Reprotoxicity of zinc oxide nanoparticles synthesized with Crataegus monogyna leaves extract: testis and sperm function

Authors

  • F. REMITA Laboratory of Animal Ecophysiology, Department of Biology, Faculty of Sciences, University of Badji Mokhtar. 23000 Annaba, Algeria. Corresponding author: remitaferiel@gmail.com
  • A. TALBI Environmental Research Center, Alzon, Annaba, Algeria
  • C. ABDENNOUR Environmental Research Center, Alzon, Annaba, Algeria
  • K. KHELILI Environmental Research Center, Alzon, Annaba, Algeria
  • F. DUMAN Department of Biology, Faculty of Science, University of Erciyes, Turkey
  • Z. BOUSLAMA Environmental Research Center, Alzon, Annaba, Algeria
  • R. ROUABHI Laboratory of Toxicology and Ecosystem Pathologies, University of Tebessa, Algeria. Corresponding author: r_rouabhi@univ-tebessa.dz https://orcid.org/0000-0001-6809-6369
  • M. R. DJEBAR Environmental Research Center, Alzon, Annaba, Algeria

DOI:

https://doi.org/10.24193/subbbiol.2024.2.07

Keywords:

zinc oxide, nanoparticles, Crataegus monogyna, sperm quality

Abstract

This work examines the effect of three doses of zinc oxide nanoparticles (ZnONPs), synthetized with Crataegus monogyna leaves using zinc acetate, on the sperm quality of Wistar rats. Animals were divided into 4 groups; the control group maintained without treatment, while ZNP1, ZNP2, and ZNP3 received respectively 10 mg ZNP/kgbw, 50 mg ZNP/kgbw, and 100 mg ZNP/kgbw by gavage for 15 days. Epididymis sperm was collected for sperm parameters: concentration, live sperm, motility, velocity (VCL, VSL, and VAP), linearity (LIN), amplitude lateral head (ALH), and beat cross frequency (BCF). DNA fragmentation was measured in three samples selected from control, ZNP1, and ZNP2. Testicular and epididymis malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GPx) were evaluated. Compared to the control, ZNP1 has a significant reduction of testicular and epididymis weights, sperm concentration, live sperm, motility, VCL, VSL, VAP, LIN, and BCF, with a significant increase of MDA and a significant decrease of GSH levels. The ZNP2 group demonstrated a significant increase in epididymis weight, a raise in sperm parameters (concentration, motility, VCL VSL, VAP, LIN, ALH, and BCF), and an augmentation in GSH and GPx levels. However, ZNP3 has a significant increase in VSL and ALH while ZNP1 and ZNP2 showed no effect on spermatozoa DNA. interestedly, we found that the lower dose of ZNP1 acted as toxic to testicular and epididymis parameters, while the higher ones may help to improve sperm quality and reduced oxidative stress.

Article history: Received 27 March 2024; Revised 29 November 2024;
Accepted 01 December 2024; Available online 10 December 2024

References

Abbasi, B.H., Anjum, S. & Hano, C. (2017). Differential effects of in vitro cultures of Linum usitatissimum L. (flax) on biosynthesis, stability, antibacterial and antileishmanashatwah, R.M. (2018). Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 50, 193–201.ial activities of zinc oxide nanoparticles: a mechanistic approach. RSC Adv. 7(26), 15931–15943. https://doi.org/10.1039/C7RA02070H.

Abo Alhasan, A.A. (2014). Rapid induced aggregation of gold nanoparticles by diolefinic dyes. J. Nanomater. Mol. Nanotechnol. 3(2). https://doi.org/10.4172/2324-8777.1000142.

Agarwal, A. & Sengupta, P. (2020). Oxidative stress and its association with male infertility. In: Parekattil, S.J., Esteves, S.C. & Agarwal, A. (eds.), Male infertility. Springer International Publishing, Cham. pp. 57–68. https://doi.org/10.1007/978-3-030-32300-4_6.

Agarwal, A., Barbăroșie, C., Ambar, R. & Finelli, R. (2020). The impact of single- and double-strand DNA breaks in human spermatozoa on assisted reproduction. Int. J. Mol. Sci. 21 (11), 3882. https://doi.org/10.3390/ijms21113882.

Agarwal, H., Menon, S., Kumar, S.V. & Rajeshkumar, S. (2018). Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 286, 60–70. https://doi.org/10.1016/j.cbi.2018.03.008.

Ali, C., Réda, D.M., Rachid, R. & Houria, B. (2009). Cadmium induced changes in metabolic function of mitochondrial isolated from potato tissue (Solanum tuberosum L.). Am. J. Biochem. Biotech. 5(1), 35-39.

Arya, V. & Thakur, N. (2012). Standardisation of haw fruits. Am.-Eurasian J. Sci. Res. 7(1), 16–22. https://doi.org/10.5829/idosi.aejsr.2012.7.1.62173.

Bahorun, T., Trotin, F., Pommery, J., Vasseur, J. & Pinkas, M. (1994). Antioxidant activities of Crataegus monogyna extracts. Planta Med. 60(4), 323–328. https://doi.org/10.1055/s-2006-959493.

Bai, D.-P., Zhang, X.-F., Zhang, G.-L., Huang, Y.-F. & Gurunathan, S. (2017). Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomed. 12, 6521–6535. https://doi.org/10.2147/IJN.S140071.

Bai, Y., Zhang, Y., Zhang, J., Mu, Q., Zhang, W., Butch, E.R., Snyder, S.E. & Yan, B. (2010). Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat. Nanotechnol. 5, 683–689. https://doi.org/10.1038/nnano.2010.153.

Bardaweel, S.K., Gul, M., Alzweiri, M., Ishaqat, A., ALSalamat, H.A. & Bashatwah, R.M. (2018). Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 50, 193–201. https://doi.org/10.5152/eurasianjmed.2018.17397.

Bechkri, S., Berrehal, D., Semra, Z., Bachari, K., Kabouche, A. & Kabouche, Z. (2017). Composition and biological activities of seeds oils of two Crataegus species growing in Algeria. J. Mater. Environ. Sci. 8, 1023–1028.

Bergman, Å., Heindel, J.J., Jobling, S., Kidd, K.A. & Zoeller, T.R. (eds.) (2013). Evidence for endocrine disruption in humans and wildlife. In: State of the science of endocrine disrupting chemicals - 2012, 23–237. Geneva, Switzerland: World Health Organization.

Bernatoniene, J., Trumbeckaite, S., Majiene, D., Baniene, R., Baliutyte, G., Savickas, A. & Toleikis, A. (2009). The effect of Crataegus fruit extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart. Phytother. Res. 23(12), 1701–1707. https://doi.org/10.1002/ptr.2815

Bleeker, E.A.J., De Jong, W.H., Geertsma, R.E., Groenewold, M., Heugens, E.H.W., Koers-Jacquemijns, M., Van De Meent, D., et al. (2013). Considerations on the EU definition of a nanomaterial: Science to support policy making. Regul. Toxicol. Pharmacol. 65(1), 119–125. https://doi.org/10.1016/j.yrtph.2012.11.007

Boekelheide, K., Fleming, S.L., Johnson, K.J., Patel, S.R. & Schoenfeld, H.A. (2000). Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Proc. Soc. Exp. Biol. Med. 225(2), 105–115. https://doi.org/10.1046/j.1525-1373.2000.22513.x

Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Chang, Q., Zuo, Z., Harrison, F. & Chow, M.S.S. (2002). Hawthorn. J. Clin. Pharmacol. 42(6), 605–612. https://doi.org/10.1177/00970002042006003

Chvapil, M. (1973). New aspects in the biological role of zinc: A stabilizer of macromolecules and biological membranes. Life Sci. 13(8), 1041–1049. https://doi.org/10.1016/0024-3205(73)90372-X

Cosmulescu, S., Trandafir, I. & Nour, V. (2017). Phenolic acids and flavonoids profiles of extracts from edible wild fruits and their antioxidant properties. Int. J. Food Prop. 20(12), 3124–3134. https://doi.org/10.1080/10942912.2016.1274906

Ai, D., Wang, Z. & Zhou, A. (2010). Protective effects of nano-ZnO on the primary culture mice intestinal epithelial cells in vitro against oxidative injury. World J. Agric. Sci. 6(2), 149–153. doi:javaa.2009.1964.1967

Elshama, S.S., Abdallah, M.E. & Abdel-Karim, R.I. (2018). Zinc oxide nanoparticles: Therapeutic benefits and toxicological hazards. Open Nanomed. J. 5(1), 16–22. doi:10.2174/1875933501805010016.

Espanani, H.R., Fazilati, M., Sadeghi, L., Babadi Vahid Yousefi, B., Bakhshiani, S. & Amraie, E. (2013). Investigation the zinc oxide nanoparticle’s effect on sex hormones and cholesterol in rat. Int. Res. J. Biol. Sci. 2(8), 54–58. http://www.isca.me/IJBS/Archive/v2/i8/11.ISCA-IRJBS-2013-124.php

Evenson, D.P., Larson, K.L. & Jost, L.K. (2002). Sperm chromatin structure assay: Its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23(1), 25–43. doi:10.1002/j.1939-4640.2002.tb02599.x.

Fernández, J.L., Muriel, L., Goyanes, V., Segrelles, E., Gosálvez, J., Enciso, M., LaFromboise, M. & De Jonge, C. (2005). Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertility Sterility 84(4), 833–842. doi:10.1016/j.fertnstert.2004.11.089

Flohé, L. & Günzler, W.A. (1984). Assays of glutathione peroxidase. Method. Enzymol. 105, 114–120. doi:10.1016/S0076-6879(84)05015-1

Gromadzka-Ostrowska, J., Dziendzikowska, K., Lankoff, A., Dobrzyńska, M., Instanes, C., Brunborg, G., Gajowik, A., Radzikowska, J., Wojewódzka, M. & Kruszewski, M. (2012). Silver nanoparticles effects on epididymal sperm in rats. Toxicol. Lett. 214(3), 251–258. doi:10.1016/j.toxlet.2012.08.028

Hartung, G.A. & Mansoori, G.A. (2015). In vivo general trends, filtration and toxicity

of nanoparticles. J. Nanomater. Mol. Nanotechnol. 2(3). doi:10.4172/2324-8777.1000113

Ho, E. (2004). Zinc deficiency, DNA damage and cancer risk. J. Nutr. Biochem. 15(10), 572–578. doi:10.1016/j.jnutbio.2004.07.005

Hussein, J., El-Banna, M., Abdel Razik, T. & El-Naggar, M.E. (2018). Biocompatible zinc oxide nanocrystals stabilized via hydroxyethyl cellulose for mitigation of diabetic complications. Int. J. Biol. Macromol. 107, 748–754.

doi:10.1016/j.ijbiomac.2017.09.056

Iavicoli, I., Fontana, L. & Bergamaschi, A. (2009). The effects of metals as endocrine disruptors. J. Toxicol. Environ. Health, Part B 12(3), 206–223.

doi:10.1080/10937400902902062

Iavicoli, I., Fontana, L., Leso, V. & Bergamaschi, A. (2013). The effects of nanomaterials as endocrine disruptors. Int. J. Mol. Sci. 14(8), 16732–16801.

doi:10.3390/ijms140816732

Iommiello, V.M., Albani, E., Di Rosa, A., Marras, A., Menduni, F., Morreale, G., Levi, S.L., Pisano, B. & Levi-Setti, P.E. (2015). Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int. J. Endocrinol. 1–6. doi:10.1155/2015/321901

Isık, T., Elhousseini Hilal, M. & Horzum, N. (2019). Green synthesis of zinc oxide nanostructures. In: Nahhas, A.M. (ed.), Zinc oxide based nano materials and devices. IntechOpen. doi:10.5772/intechopen.83338

Kulandaivelu, B. & Gothandam, K.M. (2016). Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Braz. Arch. Biol. Technol. 59, e16150529. doi:10.1590/1678-4324-2016150529

Logothetidis, S. (2012). Nanomedicine: The medicine of tomorrow. In: Nanomedicine and nanobiotechnology, Logothetidis, S. (ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–26. doi:10.1007/978-3-642-24181-9_1

Mahendiran, D., Subash, G., Arumai Selvan, D., Rehana, D., Senthil Kumar, R. & Kalilur Rahiman, A. (2017). Biosynthesis of zinc oxide nanoparticles using plant extracts of Aloe vera and Hibiscus sabdariffa: Phytochemical, antibacterial, antioxidant and anti-proliferative studies. BioNanoSci. 7(3), 530–545. doi:10.1007/s12668-017-0418-y

Muradoğlu, F., Gürsoy, S. & Yıldız, K. (2019). Quantification analysis of biochemical and phenolic composition in hawthorn (Crataegus spp.) fruits. Erwerbs-Obstbau 61(2), 189–194. doi:10.1007/s10341-018-00415-z

Mutukwa, D., Taziwa, R. & Khotseng, L.E. (2022). A review of the green synthesis of ZnO nanoparticles utilising Southern African indigenous medicinal plants. Nanomaterials 12(19), 3456. doi:10.3390/nano12193456

Nagajyothi, P.C., Cha, S.J., Yang, I.J., Sreekanth, T.V.M., Kim, K.J. & Shin, H.M. (2015). Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B: Biol. 146, 10–17. doi:10.1016/j.jphotobiol.2015.02.008

Ng, K.W., Khoo, S.P.K., Heng, B.C., Setyawati, M.I., Tan, E.C., Zhao, X., Xiong, S., Fang, W., Leong, D.T. & Loo, J.S.C. (2011). The role of the tumor suppressor p53 pathway in the cellular DNA damage response to zinc oxide nanoparticles. Biomaterials 32(32), 8218–8225. doi:10.1016/j.biomaterials.2011.07.036

Ohkawa, H., Ohishi, N. & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95(2), 351–358. doi:10.1016/0003-2697(79)90738-3

Paluszkiewicz, P., Martuszewski, A., Zaręba, N., Wala, K., Banasik, M. & Kepinska, M. (2021). The application of nanoparticles in diagnosis and treatment of kidney diseases. Int. J. Mol. Sci. 23(1), 131. doi:10.3390/ijms23010131

Prairna, M., Paramanya, A., Sharma, S., Bahtiyarca Bagdat, R. & Ali, A. (2020). Recent practices of medicinal and aromatic plants in nanotechnology. In: Husen, A. & Jawaid, M. (eds.), Nanomaterials for agriculture and forestry applications, Elsevier, Amsterdam; Cambridge, MA, pp. 435–467. doi:10.1016/B978-0-12-817852-2.00018-4

Raghupathi, K.R., Koodali, R.T. & Manna, A.C. (2011). Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27(7), 4020–4028. doi:10.1021/la104825u

Rachid, R., Houria D.B., Mohammed-Réda, D. (2008). Impact of Flufenoxuron, an IGR pesticide on Gallus domesticus embryonic development in ovo. J. Cell & An. Biol. 2(3), 87-91.

Ramesh, M., Anbuvannan, M. & Viruthagiri, G. (2015). Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Mol. Biomol. Spectro. 136, 864–870. doi:10.1016/j.saa.2014.09.105

Rasmussen, J.W., Martinez, E., Louka, P. & Wingett, D.G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7(9), 1063–1077. doi:10.1517/17425247.2010.502560

Rosi, N.L. & Mirkin, C.A. (2005). Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547–1562. doi:10.1021/cr030067f

Roy, B., Baghel, R.P.S., Mohanty, T.K. & Mondal, G. (2013). Zinc and male reproduction in domestic animals: A review. Indian J. Anim. Nutr. 30(4), 339–350.

Shalizar-Jalali, A. & Hasanzadeh, S. (2013). Crataegus monogyna fruit aqueous extract as a protective agent against doxorubicin-induced reproductive toxicity in male rats. Avicenna J. Phytomed. 3(2), 159–170. PMC4075703

Shalizar-Jalali, A., Hasanzadeh, S. & Malekinejad, H. (2011). Chemoprotective effect of Crataegus monogyna aqueous extract against cyclophosphamide-induced reproductive toxicity. Vet. Res. 266–273.

Sharma, V., Singh, P., Pandey, A.K. & Dhawan, A. (2012). Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res./Genet. Toxicol. Environ. Mutagen, 745(1–2), 84–91. doi:10.1016/j.mrgentox.2011.12.009.

Shen, C., James, S.A., De Jonge, M.D., Turney, T.W., Wright, P.F.A. & Feltis, B.N. (2013). Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle–exposed human immune cells. Toxicol. Sci. 136(1), 120–130. doi:10.1093/toxsci/kft187.

Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Shi, L., Wang, Q., Yang, R. & Lei, F. (2011). Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Rumin. Res. 96(1), 49–52. doi:10.1016/j.smallrumres.2010.11.005.

Shi, T. & Jiang, Y. (2013). Isolation of flavonoids from the aerial parts of Polygala tenuifolia Willd. and their antioxidant activities. J. Chin. Pharm. Sci. 22(1). doi:10.5246/jcps.2013.01.004.

Silva, R., Carrageta, D.F., Alves, M.G., Silva, B.M. & Oliveira, P.F. (2022). Antioxidants and male infertility. Antioxidants 11(6), 1152. doi:10.3390/antiox11061152.

Talebi, A. R., Khorsandi, L. & Moridian, M. (2013). The effect of zinc oxide nanoparticles on mouse spermatogenesis. J. Assist. Reprod. Genet. 30(9), 1203–1209. doi:10.1007/s10815-013-0078-y.

Vásquez, L., Vera, O. & Arango, J. (2003). Testicular growth and semen quality in peripuberal Brahman bulls. Livest. Res. Rural Dev. 15(10). Retrieved from http://www.lrrd.org/lrrd15/10/vasq1510.htm

Vishwakarma, K. (2013). Green synthesis of ZnO nanoparticles using Abrus precatorius seeds extract and their characterization. MSc thesis, National Institute of Technology, Rourkela, India. Retrieved from http://ethesis.nitrkl.ac.in/5012/.

Weckbecker, G. & Cory, J. G. (1988). Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett. 40(3), 257–264. doi:10.1016/0304-3835(88)90084-5.

Wiwanitkit, V., Sereemaspun, A. & Rojanathanes, R. (2009). Effect of gold nanoparticles on spermatozoa: The first world report. Fertility Sterility 91(1), e7–e8. doi:10.1016/j.fertnstert.2007.08.021.

World Health Organization. (2001). Laboratory manual of the WHO for the examination of human semen and sperm-cervical mucus interaction. Ann. Ist. Super. Sanità 37(1), I–XII, 1–123.

Zong, Y., Li, Z., Wang, X., Ma, J. & Men, Y. (2014). Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles. Ceram. Int. 40(7), 10375–10382. doi:10.1016/j.ceramint.2014.02.123.

Downloads

Published

2024-12-10

How to Cite

REMITA, F., TALBI, A., ABDENNOUR, C., KHELILI, K., DUMAN, F., BOUSLAMA, Z., … DJEBAR, M. R. (2024). Reprotoxicity of zinc oxide nanoparticles synthesized with Crataegus monogyna leaves extract: testis and sperm function. Studia Universitatis Babeș-Bolyai Biologia, 69(2), 109–123. https://doi.org/10.24193/subbbiol.2024.2.07

Issue

Section

Articles

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.