CONSIDERATIONS ON THE PROPHYLAXIS OF SEVERE FORMS OF COVID-19 THROUGH ENDURANCE EXERCISES

Authors

  • Bogdan-Alexandru HAGIU Faculty of Physical Education and Sport, “Alexandru Ioan Cuza” University of Iasi, Romania, bogdan_hagiu@yahoo.com

DOI:

https://doi.org/10.24193/subbeag.67(1).05

Keywords:

COVID-19, exercises, mitochondria

Abstract

Prophylaxis of severe forms of COVID-19 can be achieved by combating sedentary lifestyle, preferably through moderate intensity endurance exercises, dosed so as not to cause immune disorders. The mechanism is likely to be to protect the mitochondria from oxidative stress. The anti-inflammatory effects may also occur in the organs affected by the virus. The high intensity of the effort (interval training or resistance training) can promote, in addition to immune disorders, even the penetration of the virus into the target cells (according to a hypothesis to be confirmed by future studies). However, there are preliminary results according to which some high-intensity exercises can be adapted to avoid hypoxia and thus be used for COVID-19 prophylaxis. Prevention of serious complications of SARSCOV-2 infection through exercise may be of interest to obese, diabetic and the elderly, high-risk categories.

 

REZUMAT. Considerații privind profilaxia formelor severe de covid-19 prin exerciții de anduranță. Profilaxia formelor severe de COVID-19 se poate realiza prin combaterea sedentarismului, de preferință prin exerciții de anduranță de intensitate moderată, dozate astfel încât să nu provoace tulburări imunitare. Este posibil ca mecanismul să fie protejarea mitocondriilor de stresul oxidativ. Se poate ca efectele antiinflamatoare să se manifeste inclusiv în organele afectate de respectivul virus. Intensitatea mare a efortului (antrenament pe intervale sau antrenament cu rezistență) poate favoriza, pe lângă tulburările imunitare, chiar și pătrunderea virusului în celulele țintă (conform unei ipoteze ce urmează a fi confirmată de studii viitoare). Există însă rezultate preliminare conform cărora și unele exerciții de intensitate mare pot fi adaptate în sensul evitării hipoxiei și astfel să fie folosite pentru profilaxia COVID-19. Prevenirea complicațiilor grave ale infecției cu SARSCOV-2 prin exerciții fizice poate fi de interes pentru categoriile cu risc ridicat: obezi, diabetici și vârstnici.

Cuvinte cheie: COVID-19, exerciții, mitocondrii

Received: 2021 November 1; Revised: 2022 January 09; Accepted: 2022 January 10; Available online: 2022 May 5; Available print: 2022 May 30.

References

Ali N. (2020). Relationship Between COVID-19 Infection and Liver Injury: A Review of Recent Data. Frontiers in medicine, 7, 458. https://doi.org/10.3389/fmed.2020.00458.

Bishop, D.J., Botella, J., Genders, A.J., Lee, M.J., Saner, N.J., Kuang, J., Yan, X., & Granata, C. (2019). High-Intensity Exercise and Mitochondrial Biogenesis: Current Controversies and Future Research Directions. Physiology (Bethesda, Md.), 34(1), 56–70. https://doi.org/10.1152/physiol.00038.2018.

Bartlett, D.B., Willis, L.H., Slentz, C.A. et al. Ten weeks of high-intensity interval walk training is associated with reduced disease activity and improved innate immune function in older adults with rheumatoid arthritis: a pilot study (2018). Arthritis Res Ther 20, 127. https://doi.org/10.1186/s13075-018-1624-x.

Chepelev, N.L., Bennitz, J.D., Wright J.S., Smith, J.C. & Willmore, W.G. (2009) Oxidative modification of citrate synthase by peroxyl radicals and protection with novel antioxidants, Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 6, 1319-1331, DOI: 10.3109/14756360902852586.

Haas R.H. (2019). Mitochondrial Dysfunction in Aging and Diseases of Aging. Biology, 8(2), 48. https://doi.org/10.3390/biology8020048.

Hagiu, B.A. (2020a). The Relationship between Exercise and Medication in Preventing Severe forms of COVID-19 Infection. Journal of Pharmaceutical Research International, 32(14), 164-167. https://doi.org/10.9734/jpri/2020/v32i1430616.

Hagiu, B.A. (2020b). Vasodilators, Enhancers of Prevention through Exercise of COVID-19?. Journal of Pharmaceutical Research International, 32(34), 126-131. https://doi.org/10.9734/jpri/2020/v32i3430972.

Hagiu, B.A. (2021a). Moderate exercise may prevent the development of severe forms of COVID-19, whereas high-intensity exercise may result in the opposite. Medical hypotheses, 157, 110705. Advance online publication. https://doi.org/10.1016/j.mehy.2021.110705.

Hagiu, B.A. (2021b). Genetic Arguments for the Prevention of Severe Forms of COVID-19 through Moderate-Intensity Exercise. Journal of Pharmaceutical Research International, 32(45), 23-29. https://doi.org/10.9734/jpri/2020/v32i4531089.

Hagiu, B.A., Turculeț, I.D., Dumitru, I.M. (2021) Preliminary Data on the Prophylaxis of Severe Forms of Covid-19 Through Exercise, Studia Universitatis Babes-Bolyai, Educatio Artis Gymnasticae, 66, 1, 79-84. DOI:10.24193/subbeag.66(1).08.

Hamer, M., Kivimäki, M., Gale, C., & Batty, G. (2020). Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain, Behavior, and Immunity, 87, 184 - 187.

Khammassi, M., Ouerghi, N., Said, M., Feki, M., Khammassi, Y., Pereira, B., Thivel, D., & Bouassida, A. (2020). Continuous Moderate-Intensity but Not High-Intensity Interval Training Improves Immune Function Biomarkers in Healthy Young Men. Journal of strength and conditioning research, 34(1), 249–256. https://doi.org/10.1519/JSC.0000000000002737.

Lawler, J.M., Rodriguez, D.A., & Hord, J.M. (2016). Mitochondria in the middle: exercise preconditioning protection of striated muscle. The Journal of physiology, 594(18), 5161–5183. https://doi.org/10.1113/JP270656.

Lumini, J.A., Magalhães, J., Oliveira, P.J., & Ascensão, A. (2008). Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports medicine (Auckland, N.Z.), 38(9), 735–750. https://doi.org/10.2165/00007256-200838090-00003.

Meinild Lundby, A.K., Jacobs, R.A., Gehrig, S., de Leur, J., Hauser, M., Bonne, T.C., Flück, D., Dandanell, S., Kirk, N., Kaech, A., Ziegler, U., Larsen, S., & Lundby, C. (2018). Exercise training increases skeletal muscle mitochondrial volume density by enlargement of existing mitochondria and not de novo biogenesis. Acta physiologica (Oxford, England), 222(1), 10.1111/apha.12905. https://doi.org/10.1111/apha.12905.

Freidenreich, D.J., & Volek, J.S. (2012). Immune responses to resistance exercise. Exercise immunology review, 18, 8–41.

Montgomery M.K. (2019). Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe?. Biology, 8(2), 33. https://doi.org/10.3390/biology8020033.

Pirzada, A., Mokhtar, A.T., & Moeller, A.D. (2020). COVID-19 and Myocarditis: What Do We Know So Far?. CJC open, 2(4), 278–285. https://doi.org/10.1016/j.cjco.2020.05.005.

Nilsson, M.I., & Tarnopolsky, M.A. (2019). Mitochondria and Aging-The Role of Exercise as a Countermeasure. Biology, 8(2), 40. https://doi.org/10.3390/biology8020040.

Saleh, J., Peyssonnaux, C., Singh, K.K., Edeas, M. (2020). Mitochondria and microbiota dysfunction in COVID-19 pathogenesis. Mitochondrion 54, 1–7.

Porter, C., Reidy, P.T., Bhattarai, N., Sidossis, L.S., & Rasmussen, B.B. (2015). Resistance Exercise Training Alters Mitochondrial Function in Human Skeletal Muscle. Medicine and science in sports and exercise, 47(9), 1922–1931. https://doi.org/10.1249/MSS.0000000000000605.

Sheraton, M., Deo, N., Kashyap, R., & Surani, S. (2020). A Review of Neurological Complications of COVID-19. Cureus, 12(5), e8192. https://doi.org/10.7759/cureus.8192.

Simpson, R.J., Campbell, J.P., Gleeson, M., Krüger, K., Nieman, D.C., Pyne, D.B., Turner, J.E., & Walsh, N.P. (2020). Can exercise affect immune function to increase susceptibility to infection?. Exercise immunology review, 26, 8–22.

Stevanović, J., Beleza, J., Coxito, P., Ascensão, A., & Magalhães, J. (2020). Physical exercise and liver "fitness": Role of mitochondrial function and epigenetics-related mechanisms in non-alcoholic fatty liver disease. Molecular metabolism, 32, 1–14. https://doi.org/10.1016/j.molmet.2019.11.015.

Steiner, J.L., Murphy, E.A., McClellan, J.L., Carmichael, M.D., & Davis, J.M. (2011). Exercise training increases mitochondrial biogenesis in the brain. Journal of applied physiology (Bethesda, Md.: 1985), 111(4), 1066–1071. https://doi.org/10.1152/japplphysiol.00343.2011].

Ventura-Clapier, R., Mettauer, B., & Bigard, X. (2007). Beneficial effects of endurance training on cardiac and skeletal muscle energy metabolism in heart failure. Cardiovascular research, 73(1), 10–18. https://doi.org/10.1016/j.cardiores.2006.09.003.

Vigelsø, A., Andersen, N.B., & Dela, F. (2014). The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. International journal of physiology, pathophysiology and pharmacology, 6(2), 84–101.

Wackerhage, H., Everett, R., Krüger, K., Murgia, M., Simon, P., Gehlert, S., Neuberger, E., Baumert, P., Schönfelder, M. (2020). Sport, exercise and COVID-19, the disease caused by the SARS-CoV-2 coronavirus. Dtsch Z Sportmed.; 71: E1-E12.

Wang, M., Baker, J.S., Quan, W., Shen, S., Fekete, G., & Gu, Y. (2020). A Preventive Role of Exercise Across the Coronavirus 2 (SARS-CoV-2) Pandemic. Frontiers in physiology, 11, 572718. https://doi.org/10.3389/fphys.2020.572718

Zwetsloot, K.A., John, C.S., Lawrence, M.M., Battista, R.A., & Shanely, R.A. (2014). High-intensity interval training induces a modest systemic inflammatory response in active, young men. Journal of inflammation research, 7, 9–17. https://doi.org/10.2147/JIR.S54721.

Downloads

Published

2022-07-23

How to Cite

HAGIU, B.-A. (2022). CONSIDERATIONS ON THE PROPHYLAXIS OF SEVERE FORMS OF COVID-19 THROUGH ENDURANCE EXERCISES. Studia Universitatis Babeș-Bolyai Educatio Artis Gymnasticae, 67(1), 47–53. https://doi.org/10.24193/subbeag.67(1).05

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.