Evolutionary patterns of structural disorder and post-translational modifications in the 18.5 kDa myelin basic protein

Authors

  • Ilka KOSZORUS Babeș-Bolyai University, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania. ✉Corresponding author, E-mail: koszorusilka@gmail.com https://orcid.org/0009-0001-8790-5560
  • Ferencz KÓSA Babeș-Bolyai University, Hungarian Department of Biology and Ecology, Cluj-Napoca, Romania; Babeș-Bolyai University, Center for Systems Biology, Biodiversity and Bioresources, Sociobiology and Insect Ecology Lab, Cluj-Napoca, Romania. https://orcid.org/0000-0002-2921-2379

DOI:

https://doi.org/10.24193/subbbiol.2025.2.08

Keywords:

hydrophobic moment, internally disordered region, myelin basic protein, net charge per residue, sequence complexity

Abstract

Myelin basic protein (MBP, 18.5 kDa isoform) is a key structural component of the myelin sheath, where it drives multilayer compaction through electrostatic interactions and dynamic conformational transitions. Despite its functional importance, a comprehensive understanding of MBP’s evolutionary patterns of intrinsic disorder, post-translational modifications (PTMs), and sequence-derived properties across vertebrates have been lacking. Here, we analyzed MBP consensus sequences from six major vertebrate clades (Chondrichthyes, Teleostei, Amphibia, Reptilia, Aves, Mammalia) using an integrated bioinformatic framework combining intrinsic disorder predictions, Shannon entropy-based complexity profiling, hydrophobic moment (μH) analyses, net charge per residue (NCPR) patterns, and experimentally supported PTM mapping. Our results reveal that MBP maintains a highly conserved intrinsically disordered architecture characterized by long N- and C-terminal IDRs and several clade-specific central IDRs. Teleosts exhibit a truncated N-terminal, lacking the first 15 residues, but compensate through additional positively charged residues downstream, preserving membrane-binding potential. Amphibians show unique insertions enriched in basic residues, leading to the longest MBPs and potentially enhanced lipid interactions. Shannon entropy and μH profiles demonstrate alternating conserved α-helices and flexible IDRs that overlap with PTM hotspots, particularly phosphorylation and citrullination sites, suggesting dynamic regulatory roles. NCPR analyses highlight a conserved electrostatic topology composed of alternating basic clusters and acidic/neutral dips, balancing reversible membrane adhesion with controlled aggregation. Together, these findings demonstrate that MBP combines strong structural conservation with lineage-specific adaptations in intrinsic disorder, charge distribution, and PTM patterning. This evolutionary flexibility likely underpins MBP’s ability to support functional diversity in myelin architecture while maintaining its essential role in vertebrate nervous system evolution.

Article history: Received 31 August 2025; Revised 4 December 2025;
Accepted 05 December 2025; Available online 20 December 2025

References

Alibardi, L., 2002. Immunocytochemical localization of keratins, associated proteins and uptake of histidine in the epidermis of fish and amphibians. Acta Histochem. 104, 297–310. https://doi.org/10.1078/0065-1281-00651

Aponte-Santamaría, C., Fischer, G., Båth, P., Neutze, R. & De Groot, B.L., 2017. Temperature dependence of protein-water interactions in a gated yeast aquaporin. Sci. Rep. 7, 4016. https://doi.org/10.1038/s41598-017-04180-z

Babu, M.M., Van Der Lee, R. & De Groot, N.S., Gsponer, J., 2011. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432–440. https://doi.org/10.1016/j.sbi.2011.03.011

Bah, A & Forman-Kay, J.D., 2016. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 6696–6705. https://doi.org/10.1074/jbc.R115.695056

Bates, I.R., Feix, J.B., Boggs, J.M. & Harauz, G., 2004. An immunodominant epitope of myelin basic protein is an amphipathic α-helix. J. Biol. Chem. 279, 5757–5764. https://doi.org/10.1074/jbc.M311504200

Bedja-Iacona, L., Richard, E., Marouillat, S., Brulard, C., Alouane, T., Beltran, S., Andres, C.R., Blasco, H., Corcia, P., Veyrat-Durebex, C. & Vourc’h, P., 2024. Post-translational variants of major proteins in amyotrophic lateral sclerosis provide new insights into the pathophysiology of the disease. IJMS 25, 8664. https://doi.org/10.3390/ijms25168664

Bellay, J., Han, S., Michaut, M., Kim, T., Costanzo, M., Andrews, B.J., Boone, C., Bader, G.D., Myers, C.L. & Kim, P.M., 2011. Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biol. 12, R14. https://doi.org/10.1186/gb-2011-12-2-r14.

Bianchi, G., Mangiagalli, M., Barbiroli, A., Longhi, S., Grandori, R., Santambrogio, C. & Brocca, S., 2022. Distribution of charged residues affects the average size and shape of intrinsically disordered proteins. Biomolecules 12, 561. https://doi.org/10.3390/biom12040561

Buchko, G.W., Mergelsberg, S.T., Tarasevich, B.J. & Shaw, W.J., 2022. Residue-specific insights into the intermolecular protein–protein interfaces driving amelogenin self-assembly in solution. Biochemistry 61, 2909–2921. https://doi.org/10.1021/acs.biochem.2c00522

Carrillo-Vico, A., Leech, M.D. & Anderton, S.M., 2010. Contribution of myelin autoantigen citrullination to t cell autoaggression in the central nervous system. J. Immunol. 184, 2839–2846. https://doi.org/10.4049/jimmunol.0903639

Charif, D. & Lobry, J.R., 2007. Seqinr 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis, in: bastolla, u., Porto, M., Roman, H.E., Vendruscolo, M. (Eds.), structural approaches to sequence evolution, biological and medical physics, biomedical engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 207–232. https://doi.org/10.1007/978-3-540-35306-5_10

Darling, A.L. & Uversky, V.N., 2018. Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front. Genet. 9, 158. https://doi.org/10.3389/fgene.2018.00158

Das, R.K. & Pappu, R.V., 2013. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. U.S.A. 110, 13392–13397. https://doi.org/10.1073/pnas.1304749110

De Avila, M. & Vassall, K.A., Smith, G.S.T., Bamm, V.V., Harauz, G., 2014. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci. Rep. 34, e00157. https://doi.org/10.1042/BSR20140149

De Bellard, M.E., 2016. Myelin in cartilaginous fish. Brain Res. 1641, 34–42. https://doi.org/10.1016/j.brainres.2016.01.013

De Vries, I., Bak, J., Salmoral, D.Á., Xie, R., Borza, R., Konijnenberg, M. & Perrakis, A., 2024. Disentangling the CHAOS of intrinsic disorder in human proteins. bioRxiv https://doi.org/10.1101/2024.10.26.620428

Del Conte, A., Bouhraoua, A., Mehdiabadi, M., Clementel, D., Monzon, A.M., CAID predictors, Holehouse, A.S., Griffith, D., Emenecker, R.J., Patil, A., Sharma, R., Tsunoda, T., Sharma, A., Tang, Y.J., Liu, B., Mirabello, C., Wallner, B., Rost, B., Ilzhöfer, D., Littmann, M., Heinzinger, M., Krautheimer, L.I.M., Bernhofer, M., McGuffin, L.J., Callebaut, I., Feildel, T.B., Liu, J., Cheng, J., Guo, Z., Xu, J., Wang, S., Malhis, N., Gsponer, J., Kim, C.-S., Han, K.-S., Ma, M.-C., Kurgan, L., Ghadermarzi, S., Katuwawala, A., Zhao, B., Peng, Z., Wu, Z., Hu, G., Wang, K., Hoque, M.T., Kabir, M.W.U., Vendruscolo, M., Sormanni, P., Li, M., Zhang, F., Jia, P., Wang, Y., Lobanov, M.Y., Galzitskaya, O.V., Vranken, W., Díaz, A., Litfin, T., Zhou, Y., Hanson, J., Paliwal, K., Dosztányi, Z., Erdős, G., Tosatto, S.C.E. & Piovesan, D., 2023. CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins. Nucleic Acids Res. 51, W62–W69. https://doi.org/10.1093/nar/gkad430

Dreier, L.B., Nagata, Y., Lutz, H., Gonella, G., Hunger, J., Backus, E.H.G. & Bonn, M., 2018. Saturation of charge-induced water alignment at model membrane surfaces. Sci. Adv. 4, eaap7415. https://doi.org/10.1126/sciadv.aap7415

Eisenberg, D., Weiss, R.M. & Terwilliger, T.C., 1984. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. U.S.A. 81, 140–144. https://doi.org/10.1073/pnas.81.1.140

Eisenberg, D., Weiss, R.M., Terwilliger, T.C. & Wilcox, W., 1982. Hydrophobic moments and protein structure. Faraday Symp. Chem. Soc. 17, 109. https://doi.org/10.1039/fs9821700109

Eisenberg, D., Wesson, M. & Wilcox, W., 1989. Hydrophobic moments as tools for analyzing protein sequences and structures, in: fasman, g.d. (Ed.), prediction of protein structure and the principles of protein conformation. Springer US, Boston, MA, pp. 635–646. https://doi.org/10.1007/978-1-4613-1571-1_16.

Erdős, G. & Dosztányi, Z., 2020. Analyzing protein disorder with IUPred2A. Curr. Protoc. Bioinform. 70, e99. https://doi.org/10.1002/cpbi.99

Glasauer, S.M.K. & Neuhauss, S.C.F., 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 289, 1045–1060. https://doi.org/10.1007/s00438-014-0889-2

Gogól, M., 2013. Citrullination – small change with a great consequence. Acta Universitatis Lodziensis. Folia Biologica Et Ecologica 9, 17–25. https://doi.org/10.2478/fobio-2013-0003

Gsponer, J., Futschik, M.E., Teichmann, S.A. & Babu, M.M., 2008. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322, 1365–1368. https://doi.org/10.1126/science.1163581

Gulsevin, A. & Meiler, J., 2021. Prediction of amphipathic helix—membrane interactions with Rosetta. PLoS. Comput. Biol. 17, e1008818. https://doi.org/10.1371/journal.pcbi.1008818

Harauz, G. & Boggs, J.M., 2013. Myelin management by the 18.5‐kDa and 21.5‐kDa classic myelin basic protein isoforms. J. Neurochem. 125, 334–361. https://doi.org/10.1111/jnc.12195

Harauz, G., Ishiyama, N., Hill, C.M.D., Bates, I.R., Libich, D.S. & Farès, C., 2004. Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35, 503–542. https://doi.org/10.1016/j.micron.2004.04.005

Harauz, G. & Musse, A.A., 2007. A tale of two citrullines—structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem. Res. 32, 137–158. https://doi.org/10.1007/s11064-006-9108-9

Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G. & Pappu, R.V., 2017. Cider: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21. https://doi.org/10.1016/j.bpj.2016.11.3200

Homchaudhuri, L., De Avila, M., Nilsson, S.B., Bessonov, K., Smith, G.S.T., Bamm, V.V., Musse, A.A., Harauz, G. & Boggs, J.M., 2010. Secondary structure and solvent accessibility of a calmodulin-binding c-terminal segment of membrane-associated myelin basic protein. Biochemistry 49, 8955–8966. https://doi.org/10.1021/bi100988p

Houben, B., Michiels, E., Ramakers, M., Konstantoulea, K., Louros, N., Verniers, J., Van Der Kant, R., De Vleeschouwer, M., Chicória, N., Vanpoucke, T., Gallardo, R., Schymkowitz, J. & Rousseau, F., 2020. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J. 39, e102864. https://doi.org/10.15252/embj.2019102864

Iakoucheva, L.M., 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049. https://doi.org/10.1093/nar/gkh253

Jensen, M.R., Ruigrok, R.W. & Blackledge, M., 2013. Describing intrinsically disordered proteins at atomic resolution by NMR. Cur. Opin. Struct. Biol. 23, 426–435. https://doi.org/10.1016/j.sbi.2013.02.007

Kastano, K., Erdős, G., Mier, P., Alanis-Lobato, G., Promponas, V.J., Dosztányi, Z. & Andrade-Navarro, M.A., 2020. Evolutionary study of disorder in protein sequences. Biomolecules 10, 1413. https://doi.org/10.3390/biom10101413

Kim, J., Zhang, R., Strittmatter, E.F., Smith, R.D. & Zand, R., 2009. Post-translational modifications of chicken myelin basic protein charge components. Neurochem. Res. 34, 360–372. https://doi.org/10.1007/s11064-008-9788-4

Kishimoto, A., Nishiyama, K., Nakanishi, H., Uratsuji, Y., Nomura, H., Takeyama, Y. & Nishizuka, Y., 1985. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3‘:5‘-monophosphate-dependent protein kinase. J. Biol. Chem. 260, 12492–12499. https://doi.org/10.1016/S0021-9258(17)38898-1

Kister, A. & Kister, I., 2023. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front. Chem. 10, 1041961. https://doi.org/10.3389/fchem.2022.1041961

Kurotani, A., Tokmakov, A.A., Kuroda, Y., Fukami, Y., Shinozaki, K. & Sakurai, T., 2014. Correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics 30, 1095–1103. https://doi.org/10.1093/bioinformatics/btt762

Li, Z. & Buck, M., 2023. A proteome‐scale analysis of vertebrate protein amino acid occurrence: Thermoadaptation shows a correlation with protein solvation but less so with dynamics. Proteins 91, 3–15. https://doi.org/10.1002/prot.26404

Libich, D.S. & Harauz, G., 2008. Backbone dynamics of the 18.5kDa isoform of myelin basic protein reveals transient α-helices and a calmodulin-binding site. Biophys. J. 94, 4847–4866. https://doi.org/10.1529/biophysj.107.125823

Liu, Y., Wang, X. & Liu, B., 2019. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinform. 20, 330–346. https://doi.org/10.1093/bib/bbx126

Livingstone, C.D. & Barton, G.J., 1993. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Bioinformatics 9, 745–756. https://doi.org/10.1093/bioinformatics/9.6.745

Lobley, A., Orengo, C.A., Swindells, M.B. & Jones, D., 2005. Inferring function using patterns of native disorder in proteins. PLoS. Comput. Biol. preprint, e162. https://doi.org/10.1371/journal.pcbi.0030162.eor

Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A.R.N., Lopez, R. & Butcher, S., 2024. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525. https://doi.org/10.1093/nar/gkae241

Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A. & Fidelis, K., 2014. Assessment of protein disorder region predictions in CASP10. Proteins 82, 127–137. https://doi.org/10.1002/prot.24391

Moscarello, M.A., Mastronardi, F.G. & Wood, D.D., 2007. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 32, 251–256. https://doi.org/10.1007/s11064-006-9144-5

Mughal, F. & Caetano-Anollés, G., 2025. Evolution of intrinsic disorder in the structural domains of viral and cellular proteomes. Sci. Rep. 15, 2878. https://doi.org/10.1038/s41598-025-86045-4

Müller, C., Bauer, N.M., Schäfer, I. & White, R., 2013. Making myelin basic protein -from mRNA transport to localized translation. Front. Cell. Neurosci. 7, 1-7. https://doi.org/10.3389/fncel.2013.00169

Müller-Späth, S., Soranno, A., Hirschfeld, V., Hofmann, H., Rüegger, S., Reymond, L., Nettels, D. & Schuler, B., 2010. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl. Acad. Sci. U.S.A. 107, 14609–14614. https://doi.org/10.1073/pnas.1001743107

Nawaz, S., Schweitzer, J., Jahn, O. & Werner, H.B., 2013. Molecular evolution of myelin basic protein, an abundant structural myelin component: phylogeny of myelin basic protein. Glia 61, 1364–1377. https://doi.org/10.1002/glia.22520

Necci, M., Piovesan, D., Dosztányi, Z. & Tosatto, S.C.E., 2017. MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33, 1402–1404. https://doi.org/10.1093/bioinformatics/btx015

Necci, M., Piovesan, D. & Tosatto, S.C.E., 2016. Large‐scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe. Prot. Sci 25, 2164–2174. https://doi.org/10.1002/pro.3041

Oldfield, C.J., Uversky, V.N., Dunker, A.K. & Kurgan, L., 2019. Introduction to intrinsically disordered proteins and regions, in: Intrinsically Disordered Proteins. Elsevier, pp. 1–34. https://doi.org/10.1016/B978-0-12-816348-1.00001-6

Phoenix, D.A. & Harris, F., 2002. The hydrophobic moment and its use in the classification of amphiphilic structures (Review). Mol. Membr. Biol. 19, 1–10. https://doi.org/10.1080/09687680110103631

Polverini, E., Coll, E.P., Tieleman, D.P. & Harauz, G., 2011. Conformational choreography of a molecular switch region in myelin basic protein — Molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments. Biochim. Biophys. Acta Biomembr. 1808, 674–683. https://doi.org/10.1016/j.bbamem.2010.11.030

Raasakka, A. & Kursula, P., 2020. Flexible players within the sheaths: the intrinsically disordered proteins of myelin in health and disease. Cells 9, 470. https://doi.org/10.3390/cells9020470

Raasakka, A., Ruskamo, S., Kowal, J., Barker, R., Baumann, A., Martel, A., Tuusa, J., Myllykoski, M., Bürck, J., Ulrich, A.S., Stahlberg, H. & Kursula, P., 2017. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci. Rep. 7, 4974. https://doi.org/10.1038/s41598-017-05364-3

Rajagopalan, K., Mooney, S.M., Parekh, N., Getzenberg, R.H. & Kulkarni, P., 2011. A majority of the cancer/testis antigens are intrinsically disordered proteins. J. Cell. Biochem. 112, 3256–3267. https://doi.org/10.1002/jcb.23252

Riley, A.C., Ashlock, D.A. & Graether, S.P., 2023. The difficulty of aligning intrinsically disordered protein sequences as assessed by conservation and phylogeny. PLoS. ONE 18, e0288388. https://doi.org/10.1371/journal.pone.0288388

Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J. & Dunker, A.K., 2001. Sequence complexity of disordered protein. Proteins 42, 38–48. https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3

Schad, E., Tompa, P. & Hegyi, H., 2011. The relationship between proteome size, structural disorder and organism complexity. Genome Biol. 12, R120. https://doi.org/10.1186/gb-2011-12-12-r120

Segrest, J.P., De Loof, H., Dohlman, J.G., Brouillette, C.G. & Anantharamaiah, G.M., 1990. Amphipathic helix motif: classes and properties. Proteins 8, 103–117. https://doi.org/10.1002/prot.340080202

Sen, S., Dey, A., Chowdhury, S., Maulik, U. & Chattopadhyay, K., 2019. Understanding the evolutionary trend of intrinsically structural disorders in cancer relevant proteins as probed by Shannon entropy scoring and structure network analysis. BMC Bioinformatics 19, 549. https://doi.org/10.1186/s12859-018-2552-0

Siddiqui, I.J., Pervaiz, N. & Abbasi, A.A., 2016. The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci. Rep. 6, 24475. https://doi.org/10.1038/srep24475

Siltberg-Liberles, J., 2011. Evolution of structurally disordered proteins promotes neostructuralization. Mol. Biol. Evol. 28, 59–62. https://doi.org/10.1093/molbev/msq291

Singleton, M.D. & Eisen, M.B., 2024. Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. PLoS. Comput. Biol. 20, e1012028. https://doi.org/10.1371/journal.pcbi.1012028

Smirnova, E.V., Rakitina, T.V., Ziganshin, R.H., Arapidi, G.P., Saratov, G.A., Kudriaeva, A.A. & Belogurov, A.A., 2021. Comprehensive atlas of the myelin basic protein interaction landscape. Biomolecules 11, 1628. https://doi.org/10.3390/biom11111628

Stämpfli, R., 1954. Saltatory conduction in nerve. Phy. Rev. https://journals.physiology.org/doi/abs/10.1152/physrev.1954.34.1.101?journalCode=physrev

Sysoev, E.I., Shenfeld, A.A., Belashova, T.A., Valina, A.A., Zadorsky, S.P. & Galkin, A.P., 2025. Amyloid fibrils of the myelin basic protein are an integral component of myelin in the vertebrate brain. Sci. Rep. 15, 29053. https://doi.org/10.1038/s41598-025-13524-z

Tai, F.L., Smith, R., Bernard, C.C.A. & Hearn, M.W.T., 1986. Evolutionary divergence in the structure of myelin basic protein: comparison of chondrichthye basic proteins with those from higher vertebrates. J. Neurochem. 46, 1050–1057. https://doi.org/10.1111/j.1471-4159.1986.tb00617.x

Turner, R.S., Chou, C. ‐H. J., Kibler, R.F. & Kuo, J.F., 1982. Basic protein in brain myelin is phosphorylated by endogenous phospholipid‐sensitive Ca2+ ‐dependent protein kinase. J. Neurochem. 39, 1397–1404. https://doi.org/10.1111/j.1471-4159.1982.tb12583.x

Uversky, V.N., 2019. Intrinsically disordered proteins and their “mysterious” (meta)physics. Front. Phys. 7, 10. https://doi.org/10.3389/fphy.2019.00010

Van Bibber, N.W., Haerle, C., Khalife, R., Xue, B. & Uversky, V.N., 2020. Intrinsic disorder in tetratricopeptide repeat proteins. IJMS 21, 3709. https://doi.org/10.3390/ijms21103709

Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E. & Babu, M.M., 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631. https://doi.org/10.1021/cr400525m

Walsh, I., Martin, A.J.M., Di Domenico, T. & Tosatto, S.C.E., 2012. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28, 503–509. https://doi.org/10.1093/bioinformatics/btr682

Wang, D., Zeng, S., Xu, C., Qiu, W., Liang, Y., Joshi, T. & Xu, D., 2017. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 33, 3909–3916. https://doi.org/10.1093/bioinformatics/btx496

Wang, S., Ma, J. & Xu, J., 2016. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 32, i672–i679. https://doi.org/10.1093/bioinformatics/btw446

Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. & Jones, D.T., 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645. https://doi.org/10.1016/j.jmb.2004.02.002

Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J., 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033

Welch, B.L., 1951. On the comparison of several mean values: an alternative approach. Biometrika 38, 330. https://doi.org/10.2307/2332579

Wickham, H., 2016. Programming with ggplot2, in: ggplot2, use R! Springer International Publishing, Cham, pp. 241–253. https://doi.org/10.1007/978-3-319-24277-4_12

Wright, P.E. & Dyson, H.J., 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29. https://doi.org/10.1038/nrm3920

Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N. & Obradovic, Z., 2007. Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions. J. Proteome Res. 6, 1882–1898. https://doi.org/10.1021/pr060392u

Xie, Y., Li, Huiqin, Luo, X., Li, Hongyu, Gao, Q., Zhang, L., Teng, Y., Zhao, Q., Zuo, Z. & Ren, J., 2022. IBS 2.0: an upgraded illustrator for the visualization of biological sequences. Nucleic Acids Res. 50, W420–W426. https://doi.org/10.1093/nar/gkac373

Xue, B., Brown, C.J., Dunker, A.K. & Uversky, V.N., 2013. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta Proteins and Proteomics, 1834, 725–738. https://doi.org/10.1016/j.bbapap.2013.01.012

Xue, B., Dunbrack, R.L., Williams, R.W., Dunker, A.K. & Uversky, V.N., 2010. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta Proteins and Proteomics, 1804, 996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011

Yarberry, W., 2021. CRAN Recipes: DPLYR, Stringr, Lubridate, and RegEx in R. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-6876-6.

Yruela, I., Oldfield, C.J., Niklas, K.J. & Dunker, A.K., 2017. Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol. Evol. 9, 1248–1265. https://doi.org/10.1093/gbe/evx073

Zand, R., Jin, X., Kim, J., Wall, D.B., Gould, R. & Lubman, D.M., 2001. Studies of posttranslational modifications in spiny dogfish myelin basic protein. J. Neurosci. https://link.springer.com/article/10.1023/A:1010921230859

Zarin, T., Strome, B., Nguyen Ba, A.N., Alberti, S., Forman-Kay, J.D. & Moses, A.M., 2019. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 8, e46883. https://doi.org/10.7554/eLife.46883

Zavialova, M.G., Zgoda, V.G. & Nikolaev, E.N., 2017. Analysis of the role of protein phosphorylation in the development of diseases. Biochem. Moscow Suppl. Ser. B 11, 203–218. https://doi.org/10.1134/S1990750817030118

Zhang, C., Walker, A.K., Zand, R., Moscarello, M.A., Yan, J.M. & Andrews, P.C., 2012. Myelin basic protein undergoes a broader range of modifications in mammals than in lower vertebrates. J. Proteome Res. 11, 4791–4802. https://doi.org/10.1021/pr201196e.

Downloads

Published

2025-12-20

How to Cite

KOSZORUS, I., & KÓSA, F. (2025). Evolutionary patterns of structural disorder and post-translational modifications in the 18.5 kDa myelin basic protein. Studia Universitatis Babeș-Bolyai Biologia, 70(2), 115–150. https://doi.org/10.24193/subbbiol.2025.2.08

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.