

ELearning Platforms Adoption and Use in Universities: A SEM Approach

Alexander MAUNE¹

ABSTRACT. ELearning platforms adoption and use by university students has become prevalent worldwide, developing nations still lag behind. This study aims to establish critical paths amongst determinants of “behavioural Intention” and “use behaviour” in eLearning platforms adoption and use by university students. The PLS-SEM method was used to evaluate the modified unified theory of acceptance and use of technology path model. A sample of 520 university students from Zimbabwe was used to collect data using an online survey created on Google Forms. The findings show that “Habit” had the most influence (0.804) on “Behavioural Intention,” followed by “Performance Expectancy” (0.319) and “Effort Expectancy” (0.270). Behavioural Intention had a significant influence (0.831) on “Use Behaviour.” The path model explains 88.8% of “Behavioural Intention,” and 76.1% of “Use Behaviour” variances. This study, though limited, is significant to students in higher education, policy makers and researchers given the importance of technology in the education sector.

Keywords: ELearning technologies; ELearning Platforms; eLearning; Online Learning; ODeL; UTAUT; UTAUT2; Higher Education; Zimbabwe

1. INTRODUCTION

The integration of eLearning platforms in the education sector has become a crucial focus point, with universities positioned as significant ground globally in the aftermath of COVID-19. COVID-19 revolutionized the education sector through technology though historical traces of technological use in education date back to the 1960s (Weizenbaum, 1966). Technology adoption

¹ Research Associate: Department of Business Management, CEMS, UNISA, Pretoria, South Africa. Department of Banking & Finance, BUSE, Bindura, Zimbabwe. E-mail: alexandermaune6@gmail.com

and use in the education sector dates back to chat-bots development (Weizenbaum, 1966). However, eLearning became prevalent during and after COVID-19 especially in developed countries with developing countries still lagging behind due to financial and infrastructural challenges. The adoption and use of technology in education has seriously improved human capital development and higher education learning (Maune, 2023). Maune (2016) argues that technology has become a crucial element in human capital development due to significant increase in demand for novel skills. Higher education today has become a conduit through which technologies are developed and unveiled. Universities are obligated to adapt and exploit these new technologies thereby impacting human capital development that meets the demands of the 21st century. Artificial intelligence applications such as ChatGPT have significantly transformed the educational landscapes (OpenAI, 2024) with educators and learners leveraging their capabilities to augment their learning experiences through dynamic feedback (Cukurova, Miao & Brooker, 2023).

eLearning technologies adoption and use in universities is not without challenges (Strzelecki, 2023). Such challenges particularly in Africa have been influenced by socioeconomic classes which date back to the colonial era (Maune, 2023). The colonial era left a divide that is prevalent up to today. Irrespective of these challenges the following eLearning platforms are being used in universities in Zimbabwe and these are Microsoft Teams, Wiseup, Moodle, and ChatGPT. Although eLearning platforms adoption and use have gained popularity in the recent past in Zimbabwe, research into factors influencing behaviour intention and use behaviour among university students remain scant. This gap is particularly significant as it aids to informed policy development and implementation. Moreso, such an understanding of the factors influencing student behaviour in adoption and use of eLearning platforms in universities is crucial and needed. In closing this research gap, a clear perspective of the factors influencing the adoption and use of eLearning platforms helps the educational system through tailor made approaches that address students concerns.

Since the construction of the UTAUT and its modification into UTAUT2, literature has shown an increasing interest in the adoption and use of technology in higher education (Venkatesh, Morris, Davis & Davis, 2003 and Venkatesh, Thong & Xu, 2012). The impact of COVID-19 has also seen an increase in the use of eLearning technologies by university students the world over. However, developing countries are still lagging behind due to a number of constraints such as financial and infrastructure. Despite all these challenges, studies have shown a spike in the uptake of eLearning platforms by university students (Akbari et al. 2022, Shams et al. 2022). Cojocariu, Lazar, Nedeff, & Lazar, 2014). Wang, Ran, Liao, Yang, 2010). Maune, 2023, Ahmad et al. 2023). The coming in of AI

applications has also seen more research being carried out on their impact on academic integrity (Cotton & Cotton, 2023, Tlili et al. 2023, and Williamson, Macgilchrist & Potter, 2023).

Maune (2023) argues that there are a number of factors influencing university students/learners' behaviour intention and use behaviour in adopting and use of eLearning platforms. Kempson and Whyley (1999); Ellis, Lemma, & Rud, (2010) and Beck, Demirgürç-Kunt, & Honohan, (2009) argue that factors such as literacy, information, involuntary or voluntary, cost, trust, socioeconomic, eligibility, and documentation are among the top most influencers of eLearning technologies adoption and use in universities by students. These factors must, however, precede behaviour intentions and use behaviour (Shneor and Munim, 2019).

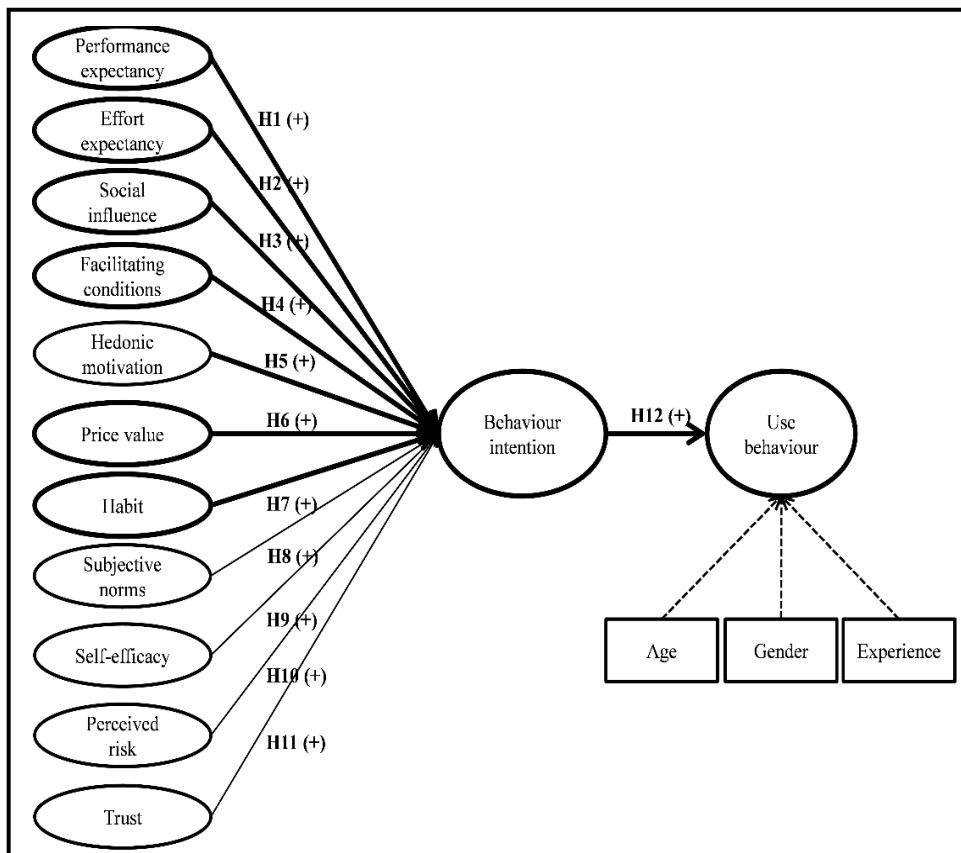


Figure 1. Path Analysis Research model

Source: Adapted from Maune (2021) and Maune and Themalil (2022).

Various theories Fishbein & Ajzen (1975) (Theory of Reasoned Action - TRA), Ajzen (1991) (Theory of Planned Behaviour - TPB), Venkatesh et al. (2003) (UTAUT), and Venkatesh et al. (2012) (UTAUT2) and later modifications by various researchers and authors, forms the basis for this study. An extended model (Maune, 2021; Maune and Themalil, 2022) developed in prior studies was examined using SEM to distinguish factors that impact eLearning technologies adoption and use by students in universities in Zimbabwe. Figure 1 denotes the research model adopted for this study.

1.1. Hypothesis development

The following hypotheses were formulated from a prior research model (Maune, 2021) developed by the same author as shown in Figure 1. These hypotheses validated and tested the proposed path analysis model above. Table 1 shows the proposed research hypothesis

Table 1. Proposed Research Hypothesis

Proposed Hypothesis
H ₁ "Performance expectancy will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₂ "Effort expectancy will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₃ "Social influence will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₄ "Facilitating conditions will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₅ "Hedonic motivation will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₆ "Price value will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₇ "Habit will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₈ "Subjective norms will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₉ "Self-efficacy will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₁₀ "Perceived risk will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₁₁ "Trust will have a direct positive influence on the behavioural intention to use eLearning platforms in universities by students."
H ₁₂ "Behavioural intention to use will have a direct positive influence on the eLearning platform Use behaviour in universities by students."

This article seeks to close this research gap through examining the factors influencing eLearning technologies in higher education using SmartPLS-SEM approach in Zimbabwe. An extended Unified Theory of Acceptance and Use of Technology (UTAUT2) by Venkatesh et al. (2012), Maune (2021) and Maune and Themalil (2022) informed the study through examining the factors influencing behaviour intention and use behaviour of eLearning technologies by university students in Zimbabwe.

The article, first explain the EUTAUT2 model for adoption and use of eLearning platforms by students in universities in Zimbabwe. A measurement scale tailor made to suit this framework is also presented. Thereafter, the results of the analysis using Smart PLS-SEM are shared. This is followed by a deep engagement of discussion of the research findings showcasing significant contributions of the study. The study will conclude with theoretical and practical implications as well as limitations and future research direction.

2. MATERIAL AND METHODS

This study examined the factors influencing eLearning platforms adoption and use by students in universities in Zimbabwe. The role of behavioural intention was also examined. To have an in-depth appreciation of the relationships of the variables, the study used a quantitative method. Data was collected from students in their second year (2.2) and fourth year (4.2) from two universities (one state owned and one private owned) using Google Forms online survey. Complete autonomy was guaranteed for the students with a consent statement being part of the questionnaire. A total number of 1680 commercial students were invited to participate in the survey. These students were invited to participate in the survey from June to November 2023. To avoid biases, students were promised confidentiality, anonymity of responses and voluntary participation. The survey was sent through a link generated from Google Forms platform. At least ten minutes were needed to complete the survey. A pilot survey was distributed to 10 university students and lecturers to identify conspicuous characteristics, confusing, difficult, and poorly worded questions. These adjustments were then incorporated into the main survey that was distributed.

2.1. Respondents and procedure

Completed surveys were automatically returned to the author by 525 respondents (31.25%). After cleaning the data, which included deleting observations with missing data and suspected unengaged respondents, there were 520 respondents with complete data to utilize (30.95% response rate). The sample

size utilized in this article was guided by Marcoulides and Saunders' (2006) investigation. The minimum sample size necessary must be determined by the maximum number of arrows pointing to the latent variable in the model (Marcoulides & Saunders, 2006). Prior scholars (Hoyle, 1995) also influenced the work, arguing that a modest sample size is usually a good place to start when performing path modeling. In this study, unengaged respondents were those who reported the same response for all successive items (for example, a 5 across all observable variables). Descriptive demographic statistics are shown in Table 2.

Table 2. Demographic statistics

Variable	Classification	Frequency	Percentage
Gender	Male	322	62%
	Female	198	38%
Age	<20	15	3%
	21 – 30	385	74%
	31 – 40	120	23%
Marital Status	Single	463	89%
	Married	52	10%
	Divorced	5	1%
Education	Level Two (2)	182	35%
	Level Four (4)	338	65%

Source: Author's compilation

2.2. Measurement

The students were invited to complete an online survey built in Google Forms aimed to measure the latent variables presented in the modified UTAUT model (Maune, 2021). These latent variables are, self-efficacy, habit, hedonic motivation, performance expectancy, price value, effort expectancy, perceived risk, social influence, trust, facilitating conditions, subjective norms, behaviour intention, and use behaviour. The latent constructs scales in the model were adapted and modified from prior studies (Venkatesh et al., 2003; Venkatesh et al., 2012; Groß, 2015; Abrahão et al., 2016; Shneor & Munimb, 2019; Maune and Themalil, 2022). Wong (2013) explains that SEM has two sorts of measurement scales: reflective and formative. The indicators are strongly connected and interchangeable, implying that reliability and validity tests were conducted in agreement with previous research (Shneor & Munimb, 2019; Petter, Straub, & Rai, 2007; Hair, Hult, Ringle, & Sarstedt, 2013). A 5-point Likert scale was utilized, with 1 indicating complete disagreement and 5 indicating complete agreement. Table 3 displays measurement items, factor loadings, and sources.

Table 3. Latent Variables, Measurement Items, Factor Loadings, and Sources

Latent variable	Measurement items	Factor loadings	Source
PE (<i>performance expectancy</i>)	1. "I find eLearning platforms useful in my daily learning." 2. "Using eLearning platforms increases my chances of achieving my learning goals." 3. "Using eLearning platforms helps me accomplish my studies/learning more quickly." 4. "Using eLearning platforms increases my productivity."	0.933 <i>Removed</i> 0.942 <i>Removed</i>	PE1-4 adapted and modified from "performance expectancy" in Venkatesh et al., 2003 and Venkatesh et al., 2012.
EE (<i>effort expectancy</i>)	1. "Learning how to use eLearning platforms is easy for me." 2. "My interaction with eLearning platforms is clear and understandable." 3. "I find eLearning platforms easy to use." 4. "It is easy for me to become skillful at using eLearning platforms."	1.000 <i>Removed</i> <i>Removed</i> <i>Removed</i>	EE1-4 adapted and modified from "effort expectancy" in Venkatesh et al., 2003 and Venkatesh et al., 2012.
SI (<i>social influence</i>)	1. "People who are important to me think that I should use eLearning platforms." 2. "People who influence my behaviour think that I should use eLearning platforms." 3. "People whose opinions I value prefer that I use eLearning platforms."	0.894 0.877 <i>Removed</i>	SI1-3 adapted and modified from "social influence" in Venkatesh et al., 2012 and Venkatesh et al., 2003 for SI1-2.
FC (<i>facilitating conditions</i>)	1. "I have the resources necessary to use eLearning platforms." 2. "I have the knowledge necessary to use eLearning platforms." 3. "ELearning platforms are compatible with other technologies I use." 4. "I can get help from others when I have difficulties using eLearning platforms."	1.000 <i>Removed</i> <i>Removed</i> <i>Removed</i>	FC1-4 adapted and modified from "facilitating conditions" in Venkatesh et al., 2003 and Venkatesh et al., 2012.
HM (<i>hedonic motivation</i>)	1. "Using eLearning platforms is fun." 2. "Using eLearning platforms is enjoyable." 3. "Using eLearning platforms is very entertaining."	0.815 0.943 0.920	HM1-3 adapted and modified from "hedonic motivation" in Venkatesh et al., 2012.
PV (<i>price value</i>)	1. "ELearning platforms are reasonably priced." 2. "ELearning platforms are a good value for the money."	0.676 0.859 0.898	PV1-3 adapted and modified from "price value"

Latent variable	Measurement items	Factor loadings	Source
	3. "At the current price, eLearning platforms provide good value."		in Venkatesh et al., 2012.
HT (<i>habit</i>)	1. "The use of eLearning platforms has become a habit for me." 2. "I am addicted to using eLearning platforms." 3. "I must use eLearning platforms." 4. "Using eLearning platforms has become natural to me."	0.910 0.656 0.841 0.888	HT1-4 adapted and modified from "habit" in Venkatesh et al. (2012).
PR (<i>perceived risk</i>)	1. "I would not feel completely safe to provide personal information through eLearning platforms." 2. "I am worried about the future use of eLearning platforms because other people might be able to access my data." 3. "I do not feel protected when sending confidential information via eLearning platforms." 4. "The likelihood that something wrong will happen with the use of eLearning platforms is high."	0.588 <i>Removed</i> 0.943 0.710	PR1-4 adapted and modified from "risk" in Abrahão et al. (2016).
TT (<i>trust</i>)	1. "I think they are honest." 2. "I think they are trustworthy." 3. "I think they provide good services to users." 4. "I think they care about their users and take their concerns seriously." 5. "I think they keep users' security and privacy in mind."	<i>Removed</i> <i>Removed</i> 0.956 <i>Removed</i> 0.663	TT1-5 adapted and modified from "trust" in Groß (2015).
SN (<i>subjective norms</i>)	1. "People who are important to me think that I should use eLearning platforms in learning." 2. "People who influence my behavior encourage me to use eLearning platforms in learning." 3. "My colleagues think that I should use eLearning platforms in learning." 4. "My friends think that I should use eLearning platforms in learning."	0.876 0.637 0.867 <i>Removed</i>	SN1-4 adapted and modified from "subjective norms" in Shneor & Munimb (2019).
SE (<i>self-efficacy</i>)	1. "I have confidence in my ability to use eLearning platforms in learning." 2. "I have the expertise needed to use eLearning platforms." 3. "I am confident in my ability to navigate and use eLearning platforms in learning."	0.836 <i>Removed</i> <i>Removed</i> 0.999	SE1-4 adapted and modified from "subjective norms" in Shneor & Munimb (2019).

Latent variable	Measurement items	Factor loadings	Source
	4. "I am confident in my ability to use eLearning platforms in learning."		
BI (<i>behavioural intention</i>)	1. "I intend to continue using eLearning platforms in learning in the future." 2. "I will always try to use eLearning platforms in learning." 3. "I plan to continue to use eLearning platforms in learning frequently."	0.924 0.919	BI1-3 adapted and modified from "behavioural intention" in Venkatesh et al., 2003 and Venkatesh et al., 2012.
UB (use behaviour)	1. "I frequently use eLearning platforms in learning." 2. "I spend much effort in using eLearning platforms in learning."	0.925 0.811	UB1-2 adapted and modified from "subjective norms" in Shneor & Munimb (2019).

Source: Authors' compilation

2.3. Structural Equation Modeling Approach

This study utilized SmartPLS3 for data analysis, following previous methods in SEM (Maune, Matanda & Mundonde, 2021; Maune and Themalil, 2022). This approach was preferred due to predictive accuracy and its applicability in dealing with small sample sizes. Despite the limitations associated with the approach (Wong, 2013), it has become more popular in applied research projects. Moreover, the approach has been applied in management information systems, marketing, organization, business strategy, and behavioural sciences among other fields (Maune et al., 2021; Maune and Themalil, 2022). Data was first cleaned before uploaded into SmartPLS 3 software for analysis (Maune and Themalil, 2022).

2.4. Analysis

Figure 3 shows the partial least square path model estimations for this study. The results of the path analysis model were as follows:

2.4.1. Reflective Measurement Scale

There are two types of measurement scale in SEM that have two measurement scales; formative and reflective. A reflective measurement scale was adopted in this study because the indicators were highly correlated and

interchangeable (Haenlein & Kaplan, 2004; Petter et al., 2007; Hair et al. 2013; Maune and Themalil, 2022). Therefore, the study thoroughly examined the reliability and validity of the indicators. Maune et al. (2021) and Maune and Themalil (2022) argue that each reflective indicator is related to a specific latent variable or construct using a simple regression analysis.

During the evaluation of the measurement model, 17 items were removed because of low factor loadings (<0.600) and high cross-loading (Gefen & Straub, 2005; Maune and Themalil (2022). Cronbach's alpha and composite reliability (CR) tests were used to test the reliability of the constructs (Table 4). All the constructs in the study met the required CRs threshold of 0.700 (Hair, Hult, Ringle & Sarstedt, 2017; Maune & Themalil (2022). Cronbach's alpha of each construct was above the threshold of 0.700. Convergent validity was acceptable since the AVE were higher 0.500 (Bagozzi & Yi, 1988; Maune & Themalil (2022). Table 4 shows the reliability, validity and factor loadings output. The Fornell-Larcker criterion was used to assess discriminant validity and the output is as shown in Table 5. The results in Table 5 align with Fornell & Larcker (1981) and Maune and Themalil (2022) showing a greater square root of AVE than the inter-construct correlation for all the constructs. The Heterotrait-Monotrait ratio was also used to assess discriminant validity of correlations (Henseler, Ringle & Sarstedt, 2015). The output shows all values below 0.900 threshold thereby establishing discriminant validity (Maune and Themalil, 2022) (Table 6).

Table 4. Factor Loadings, VIF, Composite Reliability, and Convergent Validity

Indicators	Loadings	VIF	Cronbach's Alpha	Composite Reliability	AVE
PE1	0.933	4.384	0.935	0.935	0.879
PE3	0.942	4.384			
EE1	1.000	1.000	1.000	1.000	1.000
SI1	0.894	2.596	0.879	0.879	0.784
SI2	0.877	2.596			
FC1	1.000	1.000	1.000	1.000	1.000
HM1	0.815	3.354	0.923	0.923	0.801
HM2	0.943	3.308			
HM3	0.920	3.763			
PV1	0.676	1.946	0.854	0.855	0.667
PV2	0.859	2.404			
PV3	0.898	2.122			
HT1	0.910	2.910	0.896	0.897	0.689
HT2	0.656	2.044			

Indicators	Loadings	VIF	Cronbach's Alpha	Composite Reliability	AVE
HT3	0.841	2.566			
HT4	0.888	<i>3.070</i>			
PR1	0.588	1.741	0.794	0.799	0.580
PR3	0.943	1.872			
PR4	0.710	1.544			
TT3	0.956	1.673	0.776	0.802	0.677
TT5	0.663	1.673			
SN1	0.876	1.634	0.844	0.841	0.642
SN2	0.637	2.510			
SN3	0.867	2.668			
SE1	0.836	<i>3.297</i>	0.910	0.917	0.848
SE4	0.999	<i>3.297</i>			
BI1	0.924	<i>3.576</i>	0.918	0.918	0.849
BI3	0.919	<i>3.576</i>			
UB1	0.925	2.292	0.858	0.861	0.757
UB2	0.811	2.292			

Table 5. Fornell-Larcker Criterion

BI	EE	FC	HM	HT	PE	PR	PV	SE	SI	SN	TT	UB
BI	<i>0.921</i>											
EE	0.832	<i>1.000</i>										
FC	0.788	0.811	<i>1.000</i>									
HM	0.859	0.829	0.772	<i>0.895</i>								
HT	0.897	0.781	0.741	0.889	<i>0.830</i>							
PE	0.872	0.847	0.837	0.898	0.862	<i>0.937</i>						
PR	-0.102	-0.043	-0.108	-0.107	-0.098	-0.068	<i>0.761</i>					
PV	0.699	0.718	0.649	0.731	0.835	0.781	-0.066	<i>0.817</i>				
SE	0.072	0.161	0.098	0.078	0.052	0.077	-0.230	0.146	<i>0.921</i>			
SI	0.847	0.810	0.803	0.858	0.887	0.871	0.102	0.714	0.012	<i>0.886</i>		
SN	0.020	0.120	0.071	0.061	-0.028	0.042	-0.417	0.051	0.691	-0.060	<i>0.801</i>	
TT	0.123	0.052	0.023	0.072	0.081	0.044	-0.387	0.013	0.154	0.041	0.444	<i>0.823</i>
UB	0.869	0.715	0.716	0.796	0.846	0.833	-0.101	0.725	0.078	0.773	0.069	-0.029 <i>0.870</i>

Note: Values in Italic Represent Square-roots of AVE.

Table 6. *Heterotrait-Monotrait Ratio (HTMT)*

	BI	EE	FC	HM	HT	PE	PR	PV	SE	SI	SN	TT	UB
BI	-												
EE	0.832												
FC	0.788	0.811											
HM	0.857	0.828	0.771										
HT	0.892	0.777	0.737	0.887									
PE	0.872	0.847	0.837	0.896	0.861								
PR	0.160	0.110	0.146	0.163	0.148	0.119							
PV	0.695	0.715	0.642	0.730	0.835	0.775	0.089						
SE	0.082	0.159	0.094	0.098	0.088	0.086	0.305	0.148					
SI	0.846	0.810	0.803	0.857	0.889	0.871	0.138	0.711	0.048				
SN	0.055	0.114	0.070	0.079	0.057	0.071	0.433	0.054	0.680	0.073			
TT	0.130	0.082	0.080	0.086	0.103	0.089	0.384	0.089	0.155	0.092	0.504		
UB	0.868	0.717	0.716	0.797	0.855	0.836	0.141	0.734	0.078	0.775	0.084	0.064	-

2.4.2. Structural Model

The path analysis model was evaluated once reliability and validity of variables was established. Tenenhaus et al. (2005), Avkiran (2018) and Maune and Themalil (2022) state that, the theoretical model below is evaluated to provide empirical evidence of the path model using SmartPLS:

$$\xi_j = \beta_{j0} + \sum_i \beta_{ji} \xi_i + \nu_j$$

“Where: ξ_j is the endogenous construct and ξ_i represents the exogenous constructs, while β_{j0} is the constant term in this (multiple) regression model, β_{ij} are the regression coefficients, and ν_j is the error term; the predictor specification condition applies” (Maune & Themalil, 2022).

The PLS-SEM path analysis model output in Figure 2 shows the hypothesized results of the path analysis model in Figure 1. The path analysis model was evaluated using the significance of paths, Q^2 , and R^2 . The strength of each structural path (R^2 value for the dependent variable) determined the goodness fit of the model. Falk and Miller (1992) and Maune and Themalil (2022) argue that the value for R^2 should be equal to or over 0.1. The output in

Table 7 shows all R^2 values for the study and they were above 0.1. The study, therefore, established the predictive capability of the model. Wong (2013) argues that predictive relevance of endogenous variables is established by Q^2 . Therefore, the study established a Q^2 above zero (0) denoting predictive relevance. The study output in Table 7 denotes significance of the prediction by the constructs.

Collinearity of constructs was assessed through examining the outer VIF values of the model (Maune & Themalil, 2022). Table 4 shows the output of VIF values for all groupings of exogenous variables and related endogenous variables. The VIF output values were below the threshold of 5 denoting non-existence of collinearity among indicators in the model (Maune & Themalil, 2022). Hence, collinearity was not an issue in the model. Further examination of the output was carried out and the results are as shown in Table 7. The outputs verify the hypotheses and the significance testing for the path coefficients within the path analysis model.

Table 7. Coefficients, STDEV, T-Statistics, P-Values, Confidence Intervals, R^2 , and Q^2

Hypothesis	Relationship	β	STDEV	T Statistics	P Values	2.50%	97.50%
H ₁	PE -> BI	0.319	0.172	1.074	0.283	-0.173	0.499
H ₂	EE -> BI	0.270	0.141	1.652	0.099	-0.025	0.528
H ₃	SI -> BI	-0.157	0.100	0.577	0.564	-0.116	0.288
H ₄	FC -> BI	0.099	0.094	1.005	0.315	-0.092	0.286
H ₅	HM -> BI	-0.086	0.114	0.537	0.592	-0.155	0.290
H ₆	PV -> BI	-0.306	0.070	1.299	0.194	-0.244	0.037
H ₇	HT -> BI	0.804	0.109	3.650	0.000	0.197	0.623
H ₈	SN -> BI	0.025	0.084	0.511	0.610	-0.064	0.278
H ₉	SE -> BI	-0.034	0.075	0.632	0.528	-0.253	0.066
H ₁₀	PR -> BI	0.024	0.071	0.647	0.517	-0.217	0.071
H ₁₁	TT -> BI	0.065	0.070	0.665	0.506	-0.111	0.175
H ₁₂	BI -> UB	0.831	0.074	9.604	0.000	0.546	0.838
		R ²	R ² Adjusted	Q ²			
	BI	0.888	0.874	0.657			
	UB	0.761	0.751	0.515			

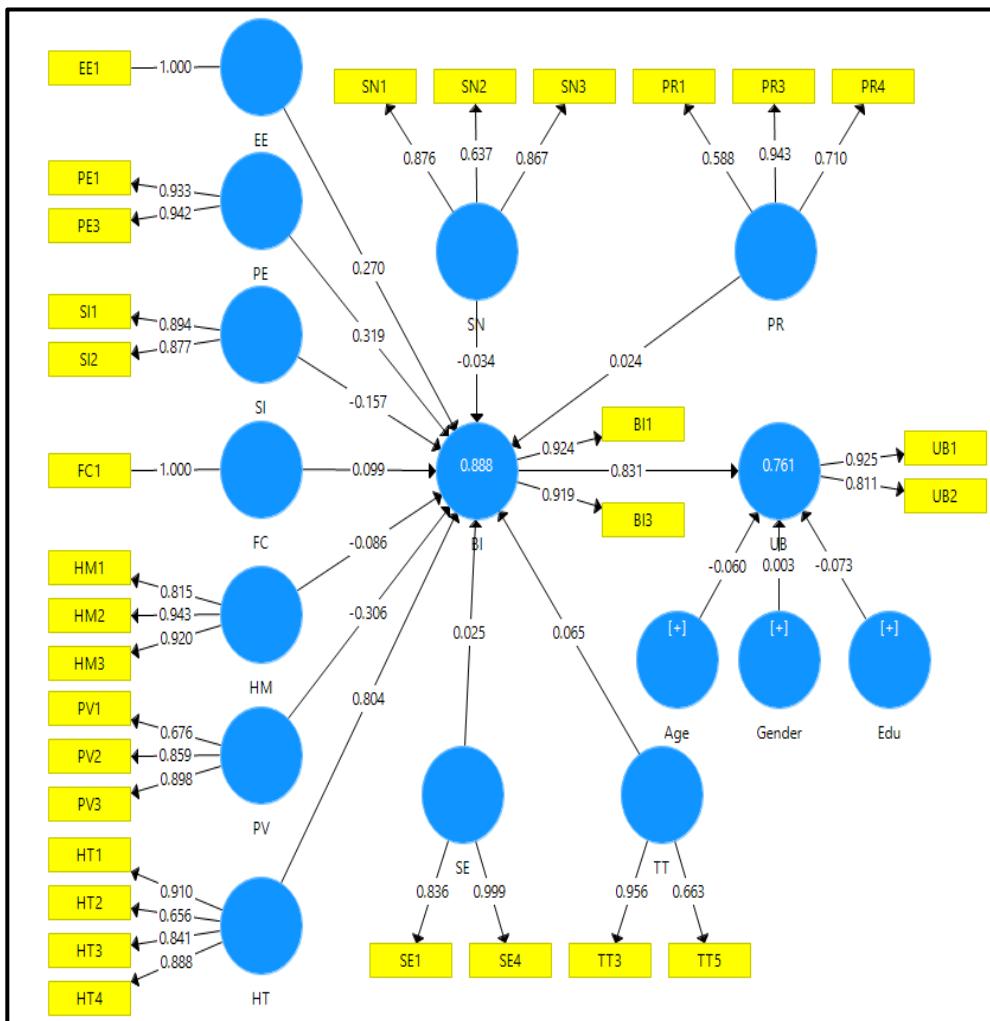


Figure 2. PLS-SEM path model output
 Goodness of fit: SRM, Saturated Model – 0.064 & Estimated Model – 0.066.

2.4.3. Importance-Performance Map Analysis (IPMA)

IPMA was extracted to establish the importance and performance of constructs in the model. Performance reflects the size of the latent variable scores while importance shows the total effect on the targeted construct in the PLS-SEM path model (Maune & Themalil, 2022). The output of the IPMA is critical in prioritizing management action. Maune and Themalil (2022) argue

that management should as a matter of priority place more focus on addressing the performance of indicators that shows huge importance in explaining certain targeted constructs, nonetheless having low performance.

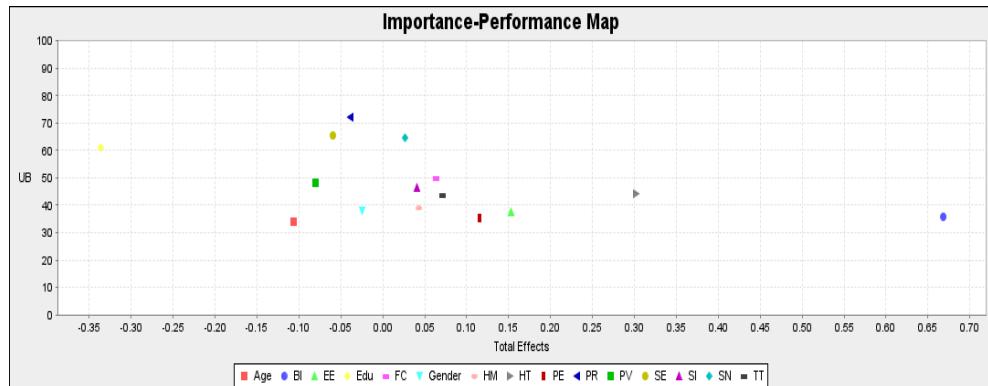


Figure 3. Importance-Performance Map Analysis

The study considered an indicator important when its total effect on “Use Behaviour” (UB) was absolutely high (Y-axis). Therefore, in this study “Habit” (HT) (0.302) has greater absolute importance on UB outside BI (0.668) (Figure 3 and Table 8). Moreover, an indicator has a greater performance when it has a higher score. This score reflects strong measurement of paths as shown by the X-axis. In this study “Perceived Risk” (PR) (72.155) shows greater performance than any other indicators (Table 8 and Figure 3).

3. DISCUSSION

This study examines eLearning platforms adoption and use in universities in developing countries using Zimbabwe as a case study. A PLS-SEM approach was used to analyse data collected through an online survey that targeted students at two universities in Zimbabwe. A modified UTAUT2 model (Figure 1) was examined. The study placed more emphasis on BI and UB’s psychological reasoning. Behaviour intention and use behaviour of eLearning platforms in higher education by students is considered a planned behaviour. A path analysis framework modified from UTAUT2 in Figure 1 was examined using the PLS-SEM algorithm to establish significant paths and relationships. The extracts of output are shown in Table 2 to Table 7.

Of importance, however, was the relationship between “Habit” and “Behaviour Intention” (HT \rightarrow BI) that is significant at 95% confidence level with a p-value of < 0.05 (0.000) and a T-Statistic of 3.650. Another noteworthy

relationship was BI \rightarrow UB that was significant at 95% confidence level with a p-value of <0.05 (0.000) and a T-Statistic of 9.604. The observation reveals that HT has the most noticeable influence (0.804) on BI, followed by PE (0.319), then EE (0.270) and FC (0.099). BI has a significant influence (0.831) on UB and it accounts for 76.1% of the UD variance. All the latent variables account for 88.8% of the BI variance as indicated by R^2 . The explained variances were higher than those by previous researchers (Strzelecki, 2023; Maican, Cazan, Lixandroiu, & Dovleac, 2019; Hoi, 2020). The (HT \rightarrow BI) findings are consistent with previous studies (Strzelecki, 2023; Sitar-Taut & Mican, 2021; Alotumi, 2022; Jakkaew & Hemrungrote, 2017; Kumar & Bervell, 2019). However, some of findings were inconsistent with other prior studies (Twum, Ofori, Keney, Korang-Yeboah, 2022; Ain, Kaur & Waheed, 2016) who found no direct effect of HT on BI.

During the evaluation of the paths, 17 items (indicators) were omitted because of low factor loadings or high-cross loadings as supported by Gefen & Straub (2005) and Maune & Themalil (2022). Data did not support these paths. Most of these omitted indicators were from EE and FC despite previous findings that showed their significant influence on the latent variables (Venkatesh et al., 2003; Venkatesh et al., 2012; Limayem, Hirt & Cheung, 2007). These findings were inconsistent with findings from other previous studies (Arain, Hussain, Rizvi & Vighio, 2019; Azizi, Roozbahani & Khatony, 2020; Nikolopoulou, Gialamas & Lavidas, 2020; Raman & Don, 2013; Raffaghelli, Rodriguez, Guerrero-Roldan & Baneres, 2022; Mehta, Morris, Swinnerton & Homer, 2019) who found a strong correlation between the variables.

All latent variables except HT were insignificant towards BI at 95% confidence level as shown by their p-values and t-statistics. This was so despite prior findings (Venkatesh et al., 2003; Venkatesh et al., 2012; Groß, 2015; Abrahão et al., 2016; Shneor & Munimb, 2019; Roy, 2017). The study results, however, confirm previous research findings (Liu & Tai, 2016; Barua, Alam & Hu, 2018; Chao, 2019; Tarhini, Alalwan, Shammout, Al-Badi, 2019; Khurana, & Jain, 2019; Gharaibeh, Gharaibeh, Gharaibeh & Bdour, 2020). The following significant paths were established, HT \rightarrow BI and BI \rightarrow UB with significant p-values and t-statistics.

Our findings found that HM has an insignificant negative impact on BI. The finding is inconsistent with prior studies (Azizi, Roozbahani & Khatony, 2020; Hu, Laxman, & Lee, 2020; Faqih & Jaradat, 2021) while consistent with findings by Ain et al. (2016) and Raza et al. (2022). The findings on SI are in line with those by Alotumi (2022) and Kumar & Bervell (2019) who found insignificant influence of SI on BI. PV has insignificant negative influence on BI consistent with prior findings (Strzelecki, 2023; Nikolopoulou et al., 2020; Osei, Kwiateng & Boateng, 2022). However, this was inconsistent with findings by Farooq, Salam, Jaafar, Fayolle, Ayapp, Radovic-Markovic & Sajid (2017) and Azizi et al. (2020).

Furthermore, our findings regarding FC were in line with those of prior studies (Strzelecki, 2023; Alotumi, 2022; Kumar & Bervell, 2019; Dajani & Abu Hegleh, 2019). This was contrary to findings by Faqih & Jaradat (2021) and Yu et al. (2021).

Significance of paths, Q^2 , and R^2 were used to assess the path analysis model's goodness of fit as denoted in Table 7. Predictive relevance was established for constructs in line with prior studies (Falk & Miller, 1992; Briones-Penalver, Bernal-Conesa & Nieves-Nieto, 2018; Maune & Themalil, 2022).

Perhaps the most important finding for eLearning adoption and use in higher education by students relates to the IPMA that identifies significant areas of focus (Maune & Themalil, 2022). These are the areas of focus that generate targeted constructs within the PLS-SEM path analysis diagram. In this study "Habit" (HT) (0.302) had the greatest absolute importance on UB outside BI (0.668) (Figure 3 and Table 8). The same was "Perceived Risk" (PR) (72.155) that showed the greatest performance than any other indicators in the study (Table 8 and Figure 3). Ceteris paribus, a unit rise in HT performance will result in a 0.302 rise in UB (Table 8 and Figure 3).

Table 8. Importance-Performance Analysis

Construct	Performance	Total effect
BI	35.763	0.668
EE	37.750	0.153
FC	49.750	0.064
HM	38.961	0.043
HT	44.244	0.302
PE	35.349	0.115
PR	72.155	-0.039
PV	48.170	-0.080
SE	65.341	-0.060
SI	46.613	0.041
SN	64.692	0.026
TT	43.345	0.071
UB	40.614	-

4. CONCLUSION AND IMPLICATIONS

4.1. Conclusion

This study examines eLearning platforms adoption and use by students in Zimbabwe universities using a PLS-SEM algorithm to analyse the data. A path model in Figure 1 was evaluated to establish significant relationships between indicators. This path model was a modification of the UTAUT2 that incorporated other latent variables selected from other theories of technology adoption and use (Maune, 2023). This study confirmed the significant influence of "Habit" on BI on the adoption and use of eLearning platforms by university students in Zimbabwe. The adoption and use of eLearning platforms is still in its infancy stages in Zimbabwe with different universities at different levels of adoption and use. Therefore, there is a need for more research studies to be carried out in the field. This study can be useful in providing the basis or foundation for further future studies.

4.2. Implications for research

The application and replication of the path analysis model is critical for ODeL experts and other practitioners in higher education given how technological developments are impacting higher education. The role of technology has become more important than ever before, especially with the impact of AI. The findings of this study are critical to the development of higher education in developing countries in general and Zimbabwe in particular. Further future research will be guided by the findings of this study.

Although the UTAUT2 is an important theory in evaluating relationships between constructs in the use of technology, modifications and expansion of the theory has proved important in different fields with different results realized. This is critical in research since there is no straight solution to a given problem. Researchers should therefore forge ahead with what works since truth is a normative concept – truth is what works.

The proposed path analysis model was evaluated empirically using PLS-SEM to establish critical relationships in eLearning platforms adoption and use in higher education. Using this approach, a cognitive psychological viewpoint to human behaviour in decision making was adopted. The findings of this study show an insignificant relationship among all the constructs except for HT and BI that had significant paths as shown by their p-values and t-statistics. Habit came out as a key determinant in the adoption and use of eLearning platforms by students in universities in Zimbabwe confirming the findings by Strzelecki (2023).

Overall, results showed that behavioural intention has significant influence on use behaviour in the adoption and use of eLearning platforms by students in universities in Zimbabwe. To further authenticate these findings, there is a need to analyse this data using different analytical softwares such as AMOS, R and Stata. A bigger sample might be considered in this endeavor. Further modifications maybe required to this framework. This study was critical in addressing the research gap exposed by prior research (Maune, 2023). The study (Maune, 2023) reviewed relevant literature in developing the extended path model that was evaluated by this study. This study provides the starting point in further future research in the field. Critical dimensions have been identified that will help in future research. The path model was informed by literature (Maune, 2023).

More so, by expanding the path model, the study hypothesized that social influence, habit, performance expectancy, facilitating conditions, effort expectancy, subjective norm, self-efficacy, hedonic motivation, price value, trust, and perceived risk were key determinants in adopting and using of online learning applications by university students in Zimbabwe. However, more indicators for facilitating conditions and effort expectancy were not supported by data; hence they were omitted in the path analysis model. However, the findings in this study confirm prior research results (Shneor & Munimb, 2019; Chao, 2019; Tarhini, Alalwan, Shammout, Al-Badi, 2019; Khurana, & Jain, 2019; Gharaibeh, Gharaibeh, Gharaibeh & Bdour, 2020).

4.3. Implications for practice

Technology has proven to be key in higher education especially during and after COVID-19 pandemic. Globally, technology has become prevalent in higher education especially AI related applications such as ChatGPT. Gill et al. (2024) argue that, “AI applications are becoming crucial for colleges and universities, whether it be for personalized learning, computerised assessment, smart educational systems, or supporting teaching staff. They offer support that results in reduced expenses and enhanced learning results.” However, although use of technology in higher education has become popular, it comes with its own risks and difficulties. To this end, Gill et al. (2024) state that, “there are concerns regarding the potential misuse of [technology], as it could be employed to generate academic tests and assignments for students and provide tailored responses to coursework questions and assessments. As a result, a number of institutions have forbidden students from using [certain technologies] including a ban within an entire country.”

The path analysis model was able to explain and predict various relationships as shown in Figures and Tables above. This has practical implications

in recommending factors driving 'Behavioural Intention' and 'Use Behaviour' in the use of online learning applications by university students. The path analysis model has essential inferences critical for higher education. Maybe, the most essential discovery was that Habit (HT) plays a critical role in the adoption and use of eLearning platforms by students in universities in Zimbabwe.

Furthermore, the IPMA has also proven to be critical in decision-making and in this case, "Habit" (HT) (0.302) had the greatest absolute importance on UB outside BI (0.668) (Figure 3 and Table 8). The same was "Perceived Risk" (PR) (72.155) that showed the greatest performance than any other indicators in the study (Table 8 and Figure 3). IPMA clearly shows critical areas for managerial focus and prioritization. For example, management's focus should be on the constructs of higher importance and low performance. These constructs have higher chances for improvement. This is critical for management since it is illogical to focus on constructs of low importance as this will have no impact in improving the targeted construct.

4.4. Limitations

This study examines eLearning platforms adoption and use by students in Zimbabwe universities using a PLS-SEM algorithm to analyse the data. A path model in Figure 1 was evaluated to establish significant relationships between indicators. Sample size limited this study as a bigger sample could have improved the findings. More universities could have been used in this study but only two were targeted. The study was also limited to students in the Faculty of Commerce and level 2.2 and 4.2. Financial resources also limited the study as this study was self-funded. Given funding, the researcher could have improved on the sample size by targeting students in different faculties and programs. The study was also limited to a single methodology.

Mixed methods will improve the research findings as studies have shown that mixed methods are better than mono-methods. Mixing qualitative and quantitative research methods is critical in dealing with biases associated with using one method. By using mixed methods, the researcher will be able to answer a broader and more complete range of research questions because the researcher is not confined to a single method or approach. The researcher will be able to use the strengths of an additional method to overcome the weaknesses in another method by using both in a research study. Despite all this, the researcher forged ahead with the approach that worked for this study since truth is a 'normative concept.'

Disclosure statement

There is no potential or existing conflict of interest in this study.

Data availability statement

The study used data obtained from a survey which can be provided on request from the author, A.M.

Declaration of funding

No funding was received for this study.

Author contribution statement

The author contributed everything in this article, that is, conceptualisation – A.M; Methodology – A.M; Data collection – A.M.; Writing – A.M, Investigation – A.M, Reviewing – A.M.

REFERENCES

Abrahão, R.S., Moriguchi, S.N., & Andrade, D.F. (2016). Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). *RAI Revista de Administração e Inovação*, 13, 221–230.

Ahmad, S., Mohd Noor, A.S., Alwan, A.A., Gulzar, Y., Khan, W.Z., & Reegu, F.A. (2023). E-Learning Acceptance and Adoption Challenges in Higher Education. *Sustainability*, 15 (2023). <https://doi.org/10.3390/su15076190>.

Ain, N., Kaur, K., & Waheed, M. (2016). The influence of learning value on learning management system use. *Information Development*, 32(5), 1306–1321. <https://doi.org/10.1177/0266666915597546>.

Ajzen, I. (1991). The theory of planned behavior. *Organisational Behavior and Human Decision Process*, 50(2), 179–211. <https://doi.org/10.1080/08870446.2011.613995>.

Akbari, M., Danesh, M., Rezvani, A., Javadi, N., Banihashem, S.K., & Noroozi, O. (2022). The role of students' relational identity and autotelic experience for their innovative and continuous use of e-learning. *Education and Information Technologies*, 1911–1934. <https://doi.org/10.1007/s10639-022-11272-5>.

Alotumi, M. (2022). Factors influencing graduate students' behavioral intention to use Google Classroom: Case study-mixed methods research. *Education and Information Technologies*, 27(7), 10035–10063. <https://doi.org/10.1007/s10639-022-11051-2>.

Arain, A.A., Hussain, Z., Rizvi, W.H., & Vighio, M.S. (2019). Extending UTAUT2 toward acceptance of mobile learning in the context of higher education. *Universal Access in the Information Society*, 18(3), 659–673. <https://doi.org/10.1007/s10209-019-00685-8>.

Avkiran, N. K. (2018). Rise of the Partial Least Squares Structural Equation Modeling: An Application in Banking, in: N. K. Avkiran, C. M. Ringle (Eds.), Partial Least Squares Structural Equation Modeling. *International Series in Operations Research & Management Science*, 1-29. https://doi.org/10.1007/978-3-319-71691-6_1.

Azizi, S.M., Roozbahani, N., & Khatony, A. (2020). Factors affecting the acceptance of blended learning in medical education: Application of UTAUT2 model. *BMC Medical Education*, 20(1), 367. <https://doi.org/10.1186/s12909-020-02302-2>.

Bagozzi, R.P. & Yi, Y. (1988). On the evaluation of structural equation models. *Journal of the Academy of Marketing Science*, 16(1), 74–94.

Barua, Z., Alam, M.Z. & Hu, W. (2018). Using the UTAUT Model to Determine Factors Affecting Acceptance and Use of Mobile Health (mHealth) Services in Bangladesh. *Journal of Studies in Social Sciences*, 17(2), 137-172.

Beck, T., Demirguc-Kunt, A., & Honohan, P. (2009). Access to financial services: Measurement, impact, and policies. *The World Bank Research Observer*, 24(1), 119-145.

Briones-Penalver, A.J., Bernal-Conesa, J.A., & Nieves-Nieto, C. (2018). Analysis of corporate social responsibility in Spanish agribusiness and its influence on innovation and performance. *Corporate Social Responsibility and Environmental Management*, 25(2), 182-193.

Chao, C.M. (2019). Factors Determining the Behavioral Intention to Use Mobile Learning: An Application and Extension of the UTAUT Model. *Front. Psychol.*, 10, 1652. <https://doi.org/10.3389/fpsyg.2019.01652>.

Cojocariu, V.-M., Lazar, I., Nedeff, V., & Lazar, G. (2014). SWOT Anlysis of E-Learning Educational Services from the Perspective of Their Beneficiaries. *Proced. - Soc. Behav. Sci.*, 116, 1999–2003. <https://doi:10.1016/j.sbspro.2014.01.510>.

Cotton, D.R.E., & Cotton, J.R. (2023). Shipway, Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. *Innovations in Education and Teaching International*, 1–12. <https://doi.org/10.1080/14703297.2023.2190148>.

Cukurova, M., Miao, X. & Brooker, R. (2023). Adoption of artificial intelligence in schools: unveiling factors influencing teachers' engagement, in: N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, V. Dimitrova (Eds.). *Artificial Intelligence in Education*, 151–163. https://doi.org/10.1007/978-3-031-36272-9_13.

Dajani, D. & Abu Hegleh, A.S. (2019). Behavior intention of animation usage among university students, *Heliyon*. 5(10) (2019) e02536. <https://doi.org/10.1016/j.heliyon.2019.e02536>.

Ellis, K., Lemma, A., & Rud, J.-P. (2010). *Investigating the impact of access to financial services on household investment*. Overseas Development Institute, London.

Falk, R.F. & Miller, N.B. (1992). *A primer for soft modeling*. University of Akron Press.

Faqih, K. M. S. & Jaradat, M.-I. R. M. (2021). Integrating TTF and UTAUT2 theories to investigate the adoption of augmented reality technology in education: Perspective from a developing country. *Technology in Society*, 67, 101787. <https://doi.org/10.1016/j.techsoc.2021.101787>.

Farooq, M.S., Salam, M., Jaafar, N., Fayolle, A., Ayupp, K., Radovic-Markovic, M., & Sajid, A. (2017). Acceptance and use of lecture capture system (LCS) in executive business studies. *Interactive Technology and Smart Education*, 14(4), 329–348. <https://doi.org/10.1108/ITSE-06-2016-0015>.

Fishbein, M. & Ajzen, I. (1975). *Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research*. Addison-Wesley, Reading, MA.

Fornell, C. & Larcker, D.F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.

Gefen, D. & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. *Communications of the Association for Information Systems*, 16(1), 91-109.

Gharaibeh, N., Gharaibeh, M.K., Gharaibeh, O., & Bdour, W. (2020). Exploring intention to adopt mobile commerce: Integrating UTAUT2 with social media. *International Journal of Scientific and Technology Research*, 9(3), 3826-3833.

Gill, S.S., Xu, M., Patros, P., Wu, H., Kaur, R., Kaur, K., ... Buyya, R. (2024). Transformative effects of ChatGPT on modern education: Emerging Era of AI Chatbots. *Internet of Things and Cyber-Physical Systems*, 4, 19-23. <https://doi.org/10.1016/j.iotcps.2023.06.002>.

Groß, M. (2015). Exploring the acceptance of technology for mobile shopping: An empirical investigation among Smartphone users. *The International Review of Retail, Distribution and Consumer Research*, 25(3), 215-235.

Haenlein, M. & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. *Understanding Statistics*, 3(4), 283-297.

Hair, J.F., Hult, G.T.M., Ringle, C.M., & Sarstedt, M. (2013). *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)*. Sage, Thousand Oaks.

Hair, J.F., Hult, G.T.M., Ringle, C.M., & Sarstedt, M. (2017). *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd Ed.)*. Sage, Los Angeles.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43, 115-135.

Hoi, V.N. (2020). Understanding higher education learners' acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. *Computers & Education*, 146, 103761. <https://doi.org/10.1016/j.compedu.2019.103761>.

Hoyle, R.H. (ed.) (1995). *Structural Equation Modeling*. CA.: SAGE Publications, Inc., Thousand Oaks.

Hu, S., Laxman, K., & Lee, K. (2020). Exploring factors affecting academics' adoption of emerging mobile technologies-an extended UTAUT perspective. *Education and Information Technologies*, 25(5), 4615-4635. <https://doi.org/10.1007/s10639-020-10171-x>.

Jakkaew, P. & Hemrungroote, S. (2017). The use of UTAUT2 model for understanding student perceptions using Google classroom: A case study of introduction to information technology course. *International Conference on Digital Arts, Media and Technology*, 205-209. <https://doi.org/10.1109/ICDAMT.2017.7904962>.

Kempson, E., & Whyley, C. (1999). *Kept out or opted out: Understanding and Combating Financial Inclusion*. Policy Press, Bristol.

Khurana, S. & Jain, D. (2019). Applying and Extending UTAUT2 Model of Adoption of New Technology in the Context of M-Shopping Fashion Apps. *International Journal of Innovative Technology and Exploring Engineering*, 8(9S), 752-759. <https://doi.org/10.35940/ijitee.I1122.0789S19>.

Kumar, J.A. & Bervell, B. (2019). Google Classroom for mobile learning in higher education: Modelling the initial perceptions of students. *Education and Information Technologies*, 24(2), 1793–1817. <https://doi.org/10.1007/s10639-018-09858-z>.

Limayem, M., Hirt, S.G., & Cheung, C.M.K. (2007). How habit limits the predictive power of intention: The case of information systems continuance. *MIS Quarterly*, 31(4), 705–737.

Liu, G.-S. & Tai, P.T. (2016). A Study of Factors Affecting the Intention to Use Mobile Payment Services in Vietnam. *Economics World*, 4(6), 249–273. <https://doi.org/10.17265/2328-7144/2016.06.001>.

Maican, C.I., Cazan, A.-M., Lixandrouiu, R.C., & Dovleac, L. (2019). A study on academic staff personality and technology acceptance: The case of communication and collaboration applications, *Computers & Education*, 128, 113–131. <https://doi.org/10.1016/j.compedu.2018.09.010>.

Marcoulides, G.A. & Saunders, C. (2006). Editor's Comments – PLS: A Silver Bullet? *MIS Quarterly*, 30(2), iii-ix.

Maune, A. (2016). Human Capital Intelligence and Economic Development. *Journal of Problems and Perspectives Management*, 14(3), 120-130.

Maune, A. (2021). Intention to use Mobile Applications in Competitive Intelligence: An extended conceptual framework. *Journal of Intelligence Studies in Business*, 11(2), 6-29.

Maune, A. (2023). Adoption and use of eLearning platforms by universities in developing countries: Evidence from Zimbabwe. *Cogent Education*, 10(2), 1-13. <https://doi.org/10.1080/2331186X.2023.2287905>.

Maune, A. & Themalil, M. T. (2022). Mobile applications adoption and use in Strategic Competitive Intelligence: A structural Equation Modelling Approach. *Journal of Intelligence Studies in Business*, 12(1), 65-82.

Maune, A., Matanda, E., & Mundonde, J. (2021). Financial Inclusion as an Intentional Behaviour in Zimbabwe. *Acta Universitatis Danubius OEconomica*, 17(4), 177-211.

Mehta, A., Morris, N.P., Swinnerton, B., & Homer, M. (2019). The influence of values on e-learning adoption. *Computers & Education*, 141, 103617. <https://doi.org/10.1016/j.compedu.2019.103617>.

Nikolopoulou, K., Gialamas, V., & Lavidas, K. (2020). Acceptance of mobile phone by university students for their studies: An investigation applying UTAUT2 model. *Education and Information Technologies*, 25(5), 4139–4155. <https://doi.org/10.1007/s10639-020-10157-9>.

OpenAI, (2024). ChatGPT: Optimizing language models for dialogue. <https://openai.com/blog/chatgpt/>, 2023 (accessed 15 April 2024).

Osei, H.V., Kwateng, K. O., & Boateng, K.A. (2022). Integration of personality trait, motivation and UTAUT 2 to understand e-learning adoption in the era of COVID-19 pandemic. *Education and Information Technologies*, 27(8), 10705–10730. <https://doi.org/10.1007/s10639-022-11047-y>.

Petter, S., Straub, D., & Rai, A. (2007). Specifying formative constructs in information systems research. *MIS Quarterly*, 31(4), 623-656.

Raffagbelli, J.E., Rodriguez, M.E., Guerrero-Roldan, A.-E., & Baneres, D. (2022). Applying the UTAUT model to explain the students' acceptance of an early warning system in Higher Education. *Computers & Education*, 182, 104468. <https://doi.org/10.1016/j.compedu.2022.104468>.

Raman, A. & Don, Y. (2013). Preservice teachers' acceptance of learning management software: An application of the UTAUT2 model. *International Education Studies*, 6(7), 157–164. <https://doi.org/10.5539/ies.v6n7p157>.

Raza, S.A., Qazi, Z., Qazi, W., & Ahmed, M. (2022). E-learning in higher education during COVID-19: Evidence from blackboard learning system. *Journal of Applied Research in Higher Education*, 14(4), 1603–1622. <https://doi.org/10.1108/JARHE-02-2021-0054>.

Roy, S. (2017). App adoption and switching behavior: applying the extended tam in smartphone app usage. *Journal of Information Systems and Technology Management*, 14(2), 239–261. <https://doi.org/10.4301/S1807-17752017000200006>.

Shams, M.S., Niazi, M.M., Gul, H., Mei, T.S., & Khan, K.U. (2022). E-Learning Adoption in Higher Education Institutions during the COVID-19 Pandemic: A Multigroup Analysis. *Front. Educ.*, 6, 1-16. <https://doi:10.3389/feduc.2021.783087>.

Shneor, R. & Munimb, Z.H. (2019). Reward crowdfunding contribution as planned behaviour: An extended framework. *Journal of Business Research*, 103, 56–70.

Sitar-Taut, D.-A. & Mican, D. (2021). Mobile learning acceptance and use in higher education during social distancing circumstances: An expansion and customization of UTAUT2. *Online Information Review*, 45(5), 1000–1019. <https://doi.org/10.1108/OIR-01-2021-0017>.

Strzelecki, A. (2023). Students' Acceptance of ChatGPT in Higher Education: An Extended Unified Theory of Acceptance and Use of Technology. *Innovative Higher Education*, 1-23. <https://doi.org/10.1007/s10755-023-09686-1>.

Tarhini, A., Alalwan, A. A., Shammout, A.B., & Al-Badi, A. (2019). An analysis of the factors affecting mobile commerce adoption in developing countries: Towards an integrated model. *Review of International Business and Strategy*, 29(3), 157-179.

Tenenhaus, M., Vinzi, V.E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. *Computational Statistics and Data Analysis*. 48, 159–205.

Tlili, A., Shehata, B., Adarkwah, M.A., Bozkurt, A., Hickey, D.T., Huang, R., & Agyemang, B. (2023). What if the devil is my guardian angel: ChatGPT as a case study of using chatbots in education. *Smart Learning Environments*, 10(1), 15. <https://doi.org/10.1186/s40561-023-00237-x>.

Twum, K.K., Ofori, D., Keney, G., & Korang-Yeboah, B. (2022). Using the UTAUT, personal innovativeness and perceived financial cost to examine student's intention to use E-learning. *Journal of Science and Technology Policy Management*, 13(3), 713–737. <https://doi.org/10.1108/JSTPM-12-2020-0168>.

Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. *MIS Quarterly*, 36(1), 157-178.

Venkatesh, V., Morris, M.G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. *MIS Quarterly*, 27(3), 425-478.

Wang, M. Ran, W. Liao, J., Yang, S.J.H. (2010). A performance-oriented approach to E-Learning in the workplace. *Educational Technology & Society*, 13(4), 167–179. <https://www.jstor.org/stable/jeductechsoci.13.4.167>.

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. *Communications of the ACM*, 9(1), 36–45. <https://doi.org/10.1145/365153.365168>.

Williamson, B., Macgilchrist, F., & Potter, J. (2023). Re-examining AI, automation and datafication in education. *Learning, Media and Technology*, 48(1), 1–5. <https://doi.org/10.1080/17439884.2023.2167830>.

Wong, K. K.-K. (2013). Partial Least Squares Structural Equation Modeling (PLS-SEM) Techniques Using SmartPLS. *Marketing Bulletin*, 24(1), 1–33. <http://marketing-bulletin.massey.ac.nz>.

Yu, C.-W., Chao, C.-M., Chang, C.-F., Chen, R.-J., Chen, P.-C., & Liu, Y.-X. (2021). Exploring behavioral intention to use a mobile health education website: An extension of the UTAUT 2 model. *SAGE Open*, 11(4), 1–12. <https://doi.org/10.1177/21582440211055721>.