CRITICAL CONSIDERATIONS ON THE SINGLE VERTICAL JUMP TEST AS AN INDICATOR OF LOWER-LIMB POWER: PRELIMINARY FINDINGS
DOI:
https://doi.org/10.24193/subbeag.70.sp.iss.1.11Keywords:
vertical jump, lower-limb power, sport assessment, athletic performance, predictive models, countermovement jumpAbstract
Introduction: The vertical jump test (VJT) is widely used to estimate lower-limb power through predictive equations, but the theoretical validity of these models remains uncertain. Objective: This preliminary study aimed to compare three predictive equations (Lewis, Harman, Johnson & Bahamonde) for estimating average lower-limb power from VJT, focusing on discrepancies in outcomes and theoretical validity. Material and Methods: Five healthy male students (age 20.2 ± 0.2 years; height 178.6 ± 4.72 cm; body mass 73.0 ± 8.12 kg) performed countermovement jumps (CMJ) measured with the OptoJump system, with the best trial retained for analysis. Average power was calculated using the three predictive equations. Descriptive statistics (M ± SD) were computed, and differences between models were analyzed with the Friedman test. Effect size was quantified with Kendall’s W. Results: Significant differences were found between formulas (χ² (2) = 10.000, p = 0.007, W = 0.67, large effect). The Johnson & Bahamonde model yielded the highest values, followed by Harman and Lewis. None of the equations demonstrated dimensional homogeneity. Discussion: Findings highlight systematic discrepancies between predictive models, raising concerns about their reliability in practice. The lack of dimensional consistency undermines the theoretical validity of these equations, despite their continued use in applied settings. Consequently, classification of athletes based solely on these formulas may be misleading. Conclusions: Predictive equations for estimating lower-limb power from vertical jumps produce inconsistent results and fail to satisfy dimensional homogeneity. Future approaches should integrate time-dependent variables to ensure biomechanical validity and reliability.
References
Ache-Dias, J., Dal Pupo, J., Gheller, R. G., Külkamp, W., & Moro, A. R. (2016). Power Output Prediction From Jump Height and Body Mass Does Not Appropriately Categorize or Rank Athletes. Journal of Strength and Conditioning Research, 30(3), 818–824. https://doi.org/10.1519/JSC.0000000000001150
Alba-Jiménez, C., Moreno-Doutres, D., & Peña, J. (2022). Trends Assessing Neuromuscular Fatigue in Team Sports: A Narrative Review. Sports (Basel, Switzerland), 10(3), 33. https://doi.org/10.3390/sports10030033
Amonette, W. E., Brown, L. E., De Witt, J. K., Dupler, T. L., Tran, T. T., Tufano, J. J., & Spiering, B. A. (2012). Peak vertical jump power estimations in youths and young adults. Journal of Strength and Conditioning Research, 26(7), 1749–1755. https://doi.org/10.1519/JSC.0b013e3182576f1e
Buscemi, A., Petralia, M. C., Ramaci, T., Rapisarda, A., Provazza, C., Di Corrado, D., Perciavalle, V., Perciavalle, V., & Coco, M. (2019). Ergojump evaluation of the explosive strength in volleyball athletes pre- and post-fascial treatment. Experimental and therapeutic medicine, 18(2), 1470–1476. https://doi.org/10.3892/etm.2019.7628
Cameron, B. ., Steele, J. ., & Bridgeman, L. (2025). The Reliability and Validity of Different Methods for Measuring Countermovement Jump Height. International Journal of Strength and Conditioning, 5(1). https://doi.org/10.47206/ijsc.v5i1.406
Canavan, P. K., & Vescovi, J. D. (2004). Evaluation of power prediction equations: peak vertical jumping power in women. Medicine and Science in Sports and Exercise, 36(9), 1589–1593. https://doi.org/10.1249/01.mss.0000139802.96395.ac
Cohen, J. (2013). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
Cooper, C. N., Dabbs, N. C., Davis, J., & Sauls, N. M. (2020). Effects of Lower-Body Muscular Fatigue on Vertical Jump and Balance Performance. Journal of strength and conditioning research, 34(10), 2903–2910. https://doi.org/10.1519/JSC.0000000000002882
Daugherty, H. J., Weiss, L. W., Paquette, M. R., Powell, D. W., & Allison, L. E. (2021). Potential predictors of vertical jump performance: lower extremity dimensions and alignment, relative body fat, and kinetic variables. The Journal of Strength & Conditioning Research, 35(3), 616-625.
Duncan, M. J., Hankey, J., Lyons, M., James, R. S., & Nevill, A. M. (2013). Peak power prediction in junior basketballers: comparing linear and allometric models. Journal of Strength and Conditioning Research, 27(3), 597–603. https://doi.org/10.1519/JSC.0b013e31825d97ac
Duncan, M. J., Lyons, M., & Nevill, A. M. (2008). Evaluation of peak power prediction equations in male basketball players. Journal of strength and conditioning research, 22(4), 1379–1381. https://doi.org/10.1519/JSC.0b013e31816a6337
Eythorsdottir, I., Gløersen, Ø., Rice, H., Werkhausen, A., Ettema, G., Mentzoni, F., Solberg, P., Lindberg, K., & Paulsen, G. (2024). The Battle of the Equations: A Systematic Review of Jump Height Calculations Using Force Platforms. Sports medicine (Auckland, N.Z.), 54(11), 2771–2791. https://doi.org/10.1007/s40279-024-02098-x
Field, A. P. (2005). Kendall's coefficient of concordance. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (pp. 939–943). Wiley. https://doi.org/10.1002/0470013192.bsa327
Fox, E. L., & Mathews, D. K. (1974). The Interval Training: Conditioning for Sports and General Fitness. Philadelphia: W.B. Saunders. https://doi.org/10.1093/ptj/54.12.1351
Geantă, V. A., & De Hillerin, P. J. (2025). Methodological discrepancies in lower limb average power calculation in a repeated vertical jump test: a preliminary study. Montenegrin Journal of Sports Science and Medicine, 14(2), 89-96. https://doi.org/10.26773/mjssm.250910
Geantă, V. A., & de Hillerin, P. J. (2023). Assessment of motor skills by jump tests: Comparative analysis. In E. Balas, A. Roman, & D. Rad (Eds.), Student’s well-being and teaching-learning efficiency during post-pandemic period (Vol. 4, pp. 249–271). Peter Lang.
Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. Journal of strength and conditioning research, 25(2), 556–560. https://doi.org/10.1519/JSC.0b013e3181ccb18d
Graur, C. ., & Șanta-Moldovan, I.-C. (2024). Determining The Explosive Power Level Of The Lower Limbs To The Women’s Volleyball Team Csu Medicina Tg. Mures In The Competitional Season Of 2022-2023. Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae, 68(4), 99–105. https://doi.org/10.24193/subbeag.68(4).35
Gomez-Bruton, A., Gabel, L., Nettlefold, L., Macdonald, H., Race, D., & McKay, H. (2019). Estimation of Peak Muscle Power From a Countermovement Vertical Jump in Children and Adolescents. Journal of Strength and Conditioning Research, 33(2), 390–398. https://doi.org/10.1519/JSC.0000000000002002
Harman, E. A., Rosenstein, M. T., Frykman, P. N., Rosenstein, R. M., & Kraemer, W. J. (1991). Estimation of human power output from vertical jump. The Journal of Strength & Conditioning Research, 5(3), 116–120. https://journals.lww.com/nsca-jscr/abstract/1991/08000/estimation_of_human_power_output_from_vertical.2.aspx
Hall, S. J. (2021). Basic Biomechanics. McGraw-Hill Higher Education.
Johnson, D. L., & Bahamonde, R. (1996). Power output estimate in university athletes. Journal of Strength and Conditioning Research, 10(3), 161–166. https://journals.lww.com/nscajscr/Abstract/1996/08000/Power_Output_Estimate_in_University_Athletes.6.aspx
Keir, P. J., Jamnik, V. K., & Gledhill, N. (2003). Technical-methodological report: a nomogram for peak leg power output in the vertical jump. Journal of strength and conditioning research, 17(4), 701–703. https://doi.org/10.1519/1533-4287(2003)017<0701:tranfp>2.0.co;2
Klavora, P. (2000). Vertical-jump tests: A critical review. Strength and Conditioning Journal, 22(5), 70–75. https://journals.lww.com/nsca-scj/Citation/2000/10000/Vertical_jump_Tests__A_Critical_Review.20.aspx
Knudson D. V. (2009). Correcting the use of the term "power" in the strength and conditioning literature. Journal of strength and conditioning research, 23(6), 1902–1908. https://doi.org/10.1519/JSC.0b013e3181b7f5e5
Kons, R. L., Ache-Dias, J., Detanico, D., Barth, J., & Dal Pupo, J. (2018). Is Vertical Jump Height an Indicator of Athletes' Power Output in Different Sport Modalities?.Journal of strength and conditioning research, 32(3), 708–715. https://doi.org/10.1519/JSC.0000000000001817
Lara-Sánchez, A. J., Zagalaz, M. L., Berdejo-Del-Fresno, D., & Martínez-López, E. J. (2011). Jump peak power assessment through power prediction equations in different samples. Journal of Strength and Conditioning Research, 25(7), 1957–1962. https://doi.org/10.1519/JSC.0b013e3181e06ef8
Mackenzie, B. (2007). Sargent jump test. https://www.brianmac.co.uk/sgtjump.htm
Markovic, G., Dizdar, D., Jukic, I., & Cardinale, M. (2004). Reliability and factorial validity of squat and countermovement jump tests. Journal of strength and conditioning research, 18(3), 551–555. https://doi.org/10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2.
Markovic, S., Mirkov, D. M., Nedeljkovic, A., & Jaric, S. (2014). Body size and countermovement depth confound relationship between muscle power output and jumping performance. Human Movement Science, 33, 203–210. https://doi.org/10.1016/j.humov.2013.11.004
Microgate. (n.d.). Home page: Microgate. Retrieved September 2, 2025, from https://www.microgate.it
Milo, N., Grosu, E. F., & Milo, M. (2017). Vertical Jump Enhancement with Respect to Volleyball Vertical Jump. Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae, 62(4), 87–102. https://doi.org/10.24193/subbeag.62(4).36
Nettles, C. (2022). What is the equation for power? From https://study.com/learn/lesson/power-formula-equation-examples.html
Nishiumi, D., Nishioka, T., Saito, H., Kurokawa, T., & Hirose, N. (2023). Associations of eccentric force variables during jumping and eccentric lower-limb strength with vertical jump performance: A systematic review. PLoS ONE, 18(8), e0289631. https://doi.org/10.1371/journal.pone.0289631
Öncen, S., Aydın, S., & Pınar, S. (2018). Study of equation model for vertical jump test. International Journal of Social Sciences and Education Research, 4(4), 580-584 https://doi.org/10.24289/ijsser.451529
Patterson, D. D., & Peterson, D. F. (2 004). Vertical jump and leg power norms for young adults. Measurement in Physical Education and Exercise Science, 8(1), 33-41. https://doi.org/10.1207/s15327841mpee0801_3
Pupo, J., Ache-Dias, J., Kons, R. L., & Detanico, D. (2020). Are vertical jump height and power output correlated to physical performance in different sports? An allometric approach. Human Movement, 22(2), 60-67. https://doi.org/10.5114/hm.2021.100014
Sargent, D. A. (1921). The physical test of a man. American physical education review, 26(4), 188-194. https://doi.org/10.1080/23267224.1921.10650486
Samozino, P., Morin, J. B., Hintzy, F., & Belli, A. (2008). A simple method for measuring force, velocity and power output during squat jump. Journal of biomechanics, 41(14), 2940–2945. https://doi.org/10.1016/j.jbiomech.2008.07.028
Sánchez-Sixto, A., Harrison, A. J., & Floría, P. (2018). Larger Countermovement Increases the Jump Height of Countermovement Jump. Sports (Basel, Switzerland), 6(4), 131. https://doi.org/10.3390/sports6040131
Sánchez-Sixto, A., Harrison, A. J., Floría, P. (2021). Effects of Plyometric vs. Combined Plyometric Training on Vertical Jump Biomechanics in Female Basketball Players. Journal of Human Kinetics, 77, 25-35. https://doi.org/10.2478/hukin-2021-0009
Santa, C., Crisan, A., & Santa, O. (2025). Increasing the Explosive Power Through Plyometric Training in Athletes Under 18 Years Old. Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae, 70(1), 93–103. https://doi.org/10.24193/subbeag.70(1).08
Sayers, S. P., Harackiewicz, D. V., Harman, E. A., Frykman, P. N., & Rosenstein, M. T. (1999). Cross-validation of three jump power equations. Medicine and Science in Sports and Exercise, 31(4), 572–577. https://cefise.com.br/wp-content/uploads/2020/04/1999-Sayers-Cross-validation-of-three-jump-power-equations-_-Medicine-Science-in-Sports-Exercise.pdf
Sheppard, J. M., Cronin, J. B., Gabbett, T. J., McGuigan, M. R., Etxebarria, N., & Newton, R. U. (2008). Relative importance of strength, power, and anthropometric measures to jump performance of elite volleyball players. Journal of strength and conditioning research, 22(3), 758–765. https://doi.org/10.1519/JSC.0b013e31816a8440
Stupar, R.-C., Monea, G., Șanta, C., & Somâtcă, I. A. (2020). Comparative Study On The Use Of A Portable Alternative Method For Measuring High Jump In Men’s Volleyball Game. Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae, 65(3), 115–122. https://doi.org/10.24193/subbeag.65(3).26
Vaverka, F., Jandačka, D., Zahradník, D., Uchytil, J., Farana, R., Supej, M., & Vodičar, J. (2016). Effect of an Arm Swing on Countermovement Vertical Jump Performance in Elite Volleyball Players: Journal of human kinetics, 53, 41–50. https://doi.org/10.1515/hukin-2016-0009
Wright, G. A., Pustina, A. A., Mikat, R. P., & Kernozek, T. W. (2012). Predicting lower body power from vertical jump prediction equations for loaded jump squats at different intensities in men and women. Journal of strength and conditioning research, 26(3), 648–655. https://doi.org/10.1519/JSC.0b013e3182443125
Xu, J., Turner, A., Comfort, P., Harry, J. R., McMahon, J. J., Chavda, S., & Bishop, C. (2023). A Systematic Review of the Different Calculation Methods for Measuring Jump Height During the Countermovement and Drop Jump Tests. Sports Medicine, 53(5), 1055–1072. https://doi.org/10.1007/s40279-023-01828-x
Yingling, V. R., Castro, D. A., Duong, J. T., Malpartida, F. J., Usher, J. R., & O, J. (2018). The reliability of vertical jump tests between the Vertec and My Jump phone application. PeerJ, 6, e4669. https://doi.org/10.7717/peerj.4669
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeş-Bolyai Educatio Artis Gymnasticae

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
