Valorization of Bioresources for the Production of Polymer Using Lanthanide Borohydride as Catalysts

Authors

  • Saliha LOUGHMARI Laboratory of Industrial Engineering and Surface Engineering, Applied Chemistry and Environmental Sciences Team, Sultan Moulay Slimane University, Beni-Mellal, Morocco. https://orcid.org/0009-0001-3355-6772
  • Marc VISSEAUX Université Lille (CNRS), Centrale Lille, Université Artois, Unité de Catalyse et Chimie du Solide (UCCS), Lille, France. https://orcid.org/0000-0002-2060-9433
  • Abdelaziz EL BOUADILI Laboratory of Industrial Engineering and Surface Engineering, Applied Chemistry and Environmental Sciences Team, Sultan Moulay Slimane University, Beni-Mellal, Morocco. *Corresponding author: aelbouadili@gmail.com https://orcid.org/0009-0001-3783-1209

DOI:

https://doi.org/10.24193/subbchem.2024.1.12

Keywords:

coordination polymerization, β-myrcene, styrene, L-lactide, biomass, elastomers

Abstract

The use of natural materials derived from biomass or biodegradable polymer materials can be one of the solutions to be considered in reducing environmental pollution problems. In addition, some polymers have been shown to be biocompatible and thus beneficial in biomedical applications. Therefore, within the framework of this study, we will present the results of the application of lanthanide-borohydride systems (Nd(BH4)3(THF)3) combined with n-butylethyl magnesium in the block copolymerization of conjugated dienes (myrcene-styrene) and a conjugated diene with a polar monomer (L-lactide) for the synthesis of bio-sourced elastomers. The analysis of copolymers resulting from the copolymerization between myrcene and styrene shows that it is possible to insert up to 9.9% of styrene. Moreover, the stereoselectivity (1,4-trans) of the myrcene motif has not significantly changed, even in the presence of a significant amount of styrene in the reaction medium. The presence of the copolymer was confirmed by the observation of a peak at 146 ppm which corresponds to the ipso carbon of styrene.

References

J. Jenter; N. Meyer; P. W. Roesky; S. K. H. Thiele; G. Eickerling; W. Scherer; Chem. Eur J., 2010, 16, 5472 - 5480.

M. Visseaux; M. Mainil; M. Terrier; A. Mortreux; P. Roussel; T. Mathivet; M. Destarac; Dalton Trans., 2008, 34, 4558 - 4561.

M. Terrier; M. Visseaux; T. Chenal; A. Mortreux, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 2400 - 2409.

F. Bonnet; C. D. C. Violante; P. Roussel; A. Mortreux; M. Visseaux; Chem. Commun., 2009, 3380 - 3382.

A. Ventura; T. Chenal; M. Bria; F. Bonnet; P. Zinck; Y. Ngono-Ravache;

E. Balanzat; M. Visseaux; European Polymer Journal., 2013, 49, 4130 - 4140.

P. Zinck; D. Baudry; A. Loupy; Macromol Rapid Commu., 2005, 26, 46 – 51.

a) S. Loughmari; A. Hafid; A. Bouazza; A. EL Bouadili; P. Zinck; M. Visseaux;

J. Polym. Sci. Part A: Polym. Chem., 2012, 50, 2898 - 2905. b) S. Georges; M. Bria; P. Zinck; M. Visseaux; Polymer., 2014, 55, 3869 - 3878.

M. Visseaux; T. Chenal; P. Roussel; A. Mortreux; J. Organomet. Chem., 2006, 691, 86 – 92.

S. M. Guillaume; M. Schappacher; A. Soum; Macromolecules, 2003, 36, 54 - 60.

I. Palard; A. Soum; S. M. Guillaume, Macromolecules, 2005, 38, 6888 - 6894.

N. Barros; P. Mountford; S. M. Guillaume; L. Maron; Chem. Eur. J., 2008, 14, 5507- 5518.

A. C. Albertsson; I. K. Varma; Biomacromolecules, 2003, 4, 1466 - 1486.

F. Bonnet; A. C. Hillier; A. Collins; S. R. Duberley; P. Mountford; Dalton Trans., 2005, 421- 423.

D. Barbier Baudry; F. Bouyer; A. S. M. Bruno; M. Visseaux; Appl. Organomet. Chem., 2006, 20, 24 - 31.

N. Barros; M. Schappacher; P. Dessuge; L. Maron; S. M. Guillaume; Chem. Eur. J., 2008, 14, 1881-1890.

M. Schappacher; N. Fur; S. M. Guillaume; Macromolecules, 2007, 40, 8887–8896.

W. J. Runckel; L. A. Goldblatt; Ind. Eng. Chem., 1946, 38, 749.

S. Georges; A. O. Touré; M. Visseaux.; P. Zinck; Macromolecules, 2014, 47, 14, 4538-4547.

A. H. Gleason; J. F. Nelson; US Patent 2829065; 1958.

a) D. H. Lamparelli; V. Paradiso; F. D. Monica; A. Proto; S. Guerra; L. Giannini; C. Capacchione; Macromolecules., 2020, 53, 1665 -1673. b) S. Loughmari; M. Visseaux; A. Bouazza; A. Hafid; A. El Bouadili; Arkivoc., 2023, 8, 202312045.

C. Zhou; Z. Wei; X. Lei; Y. Li; RSC. Adv., 2016, 6, 63508 – 63514.

G. Desurmont; T. Tokimitsu; H. Yasuda; Macromolecules, 2000, 33, 7679 – 7681.

a) C. Zhou; Z. Wei; C. Jin; Y. Wang; Y. Yu; X. Leng; Y. Li; Polymer., 2018, 138, 57- 64. b) I. Adoumaz; Valorization of bioresources for the production of polymer films using waterborne latex or nanostructuring block copolymers; University of Pau and Adour country, 2020, Chapter 5, pp. 208 - 210.

Mirsaidov, U.; Shaimuradov, I. B.; Khikmatov, M.; Russ. J. Inorg. Chem., 1986, 31, 1321-1323.

Downloads

Published

2024-03-30

How to Cite

LOUGHMARI, S., VISSEAUX, M., & EL BOUADILI, A. (2024). Valorization of Bioresources for the Production of Polymer Using Lanthanide Borohydride as Catalysts. Studia Universitatis Babeș-Bolyai Chemia, 69(1), 187–200. https://doi.org/10.24193/subbchem.2024.1.12

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 

You may also start an advanced similarity search for this article.