Evolutionary patterns of structural disorder and post-translational modifications in the 18.5 kDa myelin basic protein
DOI:
https://doi.org/10.24193/subbbiol.2025.2.08Keywords:
hydrophobic moment, internally disordered region, myelin basic protein, net charge per residue, sequence complexityAbstract
Myelin basic protein (MBP, 18.5 kDa isoform) is a key structural component of the myelin sheath, where it drives multilayer compaction through electrostatic interactions and dynamic conformational transitions. Despite its functional importance, a comprehensive understanding of MBP’s evolutionary patterns of intrinsic disorder, post-translational modifications (PTMs), and sequence-derived properties across vertebrates have been lacking. Here, we analyzed MBP consensus sequences from six major vertebrate clades (Chondrichthyes, Teleostei, Amphibia, Reptilia, Aves, Mammalia) using an integrated bioinformatic framework combining intrinsic disorder predictions, Shannon entropy-based complexity profiling, hydrophobic moment (μH) analyses, net charge per residue (NCPR) patterns, and experimentally supported PTM mapping. Our results reveal that MBP maintains a highly conserved intrinsically disordered architecture characterized by long N- and C-terminal IDRs and several clade-specific central IDRs. Teleosts exhibit a truncated N-terminal, lacking the first 15 residues, but compensate through additional positively charged residues downstream, preserving membrane-binding potential. Amphibians show unique insertions enriched in basic residues, leading to the longest MBPs and potentially enhanced lipid interactions. Shannon entropy and μH profiles demonstrate alternating conserved α-helices and flexible IDRs that overlap with PTM hotspots, particularly phosphorylation and citrullination sites, suggesting dynamic regulatory roles. NCPR analyses highlight a conserved electrostatic topology composed of alternating basic clusters and acidic/neutral dips, balancing reversible membrane adhesion with controlled aggregation. Together, these findings demonstrate that MBP combines strong structural conservation with lineage-specific adaptations in intrinsic disorder, charge distribution, and PTM patterning. This evolutionary flexibility likely underpins MBP’s ability to support functional diversity in myelin architecture while maintaining its essential role in vertebrate nervous system evolution.
Article history: Received 31 August 2025; Revised 4 December 2025;
Accepted 05 December 2025; Available online 20 December 2025
References
Alibardi, L., 2002. Immunocytochemical localization of keratins, associated proteins and uptake of histidine in the epidermis of fish and amphibians. Acta Histochem. 104, 297–310. https://doi.org/10.1078/0065-1281-00651
Aponte-Santamaría, C., Fischer, G., Båth, P., Neutze, R. & De Groot, B.L., 2017. Temperature dependence of protein-water interactions in a gated yeast aquaporin. Sci. Rep. 7, 4016. https://doi.org/10.1038/s41598-017-04180-z
Babu, M.M., Van Der Lee, R. & De Groot, N.S., Gsponer, J., 2011. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432–440. https://doi.org/10.1016/j.sbi.2011.03.011
Bah, A & Forman-Kay, J.D., 2016. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291, 6696–6705. https://doi.org/10.1074/jbc.R115.695056
Bates, I.R., Feix, J.B., Boggs, J.M. & Harauz, G., 2004. An immunodominant epitope of myelin basic protein is an amphipathic α-helix. J. Biol. Chem. 279, 5757–5764. https://doi.org/10.1074/jbc.M311504200
Bedja-Iacona, L., Richard, E., Marouillat, S., Brulard, C., Alouane, T., Beltran, S., Andres, C.R., Blasco, H., Corcia, P., Veyrat-Durebex, C. & Vourc’h, P., 2024. Post-translational variants of major proteins in amyotrophic lateral sclerosis provide new insights into the pathophysiology of the disease. IJMS 25, 8664. https://doi.org/10.3390/ijms25168664
Bellay, J., Han, S., Michaut, M., Kim, T., Costanzo, M., Andrews, B.J., Boone, C., Bader, G.D., Myers, C.L. & Kim, P.M., 2011. Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biol. 12, R14. https://doi.org/10.1186/gb-2011-12-2-r14.
Bianchi, G., Mangiagalli, M., Barbiroli, A., Longhi, S., Grandori, R., Santambrogio, C. & Brocca, S., 2022. Distribution of charged residues affects the average size and shape of intrinsically disordered proteins. Biomolecules 12, 561. https://doi.org/10.3390/biom12040561
Buchko, G.W., Mergelsberg, S.T., Tarasevich, B.J. & Shaw, W.J., 2022. Residue-specific insights into the intermolecular protein–protein interfaces driving amelogenin self-assembly in solution. Biochemistry 61, 2909–2921. https://doi.org/10.1021/acs.biochem.2c00522
Carrillo-Vico, A., Leech, M.D. & Anderton, S.M., 2010. Contribution of myelin autoantigen citrullination to t cell autoaggression in the central nervous system. J. Immunol. 184, 2839–2846. https://doi.org/10.4049/jimmunol.0903639
Charif, D. & Lobry, J.R., 2007. Seqinr 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis, in: bastolla, u., Porto, M., Roman, H.E., Vendruscolo, M. (Eds.), structural approaches to sequence evolution, biological and medical physics, biomedical engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 207–232. https://doi.org/10.1007/978-3-540-35306-5_10
Darling, A.L. & Uversky, V.N., 2018. Intrinsic disorder and posttranslational modifications: the darker side of the biological dark matter. Front. Genet. 9, 158. https://doi.org/10.3389/fgene.2018.00158
Das, R.K. & Pappu, R.V., 2013. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. U.S.A. 110, 13392–13397. https://doi.org/10.1073/pnas.1304749110
De Avila, M. & Vassall, K.A., Smith, G.S.T., Bamm, V.V., Harauz, G., 2014. The proline-rich region of 18.5 kDa myelin basic protein binds to the SH3-domain of Fyn tyrosine kinase with the aid of an upstream segment to form a dynamic complex in vitro. Biosci. Rep. 34, e00157. https://doi.org/10.1042/BSR20140149
De Bellard, M.E., 2016. Myelin in cartilaginous fish. Brain Res. 1641, 34–42. https://doi.org/10.1016/j.brainres.2016.01.013
De Vries, I., Bak, J., Salmoral, D.Á., Xie, R., Borza, R., Konijnenberg, M. & Perrakis, A., 2024. Disentangling the CHAOS of intrinsic disorder in human proteins. bioRxiv https://doi.org/10.1101/2024.10.26.620428
Del Conte, A., Bouhraoua, A., Mehdiabadi, M., Clementel, D., Monzon, A.M., CAID predictors, Holehouse, A.S., Griffith, D., Emenecker, R.J., Patil, A., Sharma, R., Tsunoda, T., Sharma, A., Tang, Y.J., Liu, B., Mirabello, C., Wallner, B., Rost, B., Ilzhöfer, D., Littmann, M., Heinzinger, M., Krautheimer, L.I.M., Bernhofer, M., McGuffin, L.J., Callebaut, I., Feildel, T.B., Liu, J., Cheng, J., Guo, Z., Xu, J., Wang, S., Malhis, N., Gsponer, J., Kim, C.-S., Han, K.-S., Ma, M.-C., Kurgan, L., Ghadermarzi, S., Katuwawala, A., Zhao, B., Peng, Z., Wu, Z., Hu, G., Wang, K., Hoque, M.T., Kabir, M.W.U., Vendruscolo, M., Sormanni, P., Li, M., Zhang, F., Jia, P., Wang, Y., Lobanov, M.Y., Galzitskaya, O.V., Vranken, W., Díaz, A., Litfin, T., Zhou, Y., Hanson, J., Paliwal, K., Dosztányi, Z., Erdős, G., Tosatto, S.C.E. & Piovesan, D., 2023. CAID prediction portal: a comprehensive service for predicting intrinsic disorder and binding regions in proteins. Nucleic Acids Res. 51, W62–W69. https://doi.org/10.1093/nar/gkad430
Dreier, L.B., Nagata, Y., Lutz, H., Gonella, G., Hunger, J., Backus, E.H.G. & Bonn, M., 2018. Saturation of charge-induced water alignment at model membrane surfaces. Sci. Adv. 4, eaap7415. https://doi.org/10.1126/sciadv.aap7415
Eisenberg, D., Weiss, R.M. & Terwilliger, T.C., 1984. The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. U.S.A. 81, 140–144. https://doi.org/10.1073/pnas.81.1.140
Eisenberg, D., Weiss, R.M., Terwilliger, T.C. & Wilcox, W., 1982. Hydrophobic moments and protein structure. Faraday Symp. Chem. Soc. 17, 109. https://doi.org/10.1039/fs9821700109
Eisenberg, D., Wesson, M. & Wilcox, W., 1989. Hydrophobic moments as tools for analyzing protein sequences and structures, in: fasman, g.d. (Ed.), prediction of protein structure and the principles of protein conformation. Springer US, Boston, MA, pp. 635–646. https://doi.org/10.1007/978-1-4613-1571-1_16.
Erdős, G. & Dosztányi, Z., 2020. Analyzing protein disorder with IUPred2A. Curr. Protoc. Bioinform. 70, e99. https://doi.org/10.1002/cpbi.99
Glasauer, S.M.K. & Neuhauss, S.C.F., 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genomics 289, 1045–1060. https://doi.org/10.1007/s00438-014-0889-2
Gogól, M., 2013. Citrullination – small change with a great consequence. Acta Universitatis Lodziensis. Folia Biologica Et Ecologica 9, 17–25. https://doi.org/10.2478/fobio-2013-0003
Gsponer, J., Futschik, M.E., Teichmann, S.A. & Babu, M.M., 2008. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322, 1365–1368. https://doi.org/10.1126/science.1163581
Gulsevin, A. & Meiler, J., 2021. Prediction of amphipathic helix—membrane interactions with Rosetta. PLoS. Comput. Biol. 17, e1008818. https://doi.org/10.1371/journal.pcbi.1008818
Harauz, G. & Boggs, J.M., 2013. Myelin management by the 18.5‐kDa and 21.5‐kDa classic myelin basic protein isoforms. J. Neurochem. 125, 334–361. https://doi.org/10.1111/jnc.12195
Harauz, G., Ishiyama, N., Hill, C.M.D., Bates, I.R., Libich, D.S. & Farès, C., 2004. Myelin basic protein—diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35, 503–542. https://doi.org/10.1016/j.micron.2004.04.005
Harauz, G. & Musse, A.A., 2007. A tale of two citrullines—structural and functional aspects of myelin basic protein deimination in health and disease. Neurochem. Res. 32, 137–158. https://doi.org/10.1007/s11064-006-9108-9
Holehouse, A.S., Das, R.K., Ahad, J.N., Richardson, M.O.G. & Pappu, R.V., 2017. Cider: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21. https://doi.org/10.1016/j.bpj.2016.11.3200
Homchaudhuri, L., De Avila, M., Nilsson, S.B., Bessonov, K., Smith, G.S.T., Bamm, V.V., Musse, A.A., Harauz, G. & Boggs, J.M., 2010. Secondary structure and solvent accessibility of a calmodulin-binding c-terminal segment of membrane-associated myelin basic protein. Biochemistry 49, 8955–8966. https://doi.org/10.1021/bi100988p
Houben, B., Michiels, E., Ramakers, M., Konstantoulea, K., Louros, N., Verniers, J., Van Der Kant, R., De Vleeschouwer, M., Chicória, N., Vanpoucke, T., Gallardo, R., Schymkowitz, J. & Rousseau, F., 2020. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J. 39, e102864. https://doi.org/10.15252/embj.2019102864
Iakoucheva, L.M., 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049. https://doi.org/10.1093/nar/gkh253
Jensen, M.R., Ruigrok, R.W. & Blackledge, M., 2013. Describing intrinsically disordered proteins at atomic resolution by NMR. Cur. Opin. Struct. Biol. 23, 426–435. https://doi.org/10.1016/j.sbi.2013.02.007
Kastano, K., Erdős, G., Mier, P., Alanis-Lobato, G., Promponas, V.J., Dosztányi, Z. & Andrade-Navarro, M.A., 2020. Evolutionary study of disorder in protein sequences. Biomolecules 10, 1413. https://doi.org/10.3390/biom10101413
Kim, J., Zhang, R., Strittmatter, E.F., Smith, R.D. & Zand, R., 2009. Post-translational modifications of chicken myelin basic protein charge components. Neurochem. Res. 34, 360–372. https://doi.org/10.1007/s11064-008-9788-4
Kishimoto, A., Nishiyama, K., Nakanishi, H., Uratsuji, Y., Nomura, H., Takeyama, Y. & Nishizuka, Y., 1985. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3‘:5‘-monophosphate-dependent protein kinase. J. Biol. Chem. 260, 12492–12499. https://doi.org/10.1016/S0021-9258(17)38898-1
Kister, A. & Kister, I., 2023. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front. Chem. 10, 1041961. https://doi.org/10.3389/fchem.2022.1041961
Kurotani, A., Tokmakov, A.A., Kuroda, Y., Fukami, Y., Shinozaki, K. & Sakurai, T., 2014. Correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics 30, 1095–1103. https://doi.org/10.1093/bioinformatics/btt762
Li, Z. & Buck, M., 2023. A proteome‐scale analysis of vertebrate protein amino acid occurrence: Thermoadaptation shows a correlation with protein solvation but less so with dynamics. Proteins 91, 3–15. https://doi.org/10.1002/prot.26404
Libich, D.S. & Harauz, G., 2008. Backbone dynamics of the 18.5kDa isoform of myelin basic protein reveals transient α-helices and a calmodulin-binding site. Biophys. J. 94, 4847–4866. https://doi.org/10.1529/biophysj.107.125823
Liu, Y., Wang, X. & Liu, B., 2019. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinform. 20, 330–346. https://doi.org/10.1093/bib/bbx126
Livingstone, C.D. & Barton, G.J., 1993. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Bioinformatics 9, 745–756. https://doi.org/10.1093/bioinformatics/9.6.745
Lobley, A., Orengo, C.A., Swindells, M.B. & Jones, D., 2005. Inferring function using patterns of native disorder in proteins. PLoS. Comput. Biol. preprint, e162. https://doi.org/10.1371/journal.pcbi.0030162.eor
Madeira, F., Madhusoodanan, N., Lee, J., Eusebi, A., Niewielska, A., Tivey, A.R.N., Lopez, R. & Butcher, S., 2024. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525. https://doi.org/10.1093/nar/gkae241
Monastyrskyy, B., Kryshtafovych, A., Moult, J., Tramontano, A. & Fidelis, K., 2014. Assessment of protein disorder region predictions in CASP10. Proteins 82, 127–137. https://doi.org/10.1002/prot.24391
Moscarello, M.A., Mastronardi, F.G. & Wood, D.D., 2007. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem. Res. 32, 251–256. https://doi.org/10.1007/s11064-006-9144-5
Mughal, F. & Caetano-Anollés, G., 2025. Evolution of intrinsic disorder in the structural domains of viral and cellular proteomes. Sci. Rep. 15, 2878. https://doi.org/10.1038/s41598-025-86045-4
Müller, C., Bauer, N.M., Schäfer, I. & White, R., 2013. Making myelin basic protein -from mRNA transport to localized translation. Front. Cell. Neurosci. 7, 1-7. https://doi.org/10.3389/fncel.2013.00169
Müller-Späth, S., Soranno, A., Hirschfeld, V., Hofmann, H., Rüegger, S., Reymond, L., Nettels, D. & Schuler, B., 2010. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl. Acad. Sci. U.S.A. 107, 14609–14614. https://doi.org/10.1073/pnas.1001743107
Nawaz, S., Schweitzer, J., Jahn, O. & Werner, H.B., 2013. Molecular evolution of myelin basic protein, an abundant structural myelin component: phylogeny of myelin basic protein. Glia 61, 1364–1377. https://doi.org/10.1002/glia.22520
Necci, M., Piovesan, D., Dosztányi, Z. & Tosatto, S.C.E., 2017. MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33, 1402–1404. https://doi.org/10.1093/bioinformatics/btx015
Necci, M., Piovesan, D. & Tosatto, S.C.E., 2016. Large‐scale analysis of intrinsic disorder flavors and associated functions in the protein sequence universe. Prot. Sci 25, 2164–2174. https://doi.org/10.1002/pro.3041
Oldfield, C.J., Uversky, V.N., Dunker, A.K. & Kurgan, L., 2019. Introduction to intrinsically disordered proteins and regions, in: Intrinsically Disordered Proteins. Elsevier, pp. 1–34. https://doi.org/10.1016/B978-0-12-816348-1.00001-6
Phoenix, D.A. & Harris, F., 2002. The hydrophobic moment and its use in the classification of amphiphilic structures (Review). Mol. Membr. Biol. 19, 1–10. https://doi.org/10.1080/09687680110103631
Polverini, E., Coll, E.P., Tieleman, D.P. & Harauz, G., 2011. Conformational choreography of a molecular switch region in myelin basic protein — Molecular dynamics shows induced folding and secondary structure type conversion upon threonyl phosphorylation in both aqueous and membrane-associated environments. Biochim. Biophys. Acta Biomembr. 1808, 674–683. https://doi.org/10.1016/j.bbamem.2010.11.030
Raasakka, A. & Kursula, P., 2020. Flexible players within the sheaths: the intrinsically disordered proteins of myelin in health and disease. Cells 9, 470. https://doi.org/10.3390/cells9020470
Raasakka, A., Ruskamo, S., Kowal, J., Barker, R., Baumann, A., Martel, A., Tuusa, J., Myllykoski, M., Bürck, J., Ulrich, A.S., Stahlberg, H. & Kursula, P., 2017. Membrane Association Landscape of Myelin Basic Protein Portrays Formation of the Myelin Major Dense Line. Sci. Rep. 7, 4974. https://doi.org/10.1038/s41598-017-05364-3
Rajagopalan, K., Mooney, S.M., Parekh, N., Getzenberg, R.H. & Kulkarni, P., 2011. A majority of the cancer/testis antigens are intrinsically disordered proteins. J. Cell. Biochem. 112, 3256–3267. https://doi.org/10.1002/jcb.23252
Riley, A.C., Ashlock, D.A. & Graether, S.P., 2023. The difficulty of aligning intrinsically disordered protein sequences as assessed by conservation and phylogeny. PLoS. ONE 18, e0288388. https://doi.org/10.1371/journal.pone.0288388
Romero, P., Obradovic, Z., Li, X., Garner, E.C., Brown, C.J. & Dunker, A.K., 2001. Sequence complexity of disordered protein. Proteins 42, 38–48. https://doi.org/10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
Schad, E., Tompa, P. & Hegyi, H., 2011. The relationship between proteome size, structural disorder and organism complexity. Genome Biol. 12, R120. https://doi.org/10.1186/gb-2011-12-12-r120
Segrest, J.P., De Loof, H., Dohlman, J.G., Brouillette, C.G. & Anantharamaiah, G.M., 1990. Amphipathic helix motif: classes and properties. Proteins 8, 103–117. https://doi.org/10.1002/prot.340080202
Sen, S., Dey, A., Chowdhury, S., Maulik, U. & Chattopadhyay, K., 2019. Understanding the evolutionary trend of intrinsically structural disorders in cancer relevant proteins as probed by Shannon entropy scoring and structure network analysis. BMC Bioinformatics 19, 549. https://doi.org/10.1186/s12859-018-2552-0
Siddiqui, I.J., Pervaiz, N. & Abbasi, A.A., 2016. The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci. Rep. 6, 24475. https://doi.org/10.1038/srep24475
Siltberg-Liberles, J., 2011. Evolution of structurally disordered proteins promotes neostructuralization. Mol. Biol. Evol. 28, 59–62. https://doi.org/10.1093/molbev/msq291
Singleton, M.D. & Eisen, M.B., 2024. Evolutionary analyses of intrinsically disordered regions reveal widespread signals of conservation. PLoS. Comput. Biol. 20, e1012028. https://doi.org/10.1371/journal.pcbi.1012028
Smirnova, E.V., Rakitina, T.V., Ziganshin, R.H., Arapidi, G.P., Saratov, G.A., Kudriaeva, A.A. & Belogurov, A.A., 2021. Comprehensive atlas of the myelin basic protein interaction landscape. Biomolecules 11, 1628. https://doi.org/10.3390/biom11111628
Stämpfli, R., 1954. Saltatory conduction in nerve. Phy. Rev. https://journals.physiology.org/doi/abs/10.1152/physrev.1954.34.1.101?journalCode=physrev
Sysoev, E.I., Shenfeld, A.A., Belashova, T.A., Valina, A.A., Zadorsky, S.P. & Galkin, A.P., 2025. Amyloid fibrils of the myelin basic protein are an integral component of myelin in the vertebrate brain. Sci. Rep. 15, 29053. https://doi.org/10.1038/s41598-025-13524-z
Tai, F.L., Smith, R., Bernard, C.C.A. & Hearn, M.W.T., 1986. Evolutionary divergence in the structure of myelin basic protein: comparison of chondrichthye basic proteins with those from higher vertebrates. J. Neurochem. 46, 1050–1057. https://doi.org/10.1111/j.1471-4159.1986.tb00617.x
Turner, R.S., Chou, C. ‐H. J., Kibler, R.F. & Kuo, J.F., 1982. Basic protein in brain myelin is phosphorylated by endogenous phospholipid‐sensitive Ca2+ ‐dependent protein kinase. J. Neurochem. 39, 1397–1404. https://doi.org/10.1111/j.1471-4159.1982.tb12583.x
Uversky, V.N., 2019. Intrinsically disordered proteins and their “mysterious” (meta)physics. Front. Phys. 7, 10. https://doi.org/10.3389/fphy.2019.00010
Van Bibber, N.W., Haerle, C., Khalife, R., Xue, B. & Uversky, V.N., 2020. Intrinsic disorder in tetratricopeptide repeat proteins. IJMS 21, 3709. https://doi.org/10.3390/ijms21103709
Van Der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T., Kim, P.M., Kriwacki, R.W., Oldfield, C.J., Pappu, R.V., Tompa, P., Uversky, V.N., Wright, P.E. & Babu, M.M., 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631. https://doi.org/10.1021/cr400525m
Walsh, I., Martin, A.J.M., Di Domenico, T. & Tosatto, S.C.E., 2012. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28, 503–509. https://doi.org/10.1093/bioinformatics/btr682
Wang, D., Zeng, S., Xu, C., Qiu, W., Liang, Y., Joshi, T. & Xu, D., 2017. MusiteDeep: a deep-learning framework for general and kinase-specific phosphorylation site prediction. Bioinformatics 33, 3909–3916. https://doi.org/10.1093/bioinformatics/btx496
Wang, S., Ma, J. & Xu, J., 2016. AUCpreD: proteome-level protein disorder prediction by AUC-maximized deep convolutional neural fields. Bioinformatics 32, i672–i679. https://doi.org/10.1093/bioinformatics/btw446
Ward, J.J., Sodhi, J.S., McGuffin, L.J., Buxton, B.F. & Jones, D.T., 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337, 635–645. https://doi.org/10.1016/j.jmb.2004.02.002
Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J., 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
Welch, B.L., 1951. On the comparison of several mean values: an alternative approach. Biometrika 38, 330. https://doi.org/10.2307/2332579
Wickham, H., 2016. Programming with ggplot2, in: ggplot2, use R! Springer International Publishing, Cham, pp. 241–253. https://doi.org/10.1007/978-3-319-24277-4_12
Wright, P.E. & Dyson, H.J., 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29. https://doi.org/10.1038/nrm3920
Xie, H., Vucetic, S., Iakoucheva, L.M., Oldfield, C.J., Dunker, A.K., Uversky, V.N. & Obradovic, Z., 2007. Functional Anthology of Intrinsic Disorder. 1. Biological Processes and Functions of Proteins with Long Disordered Regions. J. Proteome Res. 6, 1882–1898. https://doi.org/10.1021/pr060392u
Xie, Y., Li, Huiqin, Luo, X., Li, Hongyu, Gao, Q., Zhang, L., Teng, Y., Zhao, Q., Zuo, Z. & Ren, J., 2022. IBS 2.0: an upgraded illustrator for the visualization of biological sequences. Nucleic Acids Res. 50, W420–W426. https://doi.org/10.1093/nar/gkac373
Xue, B., Brown, C.J., Dunker, A.K. & Uversky, V.N., 2013. Intrinsically disordered regions of p53 family are highly diversified in evolution. Biochim. Biophys. Acta Proteins and Proteomics, 1834, 725–738. https://doi.org/10.1016/j.bbapap.2013.01.012
Xue, B., Dunbrack, R.L., Williams, R.W., Dunker, A.K. & Uversky, V.N., 2010. PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochim. Biophys. Acta Proteins and Proteomics, 1804, 996–1010. https://doi.org/10.1016/j.bbapap.2010.01.011
Yarberry, W., 2021. CRAN Recipes: DPLYR, Stringr, Lubridate, and RegEx in R. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-6876-6.
Yruela, I., Oldfield, C.J., Niklas, K.J. & Dunker, A.K., 2017. Evidence for a strong correlation between transcription factor protein disorder and organismic complexity. Genome Biol. Evol. 9, 1248–1265. https://doi.org/10.1093/gbe/evx073
Zand, R., Jin, X., Kim, J., Wall, D.B., Gould, R. & Lubman, D.M., 2001. Studies of posttranslational modifications in spiny dogfish myelin basic protein. J. Neurosci. https://link.springer.com/article/10.1023/A:1010921230859
Zarin, T., Strome, B., Nguyen Ba, A.N., Alberti, S., Forman-Kay, J.D. & Moses, A.M., 2019. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. eLife 8, e46883. https://doi.org/10.7554/eLife.46883
Zavialova, M.G., Zgoda, V.G. & Nikolaev, E.N., 2017. Analysis of the role of protein phosphorylation in the development of diseases. Biochem. Moscow Suppl. Ser. B 11, 203–218. https://doi.org/10.1134/S1990750817030118
Zhang, C., Walker, A.K., Zand, R., Moscarello, M.A., Yan, J.M. & Andrews, P.C., 2012. Myelin basic protein undergoes a broader range of modifications in mammals than in lower vertebrates. J. Proteome Res. 11, 4791–4802. https://doi.org/10.1021/pr201196e.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Biologia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.