The Inhibitory Properties of the Fagopyrum Esculentum Groats Boiling Extracts on Corrosion of the Mild Steel in Acidic Environments

Authors

  • Pavel Anatolyevich NIKOLAYCHUK Kurganskij gosudarstvennyj universitet, Sovetskaya 63/4, 640020 Kurgan, Russian Federation; Novosibirskij gosudarstvennyj universitet, Pirogova 2, 630090 Novosibirsk, Russian Federation; E-mail: pavel.nikolaychuk@kgsu.ru https://orcid.org/0000-0003-0335-3955

DOI:

https://doi.org/10.24193/subbchem.2024.2.04

Keywords:

Fagopyrum esculentum, common buckwheat, acid medium corrosion inhibition, gravimetric study, electrochemical study, Langmuir adsorption isotherm

Abstract

The inhibitory ability of the boiling extracts from the groats of Fagopyrum esculentum on the corrosion of mild steel EN Fe37-3FN in 0.5 M hydrochloric acid and 0.5 M sulphuric acid media was investigated using gravimetric, electrochemical, and EIS methods. It was shown that the addition of 100 mg/l of the Fagopyrum esculentum groat extract reduces the corrosion rate by 50%, and that of of 1 g/l and more – by 75%. The adsorption of the extract components on a steel surface follows the Langmuir adsorption model, and the nature of adsorption is physical. The Fagopyrum esculentum groats extract shows itself as perspective and environmentally friendly substance for reducing the steel corrosion rate in acidic environments.

References

R. Haldhar; S. C. Kim; E. Berdimurodov; D. K. Verma; C. M. Hussain; Corrosion inhibitors: industrial applications and commercialization. In Sustainable corrosion inhibitors II: Synthesis, design, and practical applications, ACS Symposium Series, American Chemical Society, USA 2021, Volume 1404, pp. 219-235. doi: 10.1021/bk-2021-1404.ch010.

N. Vaszilcsin; A. Kellenberger; M. L. Dan; D. A. Duca; V. L. Ordodi; Materials, 2023, 16(16), 5555. doi: 10.3390/ma16165555.

A. Thakur; S. Sharma; R. Ganjoo; H. Assad; A. Kumar; J. Phys. Conf. Ser., 2022, 2267(1), 012079. doi: 10.1088/1742-6596/2267/1/012079.

S. Marzorati; L. Verotta; S. P. Trasatti; Molecules, 2018, 24(1), 48. doi: 10.3390/molecules24010048.

T. Björkman; R. R. Bellinder; R. R. Hahn; J. Shail; Buckwheat Cover Crop Handbook, Cornell University, Ithaca, New York, USA 2008.

S. Kreft; M. Knapp; I. Kreft; J. Agric. Food Chem., 1999, 47(11), 4649–4652. doi:10.1021/jf990186p.

K. Eguchi; T. Anase; H. Osuga; Plant Prod. Sci., 2009, 12(4), 475–480. doi:10.1626/pps.12.475.

L. Ožbolt; S. Kreft; I. Kreft; M. Germ; V. Stibilj; Food Chem., 2008, 110(3), 691–696. doi: 10.1016/j.foodchem.2008.02.073.

E. Tavčar Benković; D. Žigon; M. Friedrich; J. Plavec; S. Kreft; Food Chem., 2014, 143, 432–439. doi: 10.1016/j.foodchem.2013.07.118.

S. Kreft; D. Janeš; I. Kreft; Acta Pharm., 2013, 63(4), 553–560. doi:10.2478/acph-2013-0031.

D. Janes; S. Kreft; Food Chem., 2008, 109(2), 293–298. doi: 10.1016/j.foodchem.2007.12.032.

D. Janes; D. Kantar; S. Kreft; H. Prosen; Food Chem., 2009, 112(1), 120–124. doi: 10.1016/j.foodchem.2008.05.048.

N. Bhardwaj; P. Sharma; V. Kumar; Cor. Rev., 2021, 39(1), 27-41. doi: 10.1515/corrrev-2020-0046.

A. Kadhim; A. A. Al-Amiery; R. Alazawi; M. K. S. Al-Ghezi; R. H. Abass; Int. J. Cor. Scale Inh., 2021, 10(1), 54-67. doi: 10.17675/2305-6894-2021-10-1-3.

M. Watanabe; J. Agric. Food Chem., 1998, 46(3), 839-845.

I. Sedej; M. Sakač; A. Mandić; A. Mišan; V. Tumbas; J. Čanadanović‐Brunet; J. Food Sci., 2012, 77(9), C954-C959. doi: 10.1111/j.1750-3841.2012.02867.x.

V. I. Vorobyova; M. I. Skiba; A. S. Shakun; S. V. Nahirniak; Int. J. Cor. Scale Inh., 2019, 8(2), 150-178. doi: 10.17675/2305-6894-2019-8-2-1.

J. Tafel; Z. Phys. Chem., 1905, 50(1), 641-712. doi: 10.1515/zpch-1905-5043.

F. Mansfeld; Corrosion, 1973, 29(10), 397-402. doi: 10.5006/0010-9312-29.10.397.

M. Stern; Corrosion, 1958, 14(9), 60-64. doi: 10.5006/0010-9312-14.9.60.

M. Stern; A. L. Geary; J. Electr. Soc., 1957, 104(1), 56-63. doi: 10.1149/1.2428496.

X. Z. Yuan; C. Song; H. Wang; J. Zhang; EIS equivalent circuits. In Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, X. Z. Yuan et al. Eds.; Springer, Berlin, Germany, 2010, pp. 139-192. doi: 10.1007/978-1-84882-846-9_4.

J. E. B. Randles; Disc. Faraday Soc., 1947, 1, 11-19. doi: 10.1039/DF9470100011.

A. S. Bondarenko; G. A. Ragoisha; Inverse problem in potentiodynamic electrochemical impedance spectroscopy. In Progress in Chemometrics Research, A. L. Pomerantsev Ed.; Nova Science Publishers, New York, USA, 2005, pp. 89–102, http://www.abc.chemistry.bsu.by/vi/analyser.

A. Lasia; Electrochemical Impedance Spectroscopy and its Applications, Springer, New York, USA, 2014. doi: 10.1007/978-1-4614-8933-7.

I. Langmuir; J. Am. Chem. Soc., 1918, 40(9), 1361-1403. doi: 10.1021/ja02242a004.

R. Adrain; The Analyst; Or Mathematical Museum, 1808, 1(4), 93-109.

S.-I. Pyun; ChemTexts, 2021, 7(1), 2. doi: 10.1007/s40828-020-00121-y.

X. Xie; R. Holze; ChemTexts, 2018, 4(1), 5. doi: 10.1007/s40828-018-0057-0.

A. Kokalj; Cor. Sci., 2022, 196, 109939. doi: 10.1016/j.corsci.2021.109939.

A. B. Kičenko; V. M. Kušnarenko; Praktika protivokorrozionnoj zaŝity, 2005, 4(38), 17-22.

T. J. Harvey, F. C. Walsh; A. H. Nahlé; J. Mol. Liq., 2018, 266, 160-175. doi: 10.1016/j.molliq.2018.06.014.

M. Goyal; et al. J. Mol. Liq., 2018, 256, 565-573, doi: 10.1016/j.molliq.2018.02.045.

Downloads

Published

2024-06-30

How to Cite

NIKOLAYCHUK, P. A. (2024). The Inhibitory Properties of the Fagopyrum Esculentum Groats Boiling Extracts on Corrosion of the Mild Steel in Acidic Environments. Studia Universitatis Babeș-Bolyai Chemia, 69(2), 49–66. https://doi.org/10.24193/subbchem.2024.2.04

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.