A COMPREHENSIVE REVIEW OF FABRICATION AND CHARACTERIZATION METHODS OF HYDROXYAPATITE

Authors

  • Claudiu LUNG Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: claudiu.lung@ubbcluj.ro. https://orcid.org/0000-0003-2764-2233
  • Daniel MARCONI Faculty of Physics, Babeş-Bolyai University; Department of Molecular and Biomolecular Physics, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: daniel.marconi@itim-cj.ro. https://orcid.org/0000-0002-8658-2747
  • Tudor FEHER Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania. *Corresponding authors: claudiu.lung@ubbcluj.ro, daniel.marconi@itim-cj.ro, tudorfeher@gmail.com

DOI:

https://doi.org/10.24193/subbphys.2023.04

Keywords:

Hydroxyapatite, Titanium Dioxide, Biomedicine, biocompatibility, Osteointegration, Sol-Gel dip-coating, Electrochemical Deposition, Ultrasonic Spray Pyrolysis, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, hybrid coatings

Abstract

This synthesis article expands on the applications of hydroxyapatite (HA) coatings on titanium dioxide (TiO2) substrates for biomedical applications, focusing on the methods of deposition and their impact on the material’s properties. Various techniques, including sol-gel, electrochemical deposition and ultrasonic spray-pyrolysis are discussed because of their ability to enhance the mechanical resistance, biocompatibility and osteointegration of implants. The analysis methods used are X-Ray Diffraction (XRD), Scanning electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). They provide insights into the structural, chemical and physical characteristics of the HA coatings. The results indicate that these hybrid coatings significantly improve the performance and longevity of implants in orthopedic and dental applications.

References

B. Murphy, J. Baez, and M. A. Morris, “Characterizing Hydroxyapatite Deposited from Solution onto Novel Substrates in Terms of Growth Mechanism and Physical Chemical Properties,” MDPI AG, Jun. 2023, p. 34. doi: 10.3390/iocn2023-14491.

P. Oladijo, H. Soon Min, and O. Oladijo, “Deposition and characterization of thin Films on Titanium Substrate: Review,” International Journal on Emerging Technologies, vol. 11, no. 4, pp. 299–305, 2020, [Online]. Available: https://www.researchgate.net/publication/347623166.

V. Jokanovic and D. Uskokovic, “Calcium hydroxyapatite thin films on titanium substrates prepared by ultrasonic spray pyrolysis,” Mater Trans, vol. 46, no. 2, pp. 228–235, 2005, doi: 10.2320/matertrans.46.228.

J. Harle, H. W. Kim, N. Mordan, J. C. Knowles, and V. Salih, “Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition,” Acta Biomatter, vol. 2, no. 5, pp. 547–556, 2006, doi: 10.1016/j.actbio.2006.05.005.

A. R. Boccaccini, S. Keim, R. Ma, Y. Li, and I. Zhitomirsky, “Electrophoretic deposition of biomaterials,” Journal of the Royal Society Interface, vol. 7, no. SUPPL. 5. Royal Society, Oct. 06, 2010. doi: 10.1098/rsif.2010.0156.focus.

A. Jaafar et al., “Sol–gel derived hydroxyapatite coating on titanium implants: Optimization of sol–gel process and engineering the interface,” J Mater Res, vol. 37, no. 16, pp. 2558–2570, Aug. 2022, doi: 10.1557/s43578-022-00550-0.

V. Nelea, C. Morosanu, M. Iliescu, and I. N. Mihailescu, “Hydroxyapatite thin films grown by pulsed laser deposition and radio-frequency magnetron sputtering: Comparative study,” Appl Surf Sci, vol. 228, no. 1–4, pp. 346–356, 2004, doi: 10.1016/j.apsusc.2004.01.029.

M. Honda, K. Kikushima, Y. Kawanobe, T. Konishi, M. Mizumoto, and M. Aizawa, “Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route,” J Mater Sci Mater Med, vol. 23, no. 12, pp. 2923–2932, Dec. 2012, doi: 10.1007/s10856-012-4744-x.

M. C. Perju et al., “Some Aspects Concerning Titanium Coverage with Hydroxyapatite,” Archives of Metallurgy and Materials, vol. 67, no. 2, pp. 521–527, 2022, doi: 10.24425/amm.2022.137785.

D. Annur, F. Bayu, S. Supriadi, and B. Suharno, “Electrophoretic Deposition of Hydroxyapatite/Chitosan Coating on Porous Titanium for Orthopedic Application,” Evergreen, vol. 9, no. 1, pp. 109–114, 2022, doi: 10.5109/4774222.

S. Rahmadani, A. Anawati, M. D. Gumelar, R. Hanafi, and I. N. Jujur, “Optimizing parameter for electrophoretic deposition of hydroxyapatite coating with superior corrosion resistance on pure titanium,” Mater Res Express, vol. 9, no. 11, Nov. 2022, doi: 10.1088/2053-1591/aca509.

M. Manso, C. Jimeh Nez, C. Morant, P. Herrero, and J. M. Martmh Nez-Duart, “Electrodeposition of hydroxyapatite coatings in basic conditions,” 2000.

A. Ul-Hamid, A Beginners’ Guide to Scanning Electron Microscopy. 2018. doi: 10.1007/978-3-319-98482-7.

E. R. Fischer, B. T. Hansen, V. Nair, F. H. Hoyt, and D. W. Dorward, “Scanning electron microscopy,” Curr. Protoc. Microbiol., no. SUPPL.25, May 2012, doi: 10.1002/9780471729259.mc02b02s25.

B. D. Cullity, Elements of X-ray Diffraction, vol. 29, no. 12. 1978. doi: 10.1088/0031-9112/29/12/034.

“X-Ray Diffraction Characterization of crystallinity and phase composition in plasma sprayed hap coatings”.

J. Reyes-Gasga, E. L. Martínez-Piñeiro, G. Rodríguez-Álvarez, G. E. Tiznado-Orozco, R. García-García, and E. F. Brès, “XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite,” Materials Science and Engineering C, vol. 33, no. 8, pp. 4568–4574, Dec. 2013, doi: 10.1016/j.msec.2013.07.014.

Downloads

Published

2023-12-30

How to Cite

LUNG, C. ., MARCONI, D., & FEHER, T. (2023). A COMPREHENSIVE REVIEW OF FABRICATION AND CHARACTERIZATION METHODS OF HYDROXYAPATITE. Studia Universitatis Babeș-Bolyai Physica, 68(1-2), 39–48. https://doi.org/10.24193/subbphys.2023.04

Issue

Section

Articles

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.