; Int. J. Electrochem. Sci., 2012, 7, 4479–4487.
W. Y. Su; S. H. Cheng; Electroanalysis, 2010, 22, 707–714.
J. Song; J. Yang; J. Zeng; J. Tan; L. Zhang; Sensors Actuators, B Chem., 2011, 155, 220–225.
T. T. H. Ngo, I. C. Fort, T. H. Pham, G. L. Turdean, Electroanalysis, 2021, 33, 323–335.
N. T. T. Tu; P. C. Sy; T. V. Thien; T. T. T. Toan; N. H. Phong; H. T. Long; D. Q. Khieu, J. Mater. Sci., 2019, 54, 11654–11670.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.