Thermodynamic Study of Some Alcohols in Dilute Aqueous Solution

Authors

  • Wedad J. FENDI Department of Chemistry, “Ibn-Al-Haitham” College of Education for Pure Science, University of Baghdad, Iraq. Corresponding author: husam.s.k@ihcoedu.uobaghdad.edu.iq.
  • Zainab Abbas AL-DULAIMY Department of Chemistry, “Ibn-Al-Haitham” College of Education for Pure Science, University of Baghdad, Iraq. Corresponding author: husam.s.k@ihcoedu.uobaghdad.edu.iq.
  • Dheefaf F. HASSAN Department of Chemistry, “Ibn-Al-Haitham” College of Education for Pure Science, University of Baghdad, Iraq. Corresponding author: husam.s.k@ihcoedu.uobaghdad.edu.iq. https://orcid.org/0000-0003-1872-3672
  • Azhar Farooq ABDULZAHRA Department of Chemistry, “Ibn-Al-Haitham” College of Education for Pure Science, University of Baghdad, Iraq. Corresponding author: husam.s.k@ihcoedu.uobaghdad.edu.iq.
  • Husam Saleem KHALAF Department of Chemistry, “Ibn-Al-Haitham” College of Education for Pure Science, University of Baghdad, Iraq. Email: husam.s.k@ihcoedu.uobaghdad.edu.iq. https://orcid.org/0000-0003-3932-3483

DOI:

https://doi.org/10.24193/subbchem.2023.4.09

Keywords:

Alcohols, Apparent molar volume, Modified Jone-Dole equation

Abstract

An apparent molar volume ϕv of 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol in dilute aqueous solution has been particular for density measurements at 298.15 K. A restrictive apparent molar volumes ϕv˚ at infinite dilution of these compounds were investigated based on Masson’s equation. Based on the Jone-Dole equation, A and B viscosity constants for four alcohols have been identified. This liquid offers resilient solute-solvent interaction. The modified Jone-Dole equation has also been employed with the experimental consequences using four liquids as solutes in dilute aqueous solutions.

References

C. M. Romero; M. A. Esteso; Chem. Chem. Eng. Sustain. Dev., 2020, pp. 83–106.

M. M. Hoffmann; R. H. Horowitz; T. Gutmann; G. Buntkowsky; J. Chem. Eng. Data, 2021, 66(6), 2480–2500.

U. Shahazidy; M. Asghar Jamal; M. Muneer; B. Naseem; A. Kaleem Qureshi; J. Mol. Liq., 2022, 350, 54–57.

Y. Cao; Y. Peng; D. Cheng; L. Chen; M. Wang; C. Shang; L. Zheng; D. Ma; Z. P. Liu; ACS Catal., 2023, 13(1),735–743.

S. A. Yaseen; A. S. Alameen; F. A. Saif; S. B. Undre; P. B. Undre; J. Mol. Liq., 2021, 340, 5–9.

V. Sharma; C. Bhatia; M. Singh; C. Singh; S. K. Upadhyaya; K. Kishore; J. Mol. Liq., 2020, 308, 5–9.

S. Rasouli; M. R. Moghbeli; S. M. Hashemianzadeh; Mater. Res. Express, 2022, 9(9),17–20.

B. Lee; J. Kim; K. Shin; K. H. Park; M. Cha; S. Alavi; Cryst. Eng. Comm., 2021, 23(26), 4708–4716.

P. Patanjali; I. Chopra; A. Mandal; R. Singh; Indian J. Chem. Technol., 2021, 28(1), 86–93.

D. M. Li; J. Huang; Z. H. Ren; Y. J. Lu; Y. J. He; S. W. Liu; J. Dispers. Sci. Technol., 2020, 41(6), 856–862.

C. M. Romero; Y. P. Cruz; and S. Perez-Casas; Thermochim. Acta, 2020, 684, 36–39.

Y. N. Malakhova; A. A. Stupnikov; V. P. Chekusova; N. M. Kuznetsov; S. I. Belousov; Bio nano science, 2020, 10(2), 403–408.

S. Baluja; J. Anal. Pharm. Res., 2021,10(5), 169–175.

M. Ikeda; M. Aniya; Key Eng. Mater., 2020, 861 KEM, 264–269.

C. E. Miller; P. C. Lozano; Appl. Phys. Lett., 2020, 116(25), 7–10.

B. D. Prince; C. J. Annesley; R. J. Bemish; S. Hunt; AIAA Propuls. Energy Forum Expo., 2019, pp. 1–4.

B. B. Nanda; M. Pradhan; P. Kar; B. Nanda; Biointerface Res. Appl. Chem., 2020, 10(4), 5901–5909.

J. Article; Biointerface Res. Appl. Chem., 2021, 12(1), 339–350.

L. Hnedkovsky; L. Rasanen; P. Koukkari; G. Hefter; J. Chem. Eng. Data, 2021, 66(1), 38–44.

A. Thakur; K. C. Juglan; H. Kumar; J. Phys. Conf. Ser., 2020, 1531(1), 1–11.

M. Khandelwal; Int. J. Eng. Res., 2020, 9(06), 7–9.

M. Almasi; J. Chem. Eng. Data, 2020, 65(90, 4498–4502.

S. Agarwal; D. K. Sharma; Open J. Phys. Chem., 2021,11(03), 168–181.

A. F. Abdulzahra;, M. H. Saleem; I. M. Radhi; Z. A. Al-Dulaimy; Int. J. Pharm. Res., 2020, 12(2), 1229–1232.

F. Koohyar; H. Ghasemnejad-Bosra; M. Sharifirad; Studia UBB Chemia, 2012, 57(4), 217–231.

O. Miyawaki; Y. Norimatsu; H. Kumaga; Y. Irimoto; H. Kumagai; H. Sakurai; Biopolymers, 2003, 70(4), 482–491.

S. K. Sharma; A. Thakur; J. Mol. Liq., 2021, 322, 114527.

B. S. Journal; Baghdad Sci. J., 2011, 8(2), 348–358.

Z. A. H. Al-Dulaimy; D. T. A. Al-Heetimi; H. S. Khalaf; A. M. Abbas; Orient. J. Chem., 2018, 34(4), 2074–2082.

H. S. Khalaf; Z. A. H. Al-Dulaimy; A. M. Abbas; M. H. Saleem; 2019, Asian J. Chem., 31(4), 820–824.

S. K. Lai; C. C. Lim; J. Comput. Chem., 2021, 42(5), 310–325.

H. Kumar; R. Sharma; J. Chem. Thermodyn., 2021, 152, 28–31.

B. S. Journal; Baghdad Sci. J., 2006, 3(1), 147–155.

T. A. Salman; K. A. Abd; Baghdad Sci. J., 2013, 10(2), 432–441.

P. G. Raundal; A. A. Sheikh; S. S. Kasim; J. Adv. Sci. Res., 2021, 12(01), 99–105.

M. Shakeel; K. Mahmood; J. Chinese Chem. Soc., 2020, 67(9),1552–1562.

T. Mallik; S. Ghosh; D. Ekka; J. Serbian Chem. Soc., 2022, 87(10),1171–1184.

D. T. A. Al-Heetimi; Z. A. Al-Dulaimy; A. A. Al-Jawary; O. S. Al-Khazrajy; Studia UBB Chemia, 2019, 64(1), 103–112.

M. M. Budeanu; V. Dumitrescu; Appl. Sci., 2022, 12(1), 5–8.

A. Thakur; K. C. Juglan; H. Kuma; K. Kaur; Phys. Chem. Liq., 2020, 58(6), 803–819.

H. G. Attiya; Z. A. H. Al-Dulaimy; K. A. Sadiq; M. H. Saleem; Orient. J. Chem., 2019, 35(1), 337–342.

Downloads

Published

2023-12-20

How to Cite

FENDI, W. J. ., AL-DULAIMY, Z. A. ., HASSAN, D. F. ., ABDULZAHRA, A. F. ., & KHALAF, H. S. . (2023). Thermodynamic Study of Some Alcohols in Dilute Aqueous Solution. Studia Universitatis Babeș-Bolyai Chemia, 68(4), 127–136. https://doi.org/10.24193/subbchem.2023.4.09

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.