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STUDIA UNIV. BABES-BOLYAX, PHYSICA, XXXIII, 2, 1988

ONE DIMENSIONAL MODEL FOR THE HIGH-T,
SUPERCONDUCTORS

L. MACARIE*

Ressived ; June 23, 1988

ABSTRACT. — The one-dimensional electronic system has been considered in
order to describe the high-T, superconductors. The Green function method has
been used m order to calculate the critical temperature Ty, the lower critical
field H,, and the upper critical field H have been calculated as function of
temperature.

1. Introduetion. In the past two years a large number of modes were
proposed in order to explain the high-T, superconductivity. The importance
of the Cu—O has been recently stressed by Rice [1], and Ovshinsky et al.
[2] proposed a mechanism which explains the occurrence of the “chains” and
“sheets” containing Cu atoms. The model proposed in [2] has been applied
to explain the superconductivity in the Y—Ba—Cu—O system, but it can
be applied to all systems containing the Cu—O.

The aim of this paper is to present a one-dimensional model for the
superconductivity of this system which is based on the attractive interac-
tion from the Cu—Cu chains. We will point out the importance of the wvan
Hove singularities in the density of states and the influence of this effect
on the critical temperature T, the loer critical field H,, and the upper cri-
tical field H.,.

2. The one-dimensional model art 7" = 0. We start with the mean-field
Hamiltonian

X =2 (c(F) — v 63t cFa — 2 (Aepy ot + hel) (1
pa j4

where the energy of the electrons is

&(p) = —t cos pa (2)

 is the chemical potential, which can be considered zero only for the half-
filled band. The supreconducting gap A has been defined as

A =g leie ) (3)
P

* Umverssty of Clwy-Napoca, Faculty o Mathematses and Physies, 3400 Cluj-Napoca, Romama



4 L MACARIE

where g 1s the electron-electron attractive interaction From (2) we get the
energy-dependent density of states as

-1 1
N(S) - ~ 4/@)’——&_‘ (4)
and for T = 0 the equation for the gap 1s
2
(e 1 s
¢ \ % «/2t)=—s= Jor ©)
0

where we denoted by Ay = A(T =0) From Eg (5) we get the equation

1 1 T 2t ,

L_1lglm %

g 2= [2 ToJan T Ag] (6)
where the function F(p, %) 1s defined by

z

S dx — 1 F(Cp, k) (7)

Nt ar Wi = a2 NfBit gt
0

<P=arcsm[i‘\/a’+b’], B2
b at + x* a? + b?
From (6) we can obtain A, using the different approximation for the function

E(r[2, a).
3. The one-dimensional model at T # 0. The equation for the gap at
T # 0 can be obtained using the standard models from (3—4) as

2

and

1 1 1 1 4/ e + At
— == \d — —h
g 20 S FVE = et A 2T 8)
0 . s
and 1o order to calculate the critical temperature we approximate (4) by
N(e) = N(0) + 8( — 20) )
where N(0) = ——
2t
From (6), (8) and (9) we get the equation
1 E 2¢ 1 A42E A2
—F L, =T\ g th T —
2n (2 ’ J(2t)’+A§‘) () + NP oY 2T (10)
where
[2)9) A/ _
Ip (A) = N(0) S e g ¥Et s (11)

24 + Az 2T
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The critical temperatute 7, will be obtained from (8) taking A = 0 The equa-
tion for 7', becomes

1 1 dz €
S (D SR . 2
z anJ4t~s= Lo, (12)

0
and using the formula
) © 22L (22! - 1)

bih — M T By aktr > —1 13
fx x dx kgl G 7 @] ok M P (18)

where B, are the Bernoulli numbers we get {from (12)

1 & 242 — 1)(2k — 3)! £ \2k-2
=7 ;; - Bu(%] (14)

1
g (2k) (h — 1)

Using the first two terms from (14) and taking g == 008 eV and 2t = 0 04 eV,
we get T, =84 K

4 The lower eritical field H,, The mecthod to calculate H, for a two-
dimensional superconducto: has been given recently by Nicula and Crisan [3]
using the hypothesis that the high-T; superconductors arc type-II supercon-
ductors

The Jower critical field H,(7T) can be given by the vortex energy E,

Ha(T) = 2e|E (15)
where E, can be expressed by
w g
Eo=2r( rar (= |180)E — 180)1] (16)

0

A(r) being the order parameter in the presence of the magnetic field H. The
order parameter can be expanded as

Afr) = A0) + A7) + (17)

and the vanation A; = A(r) — A(0) will be calculated from (3) wntten as
1’ 1

=T 18

€ c§ ol 4 3(p) + A¥Pp) (18)

where w = 2=T(n -} 1/2)
From (18) we get

d{ ; - = [ ] (19)
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if A € 4 and where we introduced the notation E? = w? 4+ A2 Using now
the equations (15—19) we get

1 w
E,,_—TSrd A[m Ea] (20)
(1}
where
A~=~wmm[ 1][ L]
=~ e ][5 2
and ‘
=1
Tte + - E

7, being the transport scattering time, A(?) the potential vector and v, the

Fermi velocity.

Taking now 1)z, - E > 1 and for the potential vector the expression [3]:
4 = %, (1) (22)

slelr A

where K,(x) is the Bessel function on the imaginary argument, and 3 is the
TLoondon penetration. Taking now for (22) the approximation

- ~ i
A(n) = ey

the critical field H.{(7T) becomes

_ on SA(E]
Ha(T) = 4=} (T) m2 to, In £ (23)

2;71 and § is the coherence length.
8

5. The upper critical field H,,. The general method for the calculation
of the upper critical field H for a superconductor with an energy dependent
density of states was given by Crisan [3] and applied for the heavy fermions
superconductors. Using the equations (29—30) from the [4] the upper critical
field can be obtained from

S deN (e) [tk ok T]

where @ =

Im E(10) %

~

x { e NG . {‘F (l) . (l . )} (24)
[e + +X(:0)][e — ¢ Z*(:0)] 2 2 }I2ImE(0)T
where X(us) is the self-energy associated with the scattering of the electrons
on the non-magnetic impurities and ¥(x) is the di-gama function.
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Using now the same approximation as the onc for the calculation of the cri-
tical temperature, (24) becomes

©  o2ko2h _ 2%—2 @ gk _ [ \2k—2
1 @% — 1 Bz:.( :) 1 27k ( 1) [__) B.,

2T, &= (@R 1k — 1)1 T, 2T [ 2k ~ I T

_ Im X (s0) 1 evoH, (T) (25)
w 4f(—Im I (30)) 12Im E (10)T

1f we constder
42 > B2i) — eImX(i;)

Near the critical temperature T, from (25) we get

Ho(T) = 2 [T, — T (26)
|elvgre e
where 7, = —ImX(i,), an equation which is i1 agreement with the experi-

mental results [5].

6 Discussions. The one-dimensional model for a high-7 superconductor
has been adopted to explain its unusual properties This model seems to be
simple, but a- morc realistic model has to consider both the “chains” and
the “planes” of Cu—O which seem to have a crucial role 1n the superconduc-
ting properties As remarked in many papers, the reduced dimensionality (one
dimensional or two-dimensional electronic system) 1s one of the most important
features of these materials.
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UPPER CRITICAL FIELD FOR HIGH-T SUPERCONDUCTORS

D. VACARU

Recesved : June 23, 1988

ABSTRACT~ — The temperature dependence of the uppet critical field H,, of a
high,-T' superconductor has been calculated usmng a two-dimensional model.

1. Introduetion. The recent discovery of high-T, superconductivity in
(LaM,)CuO, systems, where M = Ba, Sr, Ca and Yy, Baygg CuO,, has created
a strong interest in the basic properties and mechanisms in this class of ma-
terials. At the present time the microscopic nature of the ligh—7, super-
conductivity is not clear, but the measurements of the upper critical field
H, [1—3] have shown the following features "

— The high—T, are type—II high-field superconductors (140 T was
predicted [3] for La,_,Sr,Cu0,_,); .

— There is no Pauli paramagnetic limiting 1 the lugh— 7T, superconduc-
tors;

— A large slope in Hy(T) is observed, and a linear domain near Tc
is present in the phase diagram.

The experimental results obtained [I—3] haven been analysed using the
standard BCS models, and Schossman ¢f al. [4] considered that these results
showed an important effect of the electron-phonon imteraction which gives
rise to the renormalization of the Sommerfeld constant y which is proportio-
nal to the density of states.

In this paper we consider a two-dimensional model for the electronic
system with the energy

£(p) = —2t (cos pra + cos p,a) 8

where ¢ is the hopping energy and a the lattice constant The density of
states calculated by Morita [5] for this system 1s given by

N(s) = = 0(4 — =)K [T — (/4] @)

2w
where K(x) is the complete eliptic integral which can be approximated (for
e € 4) as

N(e) = 1% (3)

2% €

With these results, we calculate the temperature dependence of H(T).

¥ Unsversity of Clug-Napoca, Faculty of Mathematics and Physies, 3400 Cluj-Napoca Romania



HIGH-T SUPERCONDUCTORS 9

2. Upper eritical field. In order to calculate the temperature dependence
of the upper critical field H,, for the high— 7, superconductors we will use
the general method recently proposcd by Crisan [6] to calculate the upper
critical field for the heavy fermious superconductors
Using now Egs (29) and (30) from [6] we have

de € €
=N h — — | =
S - N(g) [taug taugh 2T]

2T,
_ (i _ __ﬁlcz_"ﬁ__]} (4)
2 12Im 2 (:0)T

_Im% (zO)'S deN(e) {‘F 1 )
l e+ +3(10) |2 ("

L

T

where Z{ww) is the self-energy describing the scattering of the clectrons on
the non-maguetic impurities, and ¥(x) is the di-gama function The 1integral

41
I, = S i N(z) tangh =
0

where N(c) 1s given by (3), gives ‘the simple result
4¢ i ~
‘Z_'l == lnz —2—_‘- (O)

and we have to calculate the contribution

4

I, =S de 1 16 ! (6)
2% & [¢? — eImE(0) + TF(:0)]

Eo

This integral has been evaluated as

I, = ——J__{m Xlu[l - XM]“
2r%Im 2 (20) 16t 4
— L, [16t/Im % (:0) ]} (7)
where a = 16tfe, and
Ly@) =32, bl <1
¥t
Eq (7) will be approximated as
Iz _ alna (8)

T (16mtp
and from (5) and (8) the equation for H,(T) becomes

22 e ImECO) ‘P‘(lJ — ¥ [i — eeHa(T) )} 9)
A T x 2 2 12Im(i0)T

where C = I,
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Near T, we may use the expansion

wll _w (", _r 2
P(z—}—z) F(z) 52 75(3)7° 5
and fiom (9) we get
Ho(T) =2 711 nmL (10)
cevi T.T T,

an equation which 1s 1n agreement with the experimental data [1—3].

3 Conclusions. The two-dimensional model for the high—7T, gives a good
agreement between theory and experimental for the H.,(T) near the crtical
temperature T, Eq (9) has to present an agreement with the experimental
data also at the lower tempeiatures, but the measurements in this domain
are very difficult because H,, is very high.
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COEXISTENCE OF ANISOTROPIC SUPERCONDUCTIVITY AND
ITTINERANT ANTIFERROMAGNETIC ORDER IN HEAVY FERMION
SYSTEMS

7S, GULACSI*, M. GULACSI* and V. TOSA*

Recarved  April 22, 7988

ABSTRACT. — The coexistence of amsotropic spmn-density-wave and super-
conductivity 18 analysed in detail for sumple cubic lattice m heas y-fermion
systems It 18 shown that energetically stable coexistence phase occurs only
m the presence of an anomalous superconducting pairing Ag connected to the
(¢, —o, —k—0Q, o) paring m the reciprocal space

There exists experimental evidence for the coexistence of ittinerant anti-
ferromagnetic state and superconducting phase in some heavy-fermion materials
like Th doped UBe,,. In these materials the superconducting and the spin-den-
sity-wave phase are characterized by anisotropic gaps, and the coexistence
implies in such a way a coexistence between two anisotropic condensates.

In order to study this problem, we take into account a model hamilto-
nian H, which describes a narrow heavy-fermion band starting from a Kondo

lattice type description :
1 1
Hy=— = ; (ba, @t + hc.) — p.g o} aa + — E., Uata, ar a _. (1)

where 1 and 7 denote the nearest neighbour sites, the hopping energy ¢ related
to the bandwith is given by ¢ = 2Tk/rz (where Tk is the Kondo temperature,
and z is the number of nearest neighbour sites), p. is the chemical potential, and
U represents the renormed Tk dependent on site repulsion between the heavy-
electrons.

To describe the condensed phases, we take into account interactions bet-
ween the nearest-neighbour sites, which are phononic and magnetic in origin

[1]:
Hi= —~ 5 K(fin}, 0, 0)a},a,,a,a, ()
{sn},q,0’ ' 10 ROk
The phononic terms in Eq (2) do not emphasize the differences which
arise in the hamiltonian from ditferent spin configurations of the nearest-neigh-
bour sites. From the phononic contributions we take mto account only the

greatest contribution, which aiises from the K(ijs2; o, ¢') = g, channel Concer-
ning the spin-dependent interactions between the nearest-neighbour sites, we

* Imstitute of Isotopic and Molecular Technology, 3400 Cluy-Napoca 5, P.O Box 700, Romamnia



12 ZS GULACSI, M GULACSI, V. TOSA

will consider three terms arising from the K(i2j7; o, —o)=], K(t1j7, o, 6)=—V
and K (117, 0, —o) = I like contributions

The model 15 treated with standard Green funct1ons allowing the nesting
condition e;19= —e; to be satisfied along a fixed Q 'direction in the reciprocal
space

The gaps describing the condensates are defined in the usual manner. The
obtained gap equations for the superconducting phase are the following :

AR) =3 S, (R)A,

1 - ~
A = g, ?S,( +(k 8 = I + & (3)
The kernel 1s given by

I, :%[if anh B2+ i_tcmh o ]

()

wl = AE) + [YT + A% (k) £ AoF G — S,H (4

and the ortﬁogonal symmetry set (S,) for the simple cubic lattice (the lattice
which 1s analysed in detail) can be expressed as*

S(k) = 2 (cos ak, + cos ak, 4+ cos ak;)
S,(k) = A/6(cos ak, — cos ak,) ' (5)
Sa(k) = \[ 2(cos ak, + cos ak, — 2 cos ak,)

a being the lattice constant.
For the spin-density-wave, we have

=265,(k)As‘, Asy =g} _ZAS 5,(Tk) 3. 6)

1= 7 N

where the coupling constants (g,), and the suplimentary symmetry functions
(S,) are

G=U+6V+]+8): &=V 1 &pa=V+I
Se =1, S, = sin ak,, S; = sin ak,, Sg = sin ak, (7)

The kernel {function for this éase has the form'
Ag .
- -_— ' 8
3, 1++45%+A21_ 8)

Besides A, and As, we consider an anomalous superconducting pairing A con-
nected to the (ax.-o,0-4_¢,) average-

AQ=gQEZ’;<ak,—-ca—k-Q.u> (9)
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The equation for the Ay order- parameter can ‘be expressed as "
1 ’ T 1 A2/L7Y ’
Bo=goy; 20 (A0 LF) +VE F RV L(3)]; go=6I—-U  (10)

For any solution of the gap equations (3), (6) and (9) we analyse the free energy
(F) in comparison with the free energy of the desordered (paramagnetic) state
(Fo) 8F = F — F,. The obtained solution 1s stable energetically only 1f 8F < 0
The free energy can be expressed as

3F = dFs 4 8Fspw + 8F¢ 4 8F,, (11)

where the first three individual contributions are:

3 A% 6 Aﬂ’ z
SFs =337 SFeow =3 o SFo= L (12)

=1 gi 3= &4

The last contribution can be written in the following way .

°
- oht B%" + oh? E”;—”- ch """+‘A2° =0 ., Bo (A;z =0)
BFI" T ﬁ_ E n A=20 A=90 0 ‘ 0
N ¥ ch Bm+( — )Ch Bb)_( = )G}l Bm+(AS = ) ch ‘50)— (AS = )
2 2 9 2
1 -1 1 1
k = — x AN hz - _ 1 13
chy 2(6 +e*); ¢ o B o (13)

The 8F,, term in the T = 0 limit becomes.

Fn =~ L D[S ont o) — g lar =0 +o (a=0)+

1
N

+o, (As = 0) + o_(As = 0) + &y + (Ap = 0) + w_(Ag = 0)}] V)

wr (Bg = 0) + o_(Ag = 0) = 2T + KLF) F A(F)

First of all we analysed the Ag % 0 phese (A = Ag == 0). For the crtical tem-
perature of these phase (T,) we obtain .
1 (0]
%N EO) th 27,

Eq. (15) shows that g, < 1/2N(0) give T,y = 0. Because go = 6I — U and
;usually I is smaller in comparison with the one-site repulsion U, it results
that the Ag # O phase cannot appear alone (in fact the 7 = 0 phase diagram
of the system for finite g, does not contain an energetically stable A, # 0
phase).

The importance of A, is underlined by the fact that stable coexistence
As # 0, A # 0 solution does not exist for Ay == 0. On the other hand, Ag # 0
allows stable coexistence solution, which theoretically explains the experimen-
tally measured coexistence.

(15)
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DIGITAL DATA ACQUISITION IN MAGNETIC RESONANCE IMAGING

AL. NICULA*, M. TODICX*, S. ASTILEAN*, G. BUZAS** and 1. BERINDEAN**

Recewwed  June 28, 1988

ABSTRACT. — The paper present some general considerations concerning the
filteing and the sampling of the magnetic resonance imagwmg recorded spectrum
A concret sketch of an A/D converter, used 1 conection with the NJMR spec-
trometer, is presented

Introduection. The image projection reconstiuction method, used both in
“RMNXN aud RES tmaging”, 1s allready well known {1, 2, 3]. It has at its basis
the Fourier transform, which implies a great calculus volume and consequen-
tly a digitization of the recorded signal.

The wide use of personal computers, having a limited operating capacity
and a processing of the information in real time, 1mplies the adaptation of
computing programs [4] as well as building adequate interfaces between the
computer and the spectometer [3].

Usually, the practical achievement of the aquisition and computing data
is done according to the method, aim and the employed apparatus.

We are interested in the data acquisition of the JEOL JNM 3H—60
spectrometer and their processing by HC—85 computer for measurement
within both homogeneous magnetic field and gradient magnetic field.

The NMR ahsortion spectrum. In the case of JNM 3H—60 spectrometer
the magnetic field is linearly time varable

H(t) = ho + at (1)

where %, is the remaining magnetization, « 1s the speed rise of magnetic field.
In the case of a magnetic field gradient G, parallel to the homogeneous

field.

H,og=k0+0‘t—{—G,-X (2)
The resonance condition is
w, = vH, = const. 3

The absorption spectrum, s (%, ), in the presence of the field gradient is
a convolution between the absorption spectrum when lacking the gradient sg(?)
and the spatial distribution function g(x), [7]
4o

s(t) = Sg(x)so(t —x)dx ()

-0

* Umzersitv of Cluj-Napoca, Facully of Mathesnalses and Physics, 3400 Cliy-Napoca, Romania
** Instsitute for Computer Technigue and Informatscs, 3400 Cluj-Napoca, Romania
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16 AL NICULA ET AL

Digital treatment of the signal. Thec absorbtion signal is observed for a
time delay ¢, — T, {, 4+ T, which 1s cquvalent to a gate function filtering,
1@ o

f(¢) is equal to 1 within this time delay and has a zero value outside
this interval

This Fourter transform is

F(y) = 2T 2221Y o5 [2ntev — g sin 2mtgv] 5)

27Ty

The recorded signal is a convolution between s (¢) and f(f). Its Fourler
transform, according to the Plancherel theorem 1s

st) - f() = S(v) X F(v) (6)

where S(v) and F(v) are the Fourier transform of the s(¢) and f(f).

It results that the temporal filtering affects the frequency spectrum Such
a time interval, T, has to be closed so that the frequency spectrum should
not semnificativcly modified.

The sampling of the signal 1s the next operation regarding the digital
processing The 1deal sampling implies the use of a succession of Dirac impul-
ses

M () =T, 3o 8t — 2 7
) =T. 35 3(t— ) NG
where Fe is the sampling frecvence and 8 ( t— Ek‘— .is the Dirac function.
e
If s{t) 1s the original signal, then, the sampled signal s(f) is a convolution
between s(¢) and the 115, tunction.
=st) T 3 aft—2 8
s=st) T. ¥ 8(t— 1] ®)
Its Fourier transform is
s=Sm¥* S v~k F) (9)

The sampling frcquency Fe shouid be greater or cqual to 2F, in order
that the signal spectrum should not be altered

Fy 1s the maximum {rcquency contained by the S(v) spectrum [8].
The signal can be reconstructed out of the pieces

L (10)
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A low frequency component, the “aliasing effect” appears if the above
condition is not fulfilled and the T, period 1sa little smaller than the signal
period

The limited duration 0 impulses are practically used. Thus, s(f) is a signal
average for the 9 time interval

+
sk, T.) :%g I, (z— k- T,_;") - s(t)dt =
SRR : (11)
=15 %10, (¢ ’
8 > t=K T,
I, 1s the gate function which has the value 1 in the interval — EO’ g and
2
zero value outside.
The signal Fourier transform 1s
AN | sm whv —2rv; 12
S\—[S(v)- : ]* 2 a(v—_) (12)
wv0 h=—00 T

The process flows as is S(v) in relation (8) were substituted by S;(v) =
= S() RO g

v
In this case only the amplitude is modified by sin ”(;e factor and the
. v
, ’ —2nvg 8
frequency spectrum 1s not affected. Besides, a defasage term e appears.

Thus, it results that the measurements precision is altered by the width
of the sampling impulsions.

These effects can be elimimated employing an adequate module filtering.
The pointed edges of the sampling impulsins introduce high frequencies
in the digitized spectrum. This effect 1s often taken for the “aliasing effect”.

It can be eliminated either by increasing the sampling frequency or by the
employment of a low-passing filter [9].

The use of the equidistant impulsions method 1s most frequently used.
In this case, sometimes the pointed edges of the signal can pass unnoticed.
Lately, the nonequidistant impulsions, which observe a certain previously esta-
blished rule or succession, has been used.

This method gives’ good results if the form of the signal is beforehand
approximated or 1if a’corelation between the signal evolution and the sam-
pling rule can be estdblished. This method presents the advantage that the
waste of the significant details can be avoided. At the same time the memory
of the data aqusition system is better exploited.

To know the minimum-distance between the two impulses is practically
important in order to recunstruct the signal by the simplest interpolation
rule, e.g. the lineary interpolation rule.

2 — Physica 2/1988
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The A|D converter. This paper presents a digitisor based on the equidis-
tant sampling impulsions which can be connected to the JNM 3H—60 spectro-
meter. Fig. 1 shows the functioning principles sketch.

The C 520 D integrated circuit is the basic component. This chip makes
an analogue digital conversion BCD with a parallel output multiplexed on
three digits.

A numerical display can be directly connected, or a TTI, computer inter-
face can be used.

The automatical sampling of the signals can be achieved using the inter-
nal clock generator. The conversion is done at every 5 ms.

The circuit can also receive external impulsions either from a separate
clock generator or from the computer clock generator.

The sweep time of the magnetic field of the spectrometer takes some
minutes. In this case the conversion speed of the convertor is convenient.

The RMN absorbtion signals are broad and do not register sudden varia-
tions. Thus the risk of not recording the pointed edges of the signals 1s minimal.
The above are true both for the homogeneous field and for he NMR field gra-
dients.

There still is the nisk to digitalize the noise of the signals because the con-
vertor has no noise filters. The noise can be reduced using the spectrum accu-
mulation method

High frequency components of the Fourier transform appear due to the
noises. These can be climinated, using an adequate filtering during the compu-
tation process.

Conelusions. In this paper general theoretical and practical aspects of
the sampling of the signals, applied to the RMN spectroscopy were analized.
The advantages and disadvantages of the above method, according to most
recent studies were discussed. A concrete principle sketch of the digital pro-
cessing or the signal, adaptable to the JNM 3H—60 spectiometer was presen-
ted.

" It is estimated that the use of this digital method will lead to a rise in

the spectrometre resolution both in homogeneous magnelic field and gradient
magnetic field.
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DETERMINATION OF' SOME STRUCTURAL MAGNITUDES FROM
ULTRASONIC MEASUREMENTS IN BINARY LIQUID SYSTEMS

I. LENART*, A. CTUPE*, D. AUSLANDER”. and E. LENDER*

:

Recoroed, Juy 1, 1988

ABSTRACT. — Somé properties of the systems benzene-i-propanol, and benzene-
butanol are studied i the whole concentration range at the temperature of

‘ 20°C Measurements of ultrasonic velocity and absorption by attenunation of
the ultrasound, of density and dynanic viscosity were made From experimental
data, the relaxation absorption, the volume wviscosity, the activation energies
corresponding to the dynamic viscosity, the relaxation frequencies, the available
volumes, the vaporisation energies, as well as the excess quantities which evidence
the presence of mteractions between imolecules of the components of the studied
systems were calculated

'

Introduetion. The propagation of the ultrasound in a liquid 1s accompanied
by the <dissipation in the environment of a part of the acoustic emergy as a
result of the effects of dynamic viscosity, thermal conductibility, as well ‘as
the relaxation processes, characterizes by aditivity properties [1], [2]

Summing up the first two effects, where the prevailing part is due to
the viscosity absorption, represents the classical absorption described by Stokes-
Kirchhoff’s laws Reduced thermal conductibility of the studied liquids allows
neglecting the corresponding absorption term as compared to that of viscosity,
thus resulting .

oy 8x? ' B

o o (1)

A considerable part of the acoustic energy 1s d1ss1pated through the mole-

cular processes of thermal, respectively structural relaxation. As a result, ,the

experimental value of the attenuation constant, for most liquds, is much

higher than that calculated by relation (1) ‘The inclusion of the relaxation
terms allowed to establish the relation. - .

Gexp _ vy oxel  2W (4, 2
PR T (3 nr "V) | @
where : o.xp Tepresents the experimental attenuation, op the viscosity attenua-
tion, aza the relaxation attenuation constant respectively, f 1is the ultrasomc
frequency, p the density, Ny the dynamic wviscosity coefficient, % the volu-
mic viscosity coefficient of the liquid, and v the ultrasonic propagation velocity.

Material and Rfethod. In the mixtures benZene-1-propanol and benzene-butanol the ultrasonic
propagation velocity was measured, usmg an optlca.l mnstallation of diffraction The attenuation
constant was determined by an mmpulse method on tlle basis of repeated echoes at fixed dlstance

* Unwverssty of Clug-Napoca, Faculty of Mothema ics a.sd Puys s, J100 Clvy-Napoca, Romania
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at the 8 MHz frequency The density of the mixtures by the picnometric method, and the dynamic
viscosity by means of the Hoppler viscosimeter were also measured

All determunations were made under comstant temperature conditions of 20°C

By means of the obtamed data the classical attennation constant (1), that of relaxation (2),
and the volumic viscosity were calculated

On the basis of Eyring’s celular model [3]
Nk oy IRT
=-—z¢ 3
1= 3
where 7 15 the dynamic viscosity, # — Planck’s constant, N — Avogadro’s number, W — acti-
vation energy of viscous flow per mole of liquid, R — the umversal constant of gases, the acti-

vation energies of the studied systems were calculated as well
There have also been evaluated the relaxation frequencies of viscosity by means of the rela-

tion
1

I b0 + )

where B4 = 1fpe?

Results. The variation of the ultrasonic vclocities and of the adiabatic
compressibility with the alcohol concentration i the mixture 1s presented in
Tig 1 The behaviour of the two mixtures is analogous, noticing the superior
value of the compresibility, respectively, the infertor one of the velocity into
the benzene-1-propanol system,

From the velocity data the available volume was calculated V,; = V( 1—

S ) where © vy = 1600 m/fs, its dependence on ' concentration, presented

Vo /¢ -
in Fig 2, illustration for both mixtures positive deviation from idcality, more
pronounced 1n the case of the system bcnzene-i-propanol These excesses of
the available volume are determined by the 1uteractions among the molecules
of the components, concomitantly with affecting the equulibrium of the alcohol
structure .

The attenuation constants calculated by the rclation (1) and the experi-
mental ones arc given in Fig. 3.

It has been ascertained that the values of «..,/f2 are much higher than
those of ay[f? with a different dependence on councentration Thus, while ap[f?
slowly increases with the alcohol concentration, oesp/f? strongly decreases in
the smaller alcohol concentration ranges, tcnding to a certain Ievel at high
concentrations -

The arranging according to the type of the aicohol in the mixture 1s of
opposite direction for «.pff? and ap/f? The decicasing of the rclaxation ab-
sorption in the direction benzene to alcohol according to the graph of Fig. 4
1s due to' the variation in the opposite direction of the intensity of the inter-

molecular interactions of the two components, the first one nonpolar, the second
one polar. -
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The negative deviations from aditivity
illustrated 1n Fig. 5 have at the origin the
presence ot certain interactions among the
molecules of the mixture components This
type of interaction' appears at low alcohol
concentrations as a result of the breaking
of the hydrogen bonds between the alcobol
molecules, followed by the progressive decre-
asing of the bouds number of the type po-
lar — nonpolar on the advantage over those
of the type polar — polar

Fig 6 comprises the volume viscosity
vanation of the mixtures with alcohol con-
centration, and Fig. 7 — the concentration
dependence of the activation energy of the
viscous flow

The relaxation frequencies are presented
2 Table 1 Of the order of GHz, the fre-
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Table 1
59 4 N
X:-propatol f[GHz] Zhutanol FIGHz]
87 ' / o 288 0 288
Yo j~npro “ .

~bpi' pano 0224 14 74 0196 1399
37 o~ butano/ 0 435 18 78 0 394 21 47
0 636 21 71 0 594 27 40
0 822 2178 0796 27 28
1. 815, ., 1, 23 02

The intermolecular interaction changes
due to concentration emphosised by means
of the excesses of the presented, molecular-
acoustic magnitudes, can be checked by
means of the vaporization energy values cal-
culated from the activation energy of the
viscous flow [4], [5], [6],

For the pure components from the two
types of mixtures the obtained_ values are
presented in Table ‘2, comparatively with
the experimental data from the literature,
and with those obtained by means of Tro-

— ' i uton’s rule, respectively
02 04 06 08 40 The low values 1n the last column, cor-
X, e responding to the alcohols are caused by their

Fig 8

structure, characterized by hydrogen bonds.
As concerning the differences between the
vaporization energies. calculated from the ac-

tivation energy, and the experimental omnes we consider, that they can be as-
signed to the used value of the constant, discussed in the literature [7].

Table-2
Vaporization Energy [J/mol]
Substance I_'KI] From activation Experimental From
energy data Trouton's rule
benzene 353.35 29597 1 30723 27612 2
i-propanol 355 15 36523 4 40420 6 27756 7
u-butanol 390 15 38933 2 43764 6 30492 2
The vaporization energy — concentration curves calculated from the acti-

vation energy of flow, are presented in Fig 8.

The agreement with the former results concerning the intermolecular in-
teractions in the system can be noticed In mixtures, especially at not too
high concentrations of alcohol, the appearace of the polar — nonpolar nterac-
tions affect the interactions among the alcohol molecules. This effect, prevailing
in i-propanol, leads to the weakening of the mixture’s intermolecular forces as

a whole.
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THE RELATIVISTIC ACCELERATION PRODUCED BY A ROTATIONLESS,
ELECTRICALLY CHARGED, SPHERICAI, CENTRAIL BODY ON AN
OUTER MATERIAL POINT WITHOUT ELECTRICAI, CHARGE

HUBA SASS*

Recesved  Julv 4, 71988

ABSTRACT. — The paper pomts out the existence of a force produced by an
electrical charge on a chargeless body The expression of this force 1s deter-
mmed This force 1s shown to be capable of playmng an important part in deter-
mung the mmner structure of some elementary particles, as for instance the elec-
tron

In the frame of the General Relativity Theory, the knowledge of the
spacetime metric also means the knowledge of the motion laws The metric
of the spacetime outside a spherically symmetrical central body can be written
1n generalized spherical coordinates as follows [2]-

ds? = goo(dx°) + £11(x1)? + £ap(dx?)? + ga3(d2%)2, (1)

where x% 1s the temporal coordinate, while x! =7, 22 = 0, 4® = ¢ are the
space spherical coordinates.

The fundamental metric tensor g, depends only on the radial coordinate
r We shall use, as habitually, the geometrized quantities

I =l (cm),

t = clyy (cm),

v = vyfc (dimensionless),

m = (Glc) My, (cm), (2)
Q = (G'?[*)Qp (cm),

a = ayfc? (cm™1),

where ¢ = speed of light, G = constant of gravitation, while the index pi sig-
nifies that the length, /, the time ¢, the velocity », the mass M, the eclectri-
cal charge Q and the acceleration @ arec measured in physical units

The three-dimensional components of the acceleration, in geometrized units,
are [3]:

@' = —D%/800s  +=1,3, 3)

* Industrial Seccondary School No 4, 4800 RBawa Mare, Romania
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and the module of the acceleration is-

a = (ata@y,)'", (4)
where :
Yy = —8y + gO!gOJ/gc(n 1] = ﬁ, (5)
are the components of the three-dimensional metric tensor, and
F;zk = g’m(gmk,n + gmn,k - gkn,n)/z (6)

are Christoffel’s symbols of the second kind [3].
In our case, only the components-

Y1 = —811 Yo2 = —f22 Va3 = &z (7)
are nonzero hence:

Do = —8o0,1/(2811) (8)

From (3) and (8) we obtain the geometrized components of theaccelera-
tion :

al = a’” = (go0,1/800)/(2811),
a2 = a® = 0, ®)
ad = q® = 0,

and the module of this omne:

a = (a'a” v ;)" = (—£&y) "] g00,1/800l (2 (10)

Consider now a rotationless, spherical, central body of mass m, radius
R and electrical charge § Outside such a body (r > R) the spacetime 1s {ca-
tured by the Reissner-Nordstrom metric [1]

ds® = (1 — 2m/r + Q?[r3)dt2 — (1 — 2m[r + Q3[r*) ldr?t —

—12(d6? & sin? 0 dg?), (1)

where :
oo = 1 — 2mfr + Q*[*,
12
&u = — /&0 (12)
From (9) and (10) 1t results:
al = —gn,[2 = —(9gc/07)[2 (13)
and :

a = |a|(gq0) ~12. (14)
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Replacing g¢, from (12), we obtain"
a’ = —mfr2 4 Q3 (15)
and .
a = |—m[rt + Q*r|(1 — 2m[r 4 Q[r?) 1P (16)

Since a4 from (15) and « from (16) are expressed in gcomctrized units,
we shall express them in physical umts, but omitting this time the index
ph Therefore, 1n physical umits, the components of the acceleration outside the
body will be

ar = —GM[r?2 + GQ?[(c%3), i
2 =0, (17)
2 = 0,
and the module of the acceleration
a = |—GM/[r* 4+ GQ?*(c*®)|(1 — 2GM|(c*) +
+ Ge(ear) -
If the body is not electrically charged, the above formulae become res-
pectively

(18)

a’ = —GM/[?, (17%)
a = (GM[r?)(1 — 2GM[(c2r)) 1, (18)
Introducing a characteristic radius. A

7o = Q%(c*M) (19)

and denoting - ‘
¥ = ¥.%, ’ (20)

then - J

' = (GM)(1 — %)/, | (21)

and x represents the distance from the centre of the body, in units of cha-
racteristic radius

The function a” = a’(x) is plotted in Fig 1. One sees that inside the
sphere of radius 7, (R < 7 < #,) the acceleration is positive, hence there exists
a repulsive force which acls on a chargeless material point. Outside this sphere
(r > r.) the acceleration 1s negative, then there will exist an attractive force
On the surface of the sphere of radius 7, the acceleration 1s zero (fiom both
outside and 1nside), hence the substance will tend to accumulate on this
surface

It 1s interesting to observe that if we consider a body having the mass
mt, of the electron and the charge ¢ of this one, then one obtamns for #; ’

re = 62f(c*m,), (22)
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that is just the classical radius of the clectron Also for @ (the module of the
acceleration measured in the point x)

a = (G [r)I(1 — x)[2%(x* — 2ax + &) 75, (23)
where o = Gmdfe* =24 1078 and Gm,fri =765 - 1071 cm/s?.

Since o 1s very small, the relativistic effect-of spacetime curvatureis
negligible Obviously, at a macroscopic scale (x » 1), the quantity-

ag = GQ*/(c*r) (24)
1s neglgible as against -
\ , g = —GM/, (25)

but 1t 1s different for elementary particles
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SOLAR FLARE INFLUENCE ON THE LOW IONOSPHERE

GEZ\ SZOCS*, ALEXNDRU NICULA** and HUBA SZOCS**»
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ABSTRACT. — An analysis of the correlation between {the solar activity
(during 1969) and the 1onospheric disturbances 18 performed The vanations
(especially the sudden ones) of the solar activity are superposed on a-roughly
constant level of the 1omization factors (UV, X and gamma radiation, res-
pectively the corpuscular radiation) due to the galactic and solar radiation
(,,quiet Sun”’) The study of such variations constitutes a contribution to the
attempts et clearing up the very complex phenomena featuring the magneto-
sphere and the ionosphere, generally the atmosphere

1 Introduetion. The state of the ionosphere can be featuied directly by
the 1onic and electronic concentration, and indirectly by various physical para-
mcters depending on them. attenuation of the electromagnetic waves, critical
frequency, limit frequency, real or virtual height of the ionospheric layers
(in the casc of the ordinary compomnent) for vertical o1 skew incidence, ete.

The state of the "quict” ionosphere is determined by the permanent ioni-
zing agents, as the galactic radiation and the solar one: EUV, X, gamma and
corpuscular (fluxes of protons electrons or other particles). Durning the cosmic
(less frequent) and solar (more frequent) events, the ionosphere 1s strongly
disturbed, with negative cifects on radiocommunications and biological phcno-
mena

2. Solar Flare Effects. Taking into account the sudden growth of the
level of the electromagnetic and corpuscular radiation, the effects of the
solar flares on the ionosphere are various. So, the group of the sudden 1ionos-
pheiric disturbances (SID) contains

a) the sudden growth of the atmospheric radio noise on 27 kHz (SEA),
as a consequence ot the superposition of the ILF and VLF waves generated
by the permanent atmospheric discharges, therefore, the radio noise attenua-
tion features the state of the low ionosphere ;

b) the sudden variation of the phase altitude (SFA),

¢) the sudden flares 1n the radiowave range (SRB — sudden radio burst,
the disturbances in the microwave range SSWF, SCNA, SRB- “micro”),
namely the sudden microwave emissions which disturb the radiocommunica-
tions in the range of decimetric, centimetric, millimetric and micrometric waves.

3. Statistical Analysis of Solar Flare Effeets between February — Oete-
ber 1969. In order to perform such a study, we processed the data published
m [1]. The number of the SEA, SFA and SRB solar flare effects during
the considered period 1s given in Table 1.

® Industrial Secondary School No 3, 4050 Tirgu Secutesc, Romamia '
®® University of Clus-Napoca, Faculty of Mathemnatics— Physies, 3400 Cluy-Napoca, Romania
$%® Polytechnical Institute, Inststuts for Subengineers, 4800 Basa Mare, Romania
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Table 1 "
100F '
Number Number Number ok Zi: :
Honth o of of SR8 =
SEA SFA SRB [l 3 o
February (F) 15 25 24 L .
March (M) 35 77 60 A
Apnil (4) 17 29 18 .
May (M) 25 32 98 o . ]
June (J) 27 32 27 . . [ )
' 2o} 6 :
July (J) 6 10 0 T ¢
o
August (4) 15 22 29 10 1
September (8) 10 13 10 T S T L S S .1 (P
October (0) 16 23 19
Fig 1

Figure 1, which plots the monthly vanation of these numbers, points
out a maximum 11 March and a mimmum 1n July.

The close evolution of thesc effects can also be noticed (the SRB num-
ber interfering with SEA and SFA numbeis, respectively). This situation 1s
illustrated by the high values of the correlation coefficients (» = 0.894 for
SEA—SFA, v = 0,993 for SFA—SRB) The total number of effects 1s N = 167
for SEA and N = 256 for SFA.

Table 2 lists for each considered month the total observation duration T
(in units of 100 minutes), the totalized duration of the effects 7, (in minutes)
and the relative duration ot these ones p {in umts of 10 percents)

Table 2 T'able 3
SEA SFA SEA SFA SRB
Month Month.
T, T, P T, T, b ' " Toun Trax Tuy.n Trmar Tmn Tmax
P 60 650 1.083 78 880 1128 R . 18 115 10 120 1 165
M 78 970 1244 126 1995 1583 M 15 80 10 110 1 216
A 68 650 0.982 84 541 0644 A 20 60 10 70 3 47
M 96 860 0 896 96 1265 1 318 A 20 60 15 85 2 124
J 72 910 1264 84 1225 1458 J 20 50 20 125 1 315
J 24 170 0708 42 435 1036 J 20 45 20 105 2 170
A 48 405 0 844 72 715 0.993 A 10 45 15 70 3 134
8 60 340 0.567 66 585 0886 S 20 50 25 75 7 82
(6] 78 5558 0712 78 765 0981 (0] 20 60 10 130 3 146
mean 9 5% mean 11 3% mean 1778 6278 1500 98 89 2.56 144 11

One notices that the relative monthly averages are small; however the
importance of these effects can be sigmficant, as Table 3 shows. This table con-
tains for each month the minimum (7T, and maximum (7Z.;) durations
(in munutes).
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The maximum duration of these effects can exceed 1 hour 115, 130 and
315 minutes for SEA, SFA and"SRB, respectively (see Table 3) So, even if
their relative durations are short as against the total observation duration,
they are able to cause disturbances and even breakings of the radiocommuni-
cations (including radiotelephone and TV) for some hours.

In the international code, the intensity of the cffect 1s featured by 1
(the index of importance), which takes the values 1, 2, 3 and 3+ (thJs last
one being replaced by 4 in calculations). The boundary values (1 and 3-)
represent respectively attenuation of less than 1 dB and more than 7 dB
for SEA; variation of the phase altitude of less than 1 km and more than
7 km for SFA, very weak and very strong for SRB The value I = 0 which
appears 1n some tables signifies the fact that the solar flare does not have
effects 1n the 1onosphere.

Tabls 4 ' Table 5

: SEA - ¢ SFA SEA , SFA
Month T m Iy T o Iy Month T~ T =1L man L™ Toyn I 1 mm
F 650 4333 278 880 3520 118 F -+5.85 ‘41699 +2 36 +-0 293
M 970 2771 114 1995 25 90 110 M —977 40056 —694 40216
A 650 3824 094 541 2460 086 A +065 —0 146 —824 '—0.028
M -80 3307 092 1265 N 3953 0954 M —441 —0.166 ( +674 +0 052
J 910 3370 111 1225 3828 094 J —378 40024 +5.44 +0 052
J 170 2833 100 435 4350 050 J —915 —-008 +1086 ' —0 388
A 405 2700 053 715 3250 023 A —1084 —0556- —034 —0658
S 340 3400 140 °585 4500 085 S. —348 40314 +1216. —0038
(0] 555 3469 094 765 3326 139 (6] —279 —0146 +042 | 4-0.502

mean 4592 3748 1086 7005 3284 0888

Table 4 contains the”durations T of the effects (7, of Table 2, in minu-
tes), the mean monthly durations 7,, (in minutes) and the mean monthly
values I,, of the index of importance. Table 5 lists the deviations of T, (in

minutes) and I, from the corresponding mean

Table 6 values (denoted by T,,, and I,,, respectively)

calculated from the total number of cases Table

SEA 'SFA 6 contains the deviations of 7, (1n minutes) from

Month

T,—Tmmon Te—Tmmon  the monthly mean value (denoted by T, .men)-

” 101 1180 Figures 2 and 3 plot for SEA and SFA,
o +511 +1296 respectively, for cach month, the vdlues T,, and
A +191 —159 1,, together with their dewviations from the cor-
M +401 +gfg ' responding mean values. Figures 4 and 5 plot
} "_'ggé . f255 . for SEA and SFA, respectively, also for each
A —54 +15 month, the vamations of .the total duration of
8 —119 —~115 these effects and the respective deviations from
0 +96 165 the monthly average.




SOLAR FLARE INFLUENCE ON THE LOW IONOSPHERE 33

Tm ‘: !
MIN T Im SEA © Tm, © Im
. S0
".
403t o MEAN
———————————— ———— — — — 3748
. ) o [+ o ©
3013 J e @ e o |
2042 \
o MEAN
0 o)
1011 T TR e T T T T T T T o~ — 108t
[o] -
! 1 1 ] | | ' M(?NIHITY}
6 1 2 3 4L 5 & 7 & % D 1 12
Fig 2
Tm Im
MIN SFA® Tm, © Im
50
[}
iop3* ® °
¢ ° ° ® MEAN
A
303 ———————————— —— — 22.84
o o )
Q
2012
o1 _° ° o o © ME AN
o - _?*"‘—"—o'-—-——— 0.8884
‘ F L l AR N S R MONTHLY
6 1 2 3 ¢ 5 6 7 8§ 9 0 u 2=
Fig 3

1

In order to estimate the correlation between the duration T (mn minutes)
and the index of importance I, Table 7 gives these values for February 1969.
The duration of growth A? (the time interval elapsed between the start’ of
the effect and the maximum) is also listed (1n minutes) in Table 7

For SEA (14 events, total duration 610 minutes), the average values are -
10 143 minutes for A#, 43 57 minutes for 7T, 2.785 for I. In the case of SFA
(22 events, total duration 850 muntes), the average values are: 90 minutes
for A¢, 38.64 minutes for T, 209 for I.

3 — Physica 2/1988
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Estimating the correlation coefficients between T and I, we obtained
Ysea = 06924, Yspa = 0 8139.

4. Concluding Remarks. We can formulate some conclusions .

(a) The high correlation coefficients (r = 0894 for SEA—SFA and r =
= 0.993 for SFA—SRB) point out the fact that these effects appear and
act generally together, being associated. The VLF and VF waves are less
affected (due to SEA and SFA), the VHF and UHW ones are more affected
(due to SRB)

(b) Although the relative duration of these ones is small (95Y, for SEA,
11.54% for SFA), their influence on the radiocommunications can be signiti-
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Table 7 cant if we take into account the long dura-
tion of these effects- the average values of
SEA SFA. Tmax exceed 60 minutes for SEA and 90
A T r a7 I minutes for SKFA; the maxima are 115,
7 35 3 7 50 3 130 and 315 minutes (for SEA, SFA and
7 30 1 5 30 1 SRB, respectively).
- (c) The high correlation coefficients
8 40 3 8 45 3 between 7" and I (r =0.6924 for SEA,
20 45 2 13 35 1 r = 0 8139 for SFA) point out a very pro-
- - = 8 40 1 bably linear dependence between these qu-
4 15 0 6 20 0 antities.
- - g gg ’ (1) (d) Taking into account the fact that
_ — — 5 10 0 the sudden varnation undergone by the level
- - = 5 20 0 of the low frequency radio noise (27 kHz) and
5 w0 3 o e 3‘1 by the phase altitude (SEA and SFA, res.,
— — _ 10 20 0 pectively) are strongly connected with the-
7 20 O i %‘5) g electronic and ionic concentration [2], the
9 30 3 10 30 3 study of these ones shows the quantitative
18 40 3 19 60 2 : :
17 115 3+ 16 8 5+ relations betvs.reen the solar activity and the
10 35 1 12 55 1 state of the ionosphere (especially the low
17 60 2 15 45 1 ionosphere).
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ABSTRACT. — The paper deals with the motion of a solid grain in the neigh-
bourhood of a star The case when the radiative force exceeds the gravitation
1s stndied by using dimenstonless variables The existence of a forbidden sphere
around the star, which cannot be penetrated Ly the grain, 1s pointed out The
radus of such a repulsive sphere 1s estrmated 1in some concrete cases

1 Introduection. Using a simplified model (but constituting a good enough
approximation), in the neighbourhood of a star a solid body 1s subject to
two main forces the giavitational attractive force F, and the rcpulsive force
F, due to the radiation pressure Of course, for large enough such bodies, F,
is generally negligible with respect to F,, but if these bodies are sufficiently
small their motion 1s sigmificantly altered by F,, which can, under certain condi-
tions, exceed F, In this paper we shall consider the motion of such a small
body (1e a solid grain of water ice or dust), for which the ratio F,/F, 1s
supraunitary i module

2. Basie Equations. Let us firstly remmd a theorem from mechamcs
Constder two material pomnts of masses m and M, m < M, and let 7 be the
position vector of m with respect to M Let also F, and F, be two central
forces of fixed pownt M, m whose field the point m is moving The force E, 1s

repulswe while F 1s attractive If the following conditions are fulfilled

(1) |Fl < IF);

(i) m approaches M with a finite 1nitial speed,
then m and M cannot collide

Iet now 1mpose a new condition the two considered forces obey to an
inverse square law The motion of m will be plane and featured by an equa-
tion of the form [2]

r— Crd = —pjr, (1)

written using modules, 1n which C 1s the constant angular momentum, while p
is called the effective gravitational parameter This 1s an abuse of terms, since
the nature of the two forces was not specified, however, we shall keep the
term “gravitational”, because (1) has the same form as the motion equation
in the well-known two body problem [3].

For p. > 0, the problem 1s analogous to the standard Kepler problem, which
is well studied Subsequently we shall deal only with the case p< O (|F,/F,| =

> 1)

* Centre for Astronomy and Space Sciences, 3400 Cbg-Nupoca, Roman.a
** I'ndustrial Secondary School, 3379 Baia de Aries, Rowusia
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The case p = 0 is stmple The two forces counteract each other and the
resulting force is zero Therefore m will couserve 1ts initial motion (or rest)
with respect to M as 1n the absence of this mass

Let us now consider p << 0 For 51mp11c1ty, we shall introduce two dimen-
stonless variables

x = 7[R, : (2)
where R 1s an arbitrary length, and
T = 1R-¥20%, (3)

which is a dimensionless time (here the factor ¢ =\/:—1 was 1ntroduced 1n
order to obtain real values for <)

Consider that the motion of m 1s rectilinear In this case, its velocity
V = drjdt will become with (2) and (3)
V = 1R-Vzuliz, (4)

where v = dx/dt is the dimensionless velocity

With these considerations, the energy integral V2 = 2ufr 4+ & (where b =
= energy constant) will acquire the dimensionless from

= —2/x + ¥, (5)
where the dimensionless constant of energy 4’ has the expression
b = v+ 2/x, (6)

x, and v, = (dx/dx), bemng the initial conditions

Consider x; and v, as being final values for x and v, respectively With
(5) and (6) we can write

vi =02 + 2(1/x, — 1/x)) (7)

3 Repulsive Spheres. It is clear from (7) that, if m moves away from M,
we shall have x, < x, and the final velocity will be higher than the initial
one This fact is natural, since the repulsive force is dominant Obv1ously,
the velocity cannot increase indefinitely , when x, tends to infinity, 23— A’
(which is finite)

Suppose now that m moves towards M Then x, < %, and the final velocity
will be lower than the initial one At limit, when m 1s coming from a very
far region, 1/r,—~0 and (7) becomes

% = 2/(v] — vj) 8

One easily observes that if the final dimensionless radius vector reaches
the value.

X = %, = 2[v}, (9)

then we have v, =0 This means that, whatever be its imitial (finite), speed,
m cannot approach:M at a distance smaller than x,
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Let us see what happens later Let m be in the situation x = %, v = 0.
We shall consider these values as initial conditions, replacing them 1n (7), we
observe that m moves away indefinitely from M. When 1ts distance tends to
infinity, 1ts speed tends to return to its primary value (but this time it is
directed outward); we are in the first case considered in this section.

In conclusion, there exists around M a sphere of dimensionless radius x,,
given by (9), and m cannot get into this sphere In our conditions, the frontier
of the field of the resulting force acts like an elastic barrier m 1s gradually
slowed down; it stops at the distance x,, then is thrown backwards with a
monotonically increasing speed and cannot return

4. Cireumstellar Forbidden Spheres. ILet the central body be a star of
mass M, radius R and luminosity L Iet the other body be a homogeneous,
spherical grain of radius #/, density ¢ and mass m, with constant albedo, moving
in the neighbourhood of the star. Then the attractive gravitational force will
be:

F, = —GMm/[r, (10)
and the repulsive radiative force will have the expression [4]:
F, = (AL|(4rc))/, (11)

where G = gravitation constant, 4 = effective cross-sectional area of the grain,
¢ = speed of light.
Thus the effective gravitational parameter will be -

v = GM(1 — ALJ(ArmcGM)). (12)

The case p > 0 1s mathematically modelled by the two body problem
The case p = 0 is also clear: if the grain fulfils one of the following equivalent
conditions (which lead to p =0):

Ajm = 4neGM]L, (13)
2m = 46GM/L, » ©(19)
#'¢ = 3L/(16mcGM), : - (137)

then it will keep its initial motion (or rest) with respect to the star
With (2), (4), (9) and (18”), the radius of the repulsive sphere becomes

ry = 2GM(3L|(16meGMr'c) — 1)/ V2, (14)

where we identified the arbitrary distance R appearing in (2) with the radius
of the star.

This result can be briefly stated as follows 1f a given spherical grain
(defined by #’ and ¢) moves towards a given star (defined by M, L and R),
and if the following conditions are fulfilled

(i) the grain is coming from infinity with an initial speed V,;

(i) #'¢ < 3L[(16mcGM),
then there exists around the star a forbidden sphere whose radius 7, is given
by (14), and the grain cannot penetrate inside. If the supplementary condition
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7o > R (x,> 1) 1s also fulfilled, the grain cannot reach the star Obviously,
#, (for a given star) will differ for different grains (according to their dimensions
and densitics)

If we denote by F,, and F,, the values of F, and F,, respectively, at
the surface of the star, (14) can also be written in the from (see [1])

7o = 2(Fgo + I o) (RIV,)2[m (15)
5 Numerieal Estimate. We performed a numerical application in the case
of a spherical gratn with # = 107® cm, ¢ = 3 4 gjcm? (silicate), V, = 20 km/s.

Considermg four representative concrete stars, we obtained the following values
of r,

Star MM, L/Lq R (km) 7, (km)

« Sco 19 34 000 369 108 38 10
« Boo 42 130 181 107 14 102
x CMa 33 61 167 10° 66 10w
Sun 1 1 696 . 10° 46 108

For the Sun we considered My = 1989 10¥g, L, = 3826 10% cm? gfs’
One sees that a grain with the above features can get into the inner plamnetary
region of our solar system
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, ABSTRACT. — An approzimate method 1s given for calculating the higher
order accelerations of a dynamc system The method consists in usig some
unknown functions, of the time variable, called ,,direct connexion functions”

'
'

Introduetion. The higher order accelerations appear directly in the study
of all phenomena whose variation in time is very fast The differential equa-
tions describing the dynamism of these phenomena become more and more
complicated as the more one attempts to catch the phenomenon in all its
complexity. Their resolution implies special mathematical methods of investi-
gation, the result of which leads to new and superior orientations in the field
of technical creation.

As an example the third order acceleration 1s given (considering velocity
as first order acceleration), which appears in the vertical vibrations of auto-
trucks and tractors [3], supported without danger by the drivers of these vehi-
cles, on condition it does not exceed a certain admissible value.

Such. accelerations also appear when fast passenger trains pass through
curves. That is why projecting and constructing railway curves canmot lack
knowledge of these accelerations ‘

In this paper an approximate method is given for calculating higher order
accelerations of a dynamic system. The method consists in-introducing some
unknown functions, of t time variable, called “direct conmexion functions ”

Description of the Method. Let us consider, 1n general, the differential equa-
tion of a dynamic system

S el =10, )

. .. B C ) )

with the initial conditions %(0) = x,, (¢ =0, 1, 2, . ., » — 1), assuming the
functions a, f = C[0, a], a > 0.

By introducing the “direct connexion functions” e,o(f), we have the rela-

tion
(v
X = &g,0%, (?; = O, 1, 2, ey n), (EO,O = 1), (2)
and equation (1) becomes
%y aft)eo(t) = f(0)- 3)
1=0

* Polytcehuical Instsinte of Clup-Napoca, 3400 Clus-Napoca, Romaisma
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By integrating equation (2), for ¢ = 1, it follows
¢

X = %y exp [\51,0 (s)dsJ, (4)
0

and substituting 1n (3), one obtains
:

'%uwﬂMﬂ+gunswﬂ=m> 5)

%y eXp

By introducing the “direct comnexion functions” e,, (f), (+=1,2,3, ., #n),
we have the relations

) {n—1)

. . . (n
X=2¢, % X=¢9,% . ., %¥=¢,,; % obtaining, for 7 =1, the ex-
pression
(+)
X =€, fq42 - Ez2 E23 €10 X (6)
By noting
1
[TCao—1 = %10 €21 €32 . E-14-2 -1 (7)
g=1

relation (6) is written

(3) 1
x = Hsa,cr-—l Xx. (8)
a=1

From (2) and (8) it follows
0= I—IEU,G—l (9)
c=1

By making use of (9), equation (5) becomes

[

%@%&Mwﬂ%@+i%mgammkﬂﬂ (10)

t==1
By generalizing relation (4), we have

(=1 (=1
X = %, exp Ss""' (s)ds],
0
and substituting it 1n expression

O] (+—1)
X=¢&,:-1"%X,
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one obtains
i

(;) =(;;—01)€|,£—1 (f) CXp [gsx,z—l (S)ds}; (l 1)

0
(=123 ,n
From (4), (8) and (11) 1t results

%o [T €ommt (fJexp [ (s)ds] —~

g==1

Sl e

!
(-1

e e (Dexp [ S - (s)ds] _0 (12)

(1=1, 2, 3 , M)

By observing that ¢,,.; # 0, for ¢ = 1, expression (12) becomes

1—1 .

¥y [ co0-1(f)exp [ S €10 (s)ds] —

a=1 '0
H
gs,‘,_l (s)ds] =0, (13)
0
(=23 .. ,n

Expressions (10), (4), (11) and (13) make up a system( A) of 2n 4 1
equations with 2% 4 1 unknown values

(1—1)
— %, eXp

(+)
x(/)x (t :O‘ 1) 2; ’ M)y €a,0—1 (t); (O':- 1; 2: ] 7’7)

Determination of system (A) solution. The approximate solution of system
(A) 15 determuned by a method of numerical integration We apply on the
mterval [0, @}, a > 0, a method analogous to that of polygonal lines

We divide the interval [0, a] by the points ¢ = B2 E=1T1, m, and we consi-
m

der the quadrature formula

Sf(x)dxz ;ZL) f(v 1), (14)
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Writing that system (A) 1s verified for # = £ =, and making use of for-
m

mula (14) for the approximate calculation of integrals, we obtaimn a system
of m(2n + 1) algebraic equations with m(2x -+ 1) unknown valucs

ol ol
+ éa,(k”%) f‘[eu,c_l (k ’%ﬂ _f(k”;t) —0,

3=] o=1
RS @ 0
x( 7;-) xo eXp [;‘2 E]lot\' ;)] ==y,
(3) (3—1) k _
{ % (kmi) — %p - £i41 (k;s) exp [f:; €yt (v i)} = 0, (15)

(¢=2,3, 4, .., n

The unknown values of system (15) are

() :
x[k i) y €g,0-1 (k i):
mn k)
(¢(=0,1,2 ...,n;,6=1,2,3,. .,n, k=12, .., m).
The values of functions eq,.; (£), for £ = 0, are determined with the relations
(o) [o—

17—1
coot(0) = %ol %) L (6=1,23, .., n)

(o)
The value x, for ¢ = #, results from (1)

(n) n—1 Q)]
%o = [a ,(0)]7 [f(O) ~ a0 - x]

1= 0

] .
The vanation diagrams of functions x(¢) and e,,_,(f), constructed by poin-
ts, represent the approximate solution of system (A), on the interval [0, «],
a>0.
In numerical values, solution of system (15) 1s obtained by making use
of the known methods [2].
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ABSTRACT. — A method 1s given for determming the higher order accelerations
when the fast dynamic phenomena are described by differential equations in
complex The method consists in tntroducing some unknown functions, of the
time ¢ variable, called ,,functions of direct connection”

Introduction. In the technical sphere of nature there are a lot of pheno-
mena suited to be placed 1n mathematical structure by functions of complex
variable This procedure of totally including the phenomenon may develop towar-
ds the domain of real variable functions, by coresponding mathematical methods

In what follows a method 1s given for determining the higher order acce-
lerations occurring in phenomena whose variation in time 1s very fast, when
these ones are described by differential equations mm complex This method con-
sists in introducing some unknown functions, of time variable t, which we
called “functions of direct connection” [2], [3]

To the end that the order of acceleration should be given by the order
of the derivative, we have called the space x as zero order acceleration, the

speed x as first order acceleration, and the derivative % as second order acccle-

®
ration Accelerations %, (¢ > 2) are of higher order
Deseription of the method. One considers the differential equation, in com-
plex, of a dynamic phenomenon

FD)E + g(2)E + 2)E + efz) = F(2), (1)

(¥ () .
with the given initial conditions z(0) = z,, (+ =0, 1, 2), where functions f,

g h e, F G —C are continuous and have continuous derivatives and

f(z) = P(x, y) 4+ 10(%, y),

glz) = R(x, y) + +5(x, »),

( bz = Ulx, 3) + 1V (% 3), (2)
e(z) = C(x, y) + 1D(%, ),

\ F(z) = A(%, y) +1B(%, y)
By substituting (2) and the denivatives in relation with the time

(& (9 (o)
z=2x4+1, (c=0,1,2 3),

* Polytechnical Institute of Cluj-Napoca, 3400 Clug-Napoca, Rosmania
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m (1), the following system of differential equations results
{Pa"+Rx‘+Ux—(Q'y+S‘y+Vy)+C=A, @)
Q¥ +Sx+Vx+ Py + Ry+ Uy +D =B

By introducing the “functions of direct conmection” a,oft), eo(f), (+ =
=1, 2, 3), one can write the equations

) O]

X = W%, Y = &0), =1, 2, 3) (4)
By integrating the first equation, for + = 1, one obtains
¢
2(f) = x, exp [ gwl,o (s)ds}. (5)
0
Generally, we have
B B ‘
x(t) = x, exp [SQ'H'O(s)dS] , (#=0,1,2) (6)

0

By obscrving (5), ¥ from (4) becomes
¢

x{t) = %owaalf) exp [ S@x.O(s)ds] (7)

For y we have, analogically, 0
Y0 = 3y exp[§ fen(ds], (=0,1,2) ®)

’ t
56) = yoesold) exp| | sl.o<s)ds] ©)

:

Constants ¥, and 3, result from system (3), for t = 0, being given
® oW ®
%(0) = x4, y(0) =19, (¢=0,1,2).
By sbstituting (4) wx (3), one obtains
(wgoP + wooR + 030U) — y(e30Q + €20S + c10V) + C= 4, (10)
(0300 + @205 + @10V) + y(es0P + €20R + £10U) + D = B (11)
Expressions (4) for 1 =1, 2, (6) for : =0, 1, 2, (7), 8) for : =0, 1, 2,
(9), (10) and (11) make up a system (£) of 14 equations with 14 unknown
quantities
O] 0]
x(t)’ y(t)’ (1 = 01 1: 2; 3)1 w‘l,o(t)l si,o(t)i (1: = 1’ 2: 3)

Determination of system (E) solution. The approximate solution of system
(E) is determuned by a method of numerical integration. On the interval [0, a],
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a >0, we apply a method analogous to that of polygonal lines We divide
the interval [0, @] through the points ¢, =% 2, k=1, m and we consider the
m

quadrature formula

r &

: a & a

SG(s)ds ~ EQG(V;)' (12)
Q

k=12 3 .. m.

By writing that system (E) 1s vernfied forf, = % £, and by using formula
m

(12) for the approximate calculus of the integrals, we obtain a system of 14m
algebraic equations with 14m unknown quantities

With the notations

(1) (O] (s) )
prag. x(k “], yk=y(k i), (=0, 1,2 8),
m

m
Wy 08 == W0 (k i) ; €308 — si,o(k i) 2 (1‘ = 1; 2/ 3):
”m m

the algebraic system 1s

) *
Xp — Wi 05X% = 0, e — &Y = 0, (’0 =1, 2),

() (s) & .
X — %, exp (izm,ﬂm) =0, =0, 1,2),
m f

ymal
a &
Xy — XgWgos XD (—‘ E@x,oy) = O,
my:
() ) a K
In — Yo €XP (;;VZ;{ 5¢+1,(>,) =0, (+=0, 1, 2),
- L 13
< Y — Yo €308 €XP (;—231'0”} =0, (13)
ve=1

xx[wson P, ‘yk) + woor R(xe, yi) + o108 U(%e, y2)] —
— valeson Q% ya) + €200 S(%a, ¥4) + ero0 Vizw y2)1 +
+ C(xs, y1) — A(x, 32) =0,

xn[wa0n Q2% i) + 2,00 S(%r, Yu) + @108 V(xw y6)] +
+ yalesor P(xr, yi) + c200 R(%p, yr) + €100 U(xs, )] +
\  + D(xs, ya) — B(xw, ) =0, (=1, 2,8, ..., m).
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The unknown quantities of system (13) are
() ()
Xr Yo (1’ = O: 1: 2; 3)) W4,0k, €10k (z = 11 2' 3)»
(R=1,2 3 .., m),
and 1ts solution 1s obtained by the known methods [1]
Constants w,o (0) and ¢,5 (0), (+ = 1, 2, 3) are obtained from (4), for ¢ =0

W .
w0(0) = %0 %y, €,0(0) = 30 3o
(1) (1)
The vanation diagrams of functions x(¢), y(¢), (¢ =0, 1, 2, 3) and w,(2),
co(f), (2 =1, 2, 3), on the mterval [0, a], @ > 0, are built up through points.

Relations
(0) (a) (o)
Z= + 2y, (6=0,1,2,3), (k=1,2,3, . ., m),

(o)
permut to trace the variation diagrams of functions z, on the interval conside-
red
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MOSSBAUER STUDIES OF SOME IRON MINERAILS
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ABSTRACT. — Mosshauer measurements of some 1ron minerals were performed
at room temperature The sublattices cotresponding to different minerals and
theur characteristic Mossbauer parameters were determuned. In the case of mag-
netite were evidenced four magnetic sublattices from which two ate stmilar with
those obtamed below the Verwey transition temperature (110—120 X) where
the Fet and Fe3t states are discret.

Mossbauer spectroscopy is one of the most utilized methods for the strue-
tural investigations of 1ron minerals proceeding from terrestrial and extra-
terrestrial samples (meteorites and lunar rocks) [1—4]. Distinct minerals give
different hyperfine structure patterns usually. Also, ferious and ferric sites may
be distinquished by their isomer shifts and their quadrupolar splittings [2].

The aim of this paper is to report our results concermng the structure
of some iron minerals as Dobrogea one, magnetite (B#ija — Bihor) and limonite
(Konigsberg). The structural sublattices and their weights were determined.

Mossbauer effect measurements were performed at room temperature using
an ELRON type spectrometer working in a constant acceleration mode. A 5Co
source of 10 mCi activity in copper matrix was used All data were accumula-
ted using a Nuclear Data multichannel analyser on 512 channels. The isomer
shift is given 1elative to «-iron. The experimental spectra were fitted using a
Fortran IV program, assuming lorentzian shape of the lines.

For the Dobrogea one, the experimental spectrum (fig 1) was decomposed
into two subspectra belonging to «-Xe,O; [1] and FeCO, [5, 6] The characteris-
tic parametres of these sublattices are given in Table 1 The first sublattice
is due to the Fe3* ions showing a magnetic hyperfine structure, while the second
sublattice which is due to the Fe?™ ions shows only a quadrupolar splitting
5, 6]

Table 1
Muissbauer parameters of Dobrogea ore sublattices
Quadrupole  Magnetic Line Relative

Identified Iso):le;lls;)uft splhitting freld width area
sublattice :(EO o) (mm/s) (kG) (mm/s) (%)

: 40.007 +3 +4-0.004 +2
(1) —aFe 0, 0378] 0.162 523 0.279 52
(2) —FeCO,; 1.210 1.857 - 0333 48

* Umwversity of Cluy-Napoca, Faculiy of Mathematics and Physies, 3400 Cluy-Napoca, Romania
** Institute for Physscs and Technology of Materials, Bucharest, Romania
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The experimental spectrum of magnetite (Fe,O,) was decomposed into
four sublattices having all the magnetic hyperfine structure (Fig 2). The charac-,
teristic parameters of these sublattices are given in Table 2 ’
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Table 2
Mdssbauer parameters of magnetite sublattices

Isomer Quadrupole Magnetic Line Relative

shuft sphtting field width area
Sublatti

ublathee  (mmys) (mm/s) (kG) (mm/s) (%)
+0.007 +0.007 +3 +0.004 +2
1 0.341 0.070 482.3 0.524 394
2 0.697 0.020 449.7 0.553 361
3 0.263 0.011 507.0 0.466 13.8
4 0.765 0.023 476 8 0.465 117

Magnetite is a spinel ferrite which can be written as Fe3t[Fe?tHe3+]O,
or (AB,O,) [1] The type “A” cations are situated into a tetrahedric oxygen
coordination and those of the “B” type into an octahedral symmetry site
with a trigonal distortion. The sublattices 1 and 2 characterized by the follo-
wing values of the magnetic field, 482.3 kG and 449.7 kG, may be attributed
to the Fe®* 1oms from the A site and to the B site (Fe?t 4 Fed*) cations
respectively A fast electron-transfer process (electron hopping) exist between
the Fe2t and Fe3* ions on the octahedral B sites above the Verwey transition
temperature (110—120 X) [1, 7]. The sublattices 3 and 4, characterized by the
magnetic field of 507 kG and 476.8 kG respectively, are sumilar with those
obtained by Banerjee ef al. [7] at 77 K where the Fe®t and Fe®*t states are

1000J
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Fig. 3. Experimental spectrum and sublattices of the limomite sample.
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discret, one apparently sees two partially resolved hyperfine patterns with
fields of 503 kG and 480 kG The 507 kG field corresponds to the Fe3* ions
on both A and B sites and the 476.8 kG field is due to the B site Fe2¥ jons
In this case do not exist the electron-transfer processes between the Fe2t and
Fe3t jons from the B sites.

The simultaneous evidence of the four characteristic sublattices of magne-
tite, as under as above the Verwey transition temperature, may be explained
by the presence of some cation vacances in the studied sample which prevent
the development of the electron-transfer process between Fe?t and Fed* 1oms
situated in B site Table 2 shows that the weights of these sublattices (8, 4)
are three times smaller than others

Table 3
Musshaner parameters of limonite sublattices

Isomer Quadrupole  Magnetic Line Relative
shift sphitting freld width area
Sublatitee (mmjs)  (mm)s) (kG) (mm/s) (%)
+0 007 +.0.007 +3 40004 +2
1 —(aFe,0,) 0303 022 502 0582 374
2\ Fe.0 0 316 025 478 5 0578 132
3 Lahet 0 352 . 035 447 0 589 11.3
4 —aFeOOH 0 282 057 - 0 465 392

For the limomite were also evidenced four structural sublattices (Fig. 3).
The Mossbauer parameters for these are given 'in Table 3. The first sublattice
characterized by the magnetic field of 502 kG may be attributed to the hema-
tite («—Fe,O,) and the other two (2, 3) sublattices characterized by the mag-
netic field of 478.5 kG and respectively 447 kG to A and B sublattices of
v—Fe,Og [8] The fourth non-magnetic sublattice with an weight of 39.29,
is due to the presence of goethite («—FeOOH) having a particle size granula-

tion smaller than 70 A [9]
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L'EQUATION DE DISPERSION D'UN FLUIDE VISQUEUX-—
ELASTIQUE, IONISE, EN PRESENCE DU I'EFFET RAYVLEIGH-BENARD
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Manuscrit regu le Octobre 17, 1988

ABSTRACT. — Dispersion Equation of a Viseo-Elastic Conducting Fluid. The
Rayleigh-Bénard model for a visco-elastic fluzrd has been studied to include
the Hall effects and the umiform rotation on the thermal convection

Introduction. Dans le présent article nous nous proposons de déduire
I’équation de dispersion pour le cas d’un fluide visqueuxélastique de type Old-
royd [1], tonisé, ayant une conductivite délectrique finte, en présence d’un effet
de conductivité thermique de type Rayleigh—Bénard, du l'effet Hall et du
mouvement de rotation uniforme, avec une vitesse angulaire Q(0, 0, Q) Le
flude se trouve sous l'action d’un champ magnétique uniforme B(0, 0, By)
et de laccélération gravitationnelle g(0, 0, —g)

Nous utilisons les resultats obtenus par S Chandrasekhar [2], R Sharma,
K Sharma [3]), R Sharma [4], P Bhatia, J Stewer [5], M Vaswu [6],
la différence des travaux cités nous prenons en considération I'influence simulta-
née du l'effet Hall et du mouvement de rotation

Equatmns fondamentales pour 1’état perturbé du fluide ionisé. Admettons
quz des petites pertuibations se propagent dans le fluide ILe systéme des
équations magnéto-hydrodynamique pour 1’état perturbé du fluide, en projec-
tion sur l'axe Oz, s’écrit de la maniere survante [3], [4]

ay(ée 520 020 [e14
21l N ki) BT To RA
(1 T at){at (Aw) g7 axt 6y“) +20

By & - AWN
-~ [A(BB,)]} — ,(1 % a{'A w

(_a_ [— \}”‘A] SB — aTU HBO gé- , (2)

ot ox

d
[5 xA) 0 = Buw (3)
ow B, 0dz<
a_ 0 8¢ 4 Bo 32 4
(ai VA) t_ Oz + foPo 05 ( )
o _ —pg % 9

5 — b )& =Bo 2+ HB, 2 ABE)], (5)

* Untversite de Cluy-Napoca, Faculié de Mathematique et Physique, 3400 Cluj-Napoca, Roumanie
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ot w est la composante sur l'axe Oz de la perturbation de la vitesse
17(%, v, w), 0 — la perturbation de la température du fluide, 3B, — la per-
turbation sur l’axe Oz du vezteur champ magnétique B, A — le temps de
relaxation des tensions, A, — le temps de retardement des déformations, v —
— le coefficient de viscosité cinématique, p, — la densité du fluide pour z =
=0, ou la température T du fluide est T, (admettons une rélation entre la
densité p et la densité p, sous la forme p = py[1 — (T — T)], oit T est la
temperature pour z # 0, « este le coefficient dé expansion thermique du volu-

me), » — le coefficient de conductivité thermique, B = g (le fluide est

chauffée de bas en haut de sorte que T = T, — B2), v,, — le coefficient de
diffusion magnétique, H = 1/p,Ne, ot p, est la perméabilité magnétique du
vide, N est le nombre des ions (électrons) dans I'umité de volume du fluide,
e — la charge électrique, A — P'opérateur de Laplace et

C=rotw, E=rot,SE. 6)
Dans le fluide se propagent des petites perturbations sous la forme
¢'(% ¥, 2 t) = O(2) exp (ik,x + 1kyy + ni) (7)

ou o' =w, 8B, 0, {, £, ®(z) est I'amplitude de la perturbation, #, %, sout

les composantes du vecteur d’onde %, # est la pulsation d’onde La substi

tution des perturbations (7) dans les équations (1)—(5) et tenant compte

de la forme du l'opérateur A = 2 -+ Ll + Eop_proaap=%ctr=
. dx? ay® dz? dzs

= k24 k2, nous conduit au systéme d’équations

(1 4+ an) [0(D? — BAW (2) + «gk?@(z) + 2QDZ(2) — qu" (D* —

oo 8

— B)DK(2)] = v(1 + an)(D? — B)W(2) ©)

1 — vu(D? — B)K(2) = B,DW(2) — HB,DX(z) 9)
[n — x(Dt — £%)10(z) = W () (10)
[ — w(D? — §2)1Z(z) = 2QDW(z) + -2 DX () (11)

oPo
[ — vu(D? — F2)1X(2) = ByDZ(z) + HBy(D* — k) DK(z), (12)

ol D = % , W(2),0(z), K(2) X(z) et Z(z) sont les amplitudes @(z) des pertur-

bations: w, 6, 8B,, £ et . ’

Introduisons maintenant les grandeurs
nd?

a="kl, c=—, pp=—, pp=—, F
v x

Vi

I
154
=3
ll
&
<
N
Il

(13)
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oft d est une longueur caractéristique pour le fluide (le {luide est confiné entre
les plans z = 0 et z = d) .

Remplagons les grandeurs (13) en équations (8) — (12) Faisant les calculs nous
obtiendrons

Byd (D‘l — @)DK — 2d2*Q

YgpPaV v (14)
—_ (igf) )2 © =0

v

(D2 — a?)[A(D? — a?) — o] W +

(D? — @ — py0)K = — [_—) DW + ( B84 pg (15)
Vg Vin .’
(D* — @ — p16) O = — (Bi’)w (16)
“
20 { B,
[A(D? — @) — 6]Z = —[ )DW {5 )DX (17)
l KopPoV
(D — a2 — ppo)X = — (Bod)pz ~ (‘:B) (D* — &) DK (18)
Ve Yo :
Introduisons les nouvelles constantcs
GIZEI c =-"i_°i, caz(ﬁfﬁ‘?j)az, C4:B°d, (19)
. % HLoPoV v Vo
20ds 2Qd B,
C; = , Cg = y Cp =
v v Vyud

et les opérateurs
O=D*—@a? 0, =D%— a? — p0, 0, = D? — @® — P,

Os=AD* — @) — ¢ (20)

Les équations (14) — (18) s’écrivent sous la forme -
O0W + c,(ODK) — ¢;DZ — ¢, @ =0 (21)
0K = —c,DW + He, DX | (22)
0,0 = —c,W . (23)
OuZ = —c,DW — c,DX : (24)
0,X = —¢,DZ — ¢,H(ODK). (25)

L’équatron de dispersion 81 I'on applique lopérateur D dans (24) ¢t l'o-
pérateur O, dans (25), introduisant le nouwvel opdiateur

Li=0 0, —cye, D% = (26)
on obtient 1’édgalité ) -
LaX = ¢ceD®W — He,0,0DK, , (27)
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Si I'on applique l'opérateur L4 dans (22), en tenant conpte de (27), 'égalité
(22) prend la forme

LiO,K = —c,(LaADW) + He, D(LaX) = —c,(LaDW) + (28)
+ He,D(c,ceD*W — ¢,HOODK).

Introduisons maintenant les opérateurs

Lag = L0y + ¢4, H?0,0D2 (29)
et
Op = ciccHD? — ¢, L4D. (30)
En tenant compte de (29) et de (30), I'égalité (28) s'écrit
‘ LagK = O, W. (31)

Nous pouvons éliminer la fonction X entre les équations (24) et (25) Si lon
applique l'opérateur O, dans (24) et l'opérateur D dans (25) nous obtiendromns

LiZ = —c,0,DW + c,6,HODK (32)

Si I'on applique l'opérateur L,u dans (32), en tenant compte de (31), ’égalité
(32) prend la forme

LagLaZ = (—cgLau0sD + c,0,HODXO)W. (33)

Si 'on apphque Poperateur I,AHLAO dans I’équation (21) et tenant compte de
(19), de (23), de (26), de (29), (30) de (31) et de (33), on obtient I'égalité

ofoftnaort (22122 2 oo -

N e N DR

ey

e (34)
) o |G o -
HoPoVVin Vi v
(2 - — (22t
Vi v
Introduisant les constantes
_ B T = 40244 M _H'~’B,, R = _Bfgcii’ (35)
KaPoVVin v2 m V¥

oft ¢ est le nombre de Chandrasekhar, T est le nombre de Taylor, M est le
nombre qui caractérise l'effet Hall, R est le nombre de Rayleigh, aprés un
arrangement des terms, 1'égalité (34) prend la forme

030[LagLaOu + 20 TML ,D* — TMQDS —
— QLiD?] + TL4y0,D%W = —Ra?LzLsW. (36)

Cette égalité est exactement l’équation de dispersion cherchée.
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Cas particuliers 1 Pour le cas d’un modele de fluide visqueuxélastique
omsé, en 'absence du leffect Hall (H = 0, M = 0), l'opérateur L4, prend la
(orme

Lay = L40,
et I'équation de dispersion (36) se réduit a la forme
0,[0Ly + TD0O;]W = —Ra?L ,0,)W (37)

2 Pour le cas d'un modéle de fluide visqueux-élastique 1omsé, en I'absence
du leffet Hall (H = 0, M =0) et du mouvement de rotation (Q =0, T = 0),
I’équation de dispersion (36) se réduit a l'équation obtenuc par R Sharma [4]

0,0LW = —Ra20,W. (38)

3 Un autre cas est celui d'un modeéle de fluide iomisé, en l’absence du leffet
visqueux-élastique (A =10, 2, =0, 4 = 1) et du l'effet Hall (H =0, M =0)
mais en présence du mouvement de rotation (T # 0) Les opérateurs Lay, Oy
et L, prennent la forme

Lag = L0, = L70,,
I* =00, — QD?,
Os=0"=D*—a®— ¢, L= L*

et I’équation de dispersion (36) se réduit a 1'équation obtenue par S Chandrase-
khar [2]

0,[0L* + TOID*|W = —RaL~0,W (39)

Dans un autre travail nous nous proposons de résoudie ’équation de dis-
persion (36) et d’établir les critéres de l'instabilité magnétohydrodynamique
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ABSTRACT. — We present a calculus method of resonance frequency for a
polycrystaline YIG cylndrical body, with internal metallical bar This reso-
nator may be employed for microwave measurements and applications Such a
résonator has been used as resonance cavity for an IMPATT mucrowave oscil-
lator A good toncordance may be observed between the theoretical and expe-
nimental values, for the resomance frequency of such a resonator

Theeretical introduetion. We consider a polycrystalline YIG cylinder shown
in Fig 1 We assume that this cylinder has mettalical walls at p = R,, z =0
and =1, and a magnetical wall at o = R, We also assume the resonator
situated in uniform d ¢ magnetic field oriented along z axis

The equation of the magnetic potential 1s given by the following expression .

2,0 1 1 2,0 2
(.Lv 4+ L2 Lﬁ) v o (1)
dp? p dp p* Ogt oz*

Where p 1s the magnetic permeability

‘If=:"'( — p)“ (Bze™m) ()

"
is the wave function

sin

k, = ™ is the wave number,
!

Im( K ) K,
: ——_j__ Pl = A~Im —— P) +
- metolficd Y Y

Lar
+ BY,,,( i P) (3)

—caviraty Y jry
and
+1K
! ::):(Kx Z) = e™"4
1
q ! The other notations are given 1n reference
[1] Taking into account the periodicity
Fi1g 1 The representation of the
resonance cavity condition ¢ = ¢ + 2w, as well as the bor-

* Unwersity of Clug-Napoca, Faculty of Matlemuhics asd Phgsics, 3400 Clug-Napoca, Ramamia
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der conditionsat z = 0 and z = 1, we will obtain for the wave function the
following expression . -

I

¥ — "’( K: oV eos (K, z)e-m 4)
Yo - ’ '

At the margin between the metallical bar and the giromagnetic medium, the

border condition is given by

] 1 8¢ -
e g~ P =0 (3)
, dp p Oo
Raplacing eq (4) m cq (5) we will obtain at p = R,
n{ K g Tmf K
= 2 R4 BT Lz R|=0 6
«/ PLY;).(‘\/“‘P )+ K:R' Ym( \/ — ) ( )
Outside the resonator the equation of the magnetic potential may be written
P, 1 BY P Pl 7
o T T T {7)
The eq (7) has the solution.
W, = (K.p) cos (K,z)e=® (8)
The border condition for the magnetic wall, at p = R,’is given by
e s Loy 9% 9
b Tk = )
Uisng eq (6) and (7) results:
_— I, Loy .
N (—’—‘: Ra) e —Ki—Ra) — IMK,R,) =0 (10)
Ym 4'/ —u Kx . Ra Ym J ___'y_ Km

The equations (6) and (10) form a system 1n function of the comstants 4
and B This system cannot have vanishing solutions for A and B Putting
the condition for the determinant to be zero we will obtam for m =0 [2]
the following equation

Ii{qRY W —pY(qR,) — K4(K.Ra) 1 — YilgR) [V —ulo(gRs) —I4(K.R)] =0  (11)

For a giromagnetic material with electromagnetic loss, the magnetic permea-
bility may be written [3] as-

) w=1+ Lis
where .., is given by-

_2:}{“’0["’% — af 4 1/T?] (12)
[0 — w? — 1/T2]2 — 403/T?

X;x =
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In this way we will obtain for the magnetic permeability
2
=1+ L = 00 (mf, — w? 4+ %) + [(o'(“’, — w? — ——) +
o _ (2
( q.l

whoare ¢, represents the solutions of the eq (11) The cigenvalues of the electro-
magnetic mods, result from eq (13), for m =0

2 p—
o = [ 2} — 2 —EM__ R (14)
2 14 =p\2
v (5]
a4
Where
_ wardg . 2 40)5{(:\2-_ . 160)5

np |2 T2 (np 2 2

— ] +1 (——- 41
[ (Icl) q,l }

In cq (14) only the posttiv value 1s retained, because, at 7 = oo (lossless
material) the value of wey cannot be equal to the value coresponding to an
mfinit extended medwum

T he values of ¢, obtained by a computer method for different cylindrical reso-
nators, may be seen wm Table 1

Experiment. Several VIG resonators have been prepared by comventional ceramic method
[4] For a peculiar resonator with the following parameters 4rif; = 2200 Gs, T = 876 10710 sec,

Table 1

The values of g for different dimensions of the resonators

oscilla
F2 L {m), R,(m) R,(m), q, ﬁog‘;g
1 10 x 1073 8 x 103 3 x 1073 722 15 011
1 10 x 1073 8 x 102 4 x 103 541 82 011
1 10 x 102 8 x 1073 5 x 102 433 5 011
1080 16
1 10 x 1073 8 x 103 6 x 1073 361 25 011
900 08 012
2 10 x 1072 8 x 1073 3 x 103 732 31 021
2 10 x 1073 8 x 1073 4 x 1073 519 28 021
2 10 x 1073 8 x 103 5 x 1078 439 43 021
1085 90 022
2 10 x 1072 8 x 10— 6 x 1073 366 18 021
904 92 022
3 10 x 103 8 x 10~ 3 x 108 732 37 031
3 10 % 1072 8 x 1072 4 x 10~3 549 28 021
3 10 x 1073 8 x 10— 5x 1073 439 43 031
1085 93 032
3 10 x 1072 8 x 103 6 x 1072 366 18 031

904 95 032
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Fig 2 Plot of resonance frequency as a fun- Fig 3 Rnancesoe curve of the resomator
ction of external d ¢ magnetic field

f=10 mm, R, =8 mm, R, =4 mm, the theoretic and experimental resonance frequency as a
lunction of the extermal d ¢ magnetic field 1s plotted in Fig. 2 Fig 3, shows the resonance
curve of such a resonator plotted with a experimental set-up presented in Fig 4 Fig 5 and Fig 6
present the theoretical resonance frequency as functions of R, and R,.

16 17

Fig 4 Experimental set-up 1 IMPATT oscillator, 2 current supply, 3 izlator, 4 cupler;

5. attenuator, 6 f{requenvcymeter, 7 skrew; 8 skrew, 9 twist, 10. YIG resonator monture,

11 electromganet, 12 detector, 1le3. alternator, 14 detector, 15 osalloscope, 16 processore
type TR—4910/9, 17 plotter, 18 Tesla-meter.
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Applieation. Such a resonator as described previously has been employed

as resonant cavity for a rcctangular waveguide oscillator with IMPATT diode.

The R, L, C parameters of the Yig oscillator have been determined as
follows )

1 From the resonance c¢urve plotted in Fig. 2 may be accounted the
quality factor of the resonator, ¢, = 926,

2 The -parameters of the bar have been determined by a measurement
method dcscribed 1n reference [5] We found for the bar quality factor, Qpy, =
= 166;

3 We assume that the loss (in principal) 1s given by the loss of the bar.

In this way knowing that @, ~ o and fi= we found L = 0.27

bar
nH, C =108 pF and R = Ry, == 0017 Q.
The schematic of the oscillator is shown in Fig 7 The equivalent circuit for
the oscillator is represented in Fig 8, where R, L, C are the parameters of
. the giromagnetic resonator and Z; 1s the impedance of the short circuit.
Writting that the imaginary part of the resomator impedance must be equal
with the imaginary part of the active device impedance, 1t follows:

4riLC

RLXp — (X, — Xp)* Xp -+ XplX; — Xo)
R} + (X, — Xp — Xp)

=X; — Xc

where

! Xp[Rp +1X; — Xp)] -
Z,=—2=2 and Zype = R X, — X
0 Rp + 71X, — Xp) X + Xz = Xo)
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Fig 7 The repre.2utation of the oscillator

According to those previously described, we obtained for the 1esomance frequen-
cy the theoretical value f= 9100 MHz, at an cxlernal field B = 3800 Gs
The expertmental value was fo, = 9460 MHz at 40 mA bias current of IMPATT
device

The comparison between the experimental and theoretical values of the
frequency put 1n evidence a good concordance of the theory with the experr-
ment

The 49, difference between the theoretical and experimental value appears
because of several facts

1 The IMPATT’s parameters depend strongly on the bias current and
the configuration of the experimental set-up.

2 The equivalent circuut used for the IMPATT diode 1s a simplified one.

3 The calculus of the parameters of the resonator has been made wi-
thout taking into account the magnetic loss of the matemnal

4 The parameters of the bar have been determined with 59, precision.

The frequency characteristic for such an oscillator, swept by current varna-
tion, 1s plotted in F1ig 9 The plots of the frequency and the power as a func-

L=06nH o
e IO o
F=-20 - 19460 MH2
0 Cp_ 0'3DF____ Be038 7
T R=0.017 peoma
C-0.52pF )
D P C= 1.08pFJ‘_'
T
- — - f
Pi1g 8 The equvalent scheme of the I'1g 9 Power characterstic for a current

oscillator sweeped osalator.
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Pi1g 10 Power and frequency characteristics as a function of external d ¢ magnetic field

tion of the externmal magnetic field 1s given 1n Fig. 10. From Fig 10 1t also
may be seen that the oscillator may be swept for more than 900 MHz, using
a variable magnetic field from zero to 6000 Gs
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LONG-LIFE RADIOISOTOPES IN RADIOACTIVE, DEPOSITS OF

CLUJ-NAPOCA CITY AREA
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ABSTRACT. — Data on the May 1986 radioactive fall-out in Cluj-Napoca
area are presented. The measurements were performed by high resolution gamma
ray spectrommetry The concentrations of long-lived isotopes 134Cs, 187Cs,
141Ce, 19Ru, 13B8h, MmAg were quantitatively determined and subsequently the
concentrations of the short Iived isotopes 182Te, 182[ 18], 140Bq, 14073 20sRyu
The total activity of the fall-out was more than 1000 kBq/m?*

Introduction. Following the accident of the Tchernobyl atomo-electrical
center, a great quantity of radionuclides (~100 MCi) escaped from the reactor.
It is estimated that 139, of the inventory activity of Cs representing 15 MCi
and 49, of the inventory activity of Sr representing 2.2 MCi of %Sr 4 %8r
left the reactor [1—2] Table 1 presents the radionuclides 1dentified by gamma
spectrommetry 1n the radioactive deposits of Cluj-Napoca City area.

Table 1
Radtonuclides identiflied in samples from Cluj-Napoea
Fission Main gamma rays .
Nuclide Tij2 efficiency emitted (keV) (ﬁ)izih:ifi
(%) and abundance (%)
152 e 32 days 4.7 228 (859%) 132 (23 h)
1s2] 23 h — 673 (98%) 775 (66%)
520 (22%) 650 (20%) 133X e (stable)
o 126 days 63 sa7 (aagly o oW e (10 B
a ays A a
s 50 7 62 e (g o s bl
s years A a (stable
134Cs 2,06 years - 605 (97%) 795 (85%) 13¢Ba (stable)
138Cs 13 days 0,007 1047 (80%) 818 (100%) 137Ba (stable)
103Ru 40 days 29 495 (88%) 611 (5%) 103Rh (stable)
100Ru 4- 1 year 04 513 (219%,) 624 (11%) 108pq (stable)
lDBRh
%5Zr 65 days 0.3 726 (559%,) 760 (43%) %Nb (35 days)
%Nb 35 days 0.4 768 (99%) %Mo (stable)
20Mo—+-
9 Tc 67 h+6h 6+1.2 142 (95%) 740 (10%) #Ru (stable)
12mTe 41 days 0.35 475 (15%) 1120 (10%) 12T (1.6 107 years)
11Ce 32.5 days 5.7 145 (49%) uipr (stable)
143Ce 4+ 285 days 64-0.3 134 (119%) 696 (1.4%) usPr (17.3 min)
144Ppyp
nomA o 250 days — 657 (94%) 885 (76%) 1ecd (stable)
1283h 2.7 years 0.021 938 (32%) 1384 (27%) 126Te (stable)

®* Inustitute of Nuclear Physics and Engineering, Bucharest, Romama
*os Institute of Scientific Research and Technologic Engineersng in Electromes, 3400 Cluy-Napoca, Romama

5§ — Physica 2/1988

* Umverssty of Clus-Napoca, Faculty of Mathematics and Physics, 3400 Clwy-Napoca, Romama
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The radioactive deposits were very nonuniforme since the rains, especially
the storms spectacularly increased the radicactive fall-out [3—6]. The torren-
tial rain that fall on May 1-st, 1986 1n the western half of Cluj-Napoca caused
an intense contamination of short-life 1sotopes. 13T |- 132] 131] OBy | MO o
%Mo + %Tc, etc. [6]. Compared to the initial gamma global activity of this
rain (4uC1/1), a decrease of ~40 times was found in the radioactivity of the
sample of water measured at the end of the year 1986, when the activity is
given specially by the medium and the long-life 1sotopes 1%Ru, 190Ru - 100Rh,
9571 - 95Nb, 13°Cs and 134Cs

Experimental MMethod. Gamma global activity of the samples was measured by a 4 channel
analysor of NP—424 type coupled to a NaI(T1) detector of ample size(75 X 45 mm) The samples
were measured in = — 2x geometry put from the frontal face of the detector or in Marnelli type

geometry (7]

The gamma spectra were obtained by & 512 channel analysor of NTA—512 type coupled to
& GeLa detector of Kovo 327-1 type Also, it was used a 4096 channel analysor of Canberra type
coupled to a Gela detector of 65 cm® from (I F.IN) IPNE—Bucharest Efficiency and energy
calibration was made using calibration sources measured in a similar geometry of 25 cm?® The ana-
lysed sediment sample was collected from the roof of a building in the Minigtur district (the
western part of the city) on May 17, 1986 This sample, therefore, contains deposits collected from
the period of April 29 to May 17, 1986 The volatile elements 1811, 152], 1%9Ry and 1°°Ru partially |
left the sediment and so the analysed sample 1s somewhat deprived of these nuclides

The sediment was collected from around a fluvial dramn (C) over a circular surface with a
diameter of ~14 m (zone B), Figure 1 The dramn collects the water over a surface of 50 me
(zone A) After the sample got dry, the amount of collected sediment weighted 1 kg and represen-
ted ~759%, of the total amount of sediment existing in zone B This sample was then homogenised

and parts of vairous weights from i1t were measured.

Results and discussions. From the gamma global activity measured at the
date of collection (18 10% imp/100 s 30 g), considering the detection geo-
metry and efficiency of the detector, as well as ot the radionuclides presented
in the gamma spectrum, a radicactive deposit of ~1000—1200 kBq/m? was
estimated for this area, much larger than the average estimated for Romania
[8]. This fact finds its explanation in the torrential rain and storm that affec-
ted this area on May 1-st, 1986, date which coincides with the crossing of the
radioactive cloud.

The dynamics of the evolution of the radioactivity of the sample of sedi-
ment is shown in Fig 2—5, which presents the gamma spectra of the sample
recorded on various dates. May 17,1986, Nov 20, 1986; March 4, 1987, and
July 7, 1988.

The spectra presented in Figures 2—3 are merely energetically calibrated,
so they may be used only for the identification of radionuclides, whereas those
in Fig. 4—5 are also calibrated in efficie-
ncy which permits the determination ot
the specific activity of each radionuclide.

As one can see in Fig 5 the long-life
radioactive 1sotopes in the examiuned de-
posit are © 137Cs, 134Cs, 14Ce, 1258}, 106Ry 4
-+ 16Rh and 1*mAg. Onthe spectrum from

Fig 1. Zone of sample collection
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Fig 3 and Fig 4 there also appear some nud-life 1sotopes 9Nb - %Zr
and *Ru

The composition of the mid-life and long-life radionuclides was calculated
from these spectra at the moment of collection, Table 2, carried out with the
relation

Ag=dA - et (1)

As fo1 %5Nb allowance was made for the tact that Nb 1s not only a fission
product but 1t also accumulates from %8Z1, according to the scheme

wozr — B eNp B 2)
65,d Says 35 days
while the 9%NDb activity 1s given by the relation
Ay =—2 4 0) (7™ — ) (3)
INb = dzr

The radionuclides presented in Table 2, compiisc a total beta deposit of
105 150 Bg/m? On analysing the spectra in Fig 2—4 one may calculate the
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ratio 18Ru/W0Ru~4 This value coincides faurly well with the value thst may
becaluclated in Table 2, as well as with the values given by cther awthors
[9—10] The *“Ce contribution may be calculated from the ratio!#Ce/t¥Ce =
= 1.2 [9] as well as from the value for ¥Ce m Table 1 The result being a
contribution of 12 000 Bq/m? for ¥ (Ce.

Table 2

Activity of mid-life and long-life radlonueclides at the moment of eollection (ifay 17-th, 1986)

. Specific activity Deposit
Nuchde Tige " Barg) (Bq/m?)
142Ce - 144Pr 284 days 190 500 4 5% 10 000
1268b 2,73 years 76 400 4 49, 2 000
105Ry 39 days 1628600 %+ 7% 43 200
106Ru 4 9°Rh 367 days 441 900 4 49, 24 000

57y 65,5 days 97 400 4 129, 2 600
9%Nb 35 days 557 600 3~ 5%, 14 800
134Cg 2.06 years 210100 & 1Y% 5 600
137y 30 years 482 500 + 1% 12 800
TOmA o 250 days 5300 4 209% 150

For the ratio BII/1%Ru we consider a mean value of ~4 This value results
from the spectrum in Fig. 2 whereas a stmilar value was obtained by others
as well [11]. In the rain water of May, 1-st, this ratio was about 6

For other ratios we take into consideration the following mean valucs,
from™ Fig. 2—5: 12Te/19] ~ 2, 108Ry[190Ba ~ (0,6 and 103Ru/12=Te ~ 1 [11].

With these data we can calculate the contribution of the short-life radio-
nuclides : 172 000 Bg/m? for 1311, 688 000 Bq/m? for 1¥32Te + 132], 120 000 Bq/m? {or
140Ba 4 T a and 43000 Bq/m3 for #@Tc. For the total contribution we
obtain the value of 1130 kBq/m? much larger than the average m Romania
[8]. Recent determinations [12] have established for deposits in the city of
Cluj-Napoca area a ratio of 28r/1%7Cs = 1/8 The value for the deposit of %Sr
in Bucharest area is 860 Bg/m? [13].
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EPR INVESTIGATIONS IN THE SUPERCONDUCTOR GdBa,CuyO,
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Recested  November 7, 1988

ABSTRACT. — EPR fromm Gd3* ions in the high 7, ~ 90 K superconductor
GdBa,Cu,;0, 1s reported The asymmetiic line, g value independent with tem-

perature, linewidth and the role of muxed valence Cu}lﬁ, C11§I+ and Cust 1s
discussed The resonmance of Gd3* must be associated with a Cu?t component
of the signal, wich influences lmewidth

Introduction. Since the discovery of high critical temperature T, super-
conducting oxides [1; 2] a number of magnetic investigations have been achieved
on the family of ¥YBa,Cu,0;_5[3—10] The decrcase of the mean Landé factor
value g from 222 to 207, between T =4 K and T = T, 1s ascriebed to a
hole being transferred from cooper to oxygen [3] For T < 90 K, the thermal
variations of lineshapes, g-values and intensities are differing This implies
that the line at g > 2,12 cannot be related to a mnonsuperconducting fraction
of the orthorombic phase [4] Therefore the hole transfer from oxygen to cooper
with decreasing T 1s characteristic of the orthorombic structure The EPR
sigual and microwave absorption in thin films and bluk samples of RBa,Cu;0;7_5
R =V, Sm) is ascriebed to Cu?* ions 1n non-superconducting regions and the
low field one to flux penetration [5] )

EPR investigations of Gd doped Y Ba,Cu;O;_5[4] evidence the shape modi-
fications of the Cd3+ probe spectrum at lowest temperatures, being in relation
with the fraction of Cu?* ions in a mon superconducting orthorhombic phase
and the hole transfer from oxygen to cooper

Superconductor GdBa,Cu,0, studies were reported by [5; 10]

In this paper we report on the paramagnetic resonance of Gd** and discuss
the role of mixed valence of Cu in superconductor GdBa,Cu,O,

' Experimental. The samples were prepared from stotcluometric amounts of dried high purity
poweders of Gd,0,;, BaCO, and CuO First the well nmuxed powder was heated to 850°C 1 air
for 24 h The product was reground, pressed imto pellets and sintered to 950°C in oxygen atmos-

phere for 18 h
The presence of a superconducting phase with 7, > 80 II was established by testing the

Messsner effect on the samples cooled i liquud mtrogen
The electron paramagnetic resonance measurements were carried out at an ITIM spectro-
meter, m X band, on powder samples i silicon feet Merck, between room temperature and 7T < To.

Results and Discussion. The spectrum consists of a single, slightly-asymme-
tric line of width 1160 G at room temperature and 1040 G at 77 K (Fig 1).
The asymmetry, wich 1s quite small as compared with even poor metals 1s

* Uswverstly of Cluj-Napoca, Faculty of Mathewatscs and Physics, 3400 Ciu)-Napoca, Romama
** ITIM Clus-Napoca, 3400 Cluj-Napoca, Romama
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Fig. 1. EPR spectra recorded atroom temperature (a) and at 77 X (b) from a
superconductive sample GdBa,Cu,0, '

temperature independent. An asymmetric lme shape can also be associated
with internal field distributions in concentrated magnetic systems and the gra-
nular structure of sample.

The g-value of 1.96 4 0.01 is temperature independent. This value corres-
ponds Gd®* in intermetallic compounds (GdAl,, PdGd, AgGd with 39 Gd).
The negative g shift from the unshifted g =2, can not be explained the
change and superchange interactions this to causeing the positive shift, an
alternative being the occurrence of negative polarizations in superconductivity
state.

The linewidth decreases with decreasing temperature, mimimum value of
this corresponds to T; ~ 90°K. For T < T, the linewidth increases, therefore,
T, correspounds to transition temperature T,.

The different types of paramagnetic ions in superconducting samples inflie-
nce specifically the linewidth. For the ion with great relaxation thime the reso-
nance signal appears, the contribution of other paramagnetic ions being found
in the shift and linewidth of the signal. The resonance of Gd3* must be asso-
ciated with a Cu?* component of the signal, which influences linewidth [6].
In compounds such as “1—2—3 (GdBa,Cuz0, = Gd®*+Ba *Cu®*Cu?+0%~) having
both Cu—O, planes and chains Cu®*+-holes appear 1n the reaction Cud3+40?~—
Cu?t4-0O'—, which transfer into the p-system A decrease in the number of holes
(growth of Cu?* content) and oxygen vacancies is formed primanly in chains,
and eleads to increasein resistence. O. Oudet [8] has introduced a distinction
between the notion of valence (or oxidation number on ) and that of ionicity,
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this leads to the hypotesis of 3d cations of ionicity 2+ and on higher than
two (Cu?& have o.n. IIT and ionicity 2-) Iet us now describe the covalent

bond between the cation Cu?ﬁ and the oxigen O The covalent bond 1s the
result of an attraction between the third deep valence electron of the cation
and the nucleus of the anions

In summary, we consider the Gd3* 1ons with spin 7/2 not compensated,

a part of the Gd— Gd interaction must be mediated by the polarization of
conduction electrons on the Cu The temperature dependence of the linewidth
for Gd2* ions in the vicinity of T, are related to the corresponding characteris-

tics of the Cu®* ions

[o .8 o) W -h_o:l\'.)r-‘

[==N{e}
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i

ABSTRRACT. — Electron bipolaron interaction las been studied for a high
temperature superconductor The bipolarons occur from the electrons which
are 1 y natrow band and mieract strongly with the phonons The electron-
bipolaron interaction 1s described by a muxing term between the wide band
electrons and the localized electrons with modified energy and Coulombian
mteraction The critical temperature of the superconductor 1s drastically enhan-

ced and an increasing of T', is possible

°

1 Intreduetisn. The high temperature superconductivity recently disco-
vered by Bednorz and Muller [1] has been explained by different authors through
several non-phononic mechanisms, conventional phononic mechanism, the Bose
concentration of the bipolarons or a mechanism related to the Jahn-Teller
effect [2]) At the present time, it is gemerally accepted (even if the isotopic
effect was observed only for La-systems) that the electron-phonon interaction
has an important contribution in the electron-electron interaction ~Chakraverty
[3] showed that for a very strong electron-phonon interaction the electrons
from a narrow band form pairs with opposite spms which are in fact called
bipolarons If m a system there is an interaction between the itincrant electrons
from a wide band and the localized electrons, the localized paus can be trans-
feried in the wide band and become delocalized via the wmteraction between
two kmds of electrons

If the one-site repulsive Coulomb intcraction between two electrons with
opposite spms 4s weak, occuience of one-site bipolaron is possible The bipo-
laron sites can be regarded as a negative U-center, and miluence of these centers
on the superconducting critical temperature 7, of the wide band electrons has
been studied previously [4] In Section 2 we present the model, and m Section 3
order parameters and cyitical temperatures are calculated, using the strongcou-
pling formalism from the theory of superconductivity We also analyse the de-
pendence of U on concentration [5]in the case of the systems (La,., M,),CuO,_;
m connection with the variation of the lattice constant a with concentra-

iion « - N

® Umversity of Clup-Napoca, Faculty of Ma'hewalics and Physics, 3100 Cluy-Napoca, Romanta
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2. The Effeetive Hamiltonian.
\) Normal State. We counsider a sys- @ @ b -
em consisting of itinerat electrons \ P
‘e” and a system of localized elec- \ /
Tons interacting with the phonons @@ it
1 the electron-phonon is strong eno-
1gh, the Iocalized electrons behave Pigl
ike small polarons which are unsta-
sle against the bi-polaron formation This system (Fig 1) is described by the

Jamiltonian

¥ =9 + W, + e (1)
~vhere '
XK, = S\E cte, +Uz__,nm11, « (2)
Z: € o]c* Ci gy\c}f 1 %1 Cr (3)
-4
g(s—t = Z [T,(P) Ci,’ c, + h C] (4)
L5

1 the Hamiltonian (1) ¢ (p is the energy of the s-clectrons, Chn» Cpo the operators
if creation and annthilation of the itinerant electrons system, E, the difference
etween the centers of the two bands, E, is given by

A3 1 -
7 q

U=U,, —J - 25 L Jwd (6)
v T wlg)

q

vhere E, is the energy of the local level, co(q) the phonon energy, Uy the icpul-
ive m..eractlon between the nearest neighbours localized electrons, [ is the
uperexchange, and T,(g) is the coupling constant betwcen the localized electrons
described by operators ¢ and ¢,) and the itinerant electrons)

) Superconduching state. We introduce the supeiconducting order parameter

A =g <Gre pd (7)
ind "
A=-—-U E CTRY (8)

vhich describes the electron-electron due o the interaction Tn the tuean-field
pproximation we consider the Hamiltonian

K=K, + K, + Hyne (9)
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where
=3 e(p)e pa%—AZ(cﬂ 4+ h o) (10 a
P a
= 2 Em(ﬂ'ma + ﬂtbﬁ) — Ay E (Cma Cij + I/ C) (]‘Ot
o B s
5‘(mt = Z: Tz(p) (Cr-: Cha + h C) (11
wp,a

In (10Db) the energy of the localized electrons was defined as E, = E, +
+ U{#,,4p, and we will consider the non-magnetic states of the localized electrons
If we take a-site and b-site as a single site, the model corresponds to the nega
tive U-center discussed by Anderson [6] and reconsidered recently by differen
authors [7—8] for the high-temperature superconductivity

3 The Order Parameter. In order to calculate the critical temperatur
of the superconducting state described by the order parameter (7) we wil
study for the beginning the spectrum of the superconducting elementary exci
tations at T =0 The Gieen function for the itinerant electron is

GHp ., 2) = 2270 — e(p)7 — Ole)my = 25 — e(B)7s — Bl) (12
and for the localized election 15
G;(Z) = ( ) - E:'a @ (z)-"l =Ty — E;‘s - Z,(Z) (13
where the self enetgies f (z) and %, can be calculated usmg 7,(p) as a pertur
bation
In the framework of the strong-coupling theory [9] we get
| Tu(p) [*Z:(2)
Z(2) =1 4 2 14a
@ ar (142)
[ Ty(p) I°®u(2)
Oz) = A - =02 22 14b
() = A+ LHOE (14b)
and
| T,(p) 1*=N (0) ®(2) =
Z i 1 IR B N Rl ol 1
) T ) =z (15a)
| Tu(p) I2=N(0)0 () =
D, A, + 15b
(&) = [®2(z) — 222%(:))'1? (150)
where
D(z) = @}(z) + E} — 2°Z}(z) (16)

and N(0) 1s the density of states for the itinerant electrons at the Fermi level
With these results we can analyse the spectrum of the elementary excitations
and calculate critical temperatures

a) The cnergy spectrum Let us defme

D(z) = Bg(2)Z(2) (17)
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vhere A,(z) is the gap in the energy spectrum of the superconducting elementary
:xcitations.

From Egs. (14)—(15) we obtain

[l — dF(z)]
= A
Ale) [l + dF(z))] (5
where
[T 1
Flz) = —~ 19
) = 2 (19)
and
YN (20)
Eq (16) can be transformed using Egs (14)—(15) as
Diz) = V? 4 E? — 2 4 2, [2020) = 2285 21)

[02(:) — 2223(2)]'F°

where V = =xN(0)] 7,(po) >, po being the Fermi wave vector In the limit
V> wp > Ay2) and o € wp (the parameter wpis of the order 700 K for the
high temperature superconductors)

Eq (21) becomes

D(z) ~ V2 + E? (22)

and the gap will be expressed as
A, = fA (23)

where

1l —ad P
f=5= (24)
14 N,(0) v -
_=— d = , N _— 25
=N(O)(V? + E7) N@) (0) = =(V2 + E}) (20)

1s the effective density of states for the localized electrons at the Fermi level.
Eq. (23) shows that gap is not identical with the order parameter if the
superconducting electrons interact with the localized ones.

b) The Critical Temperatures. In order to calculate the critical temperatures
T, (defined by A(T,) = 0) and T (defined by A(T,) = 0), we consider the self
— consistent equations (7) and (8) written as

P ()
A= N(0)grT 2, ; 27
OkrT &t o + wia o

and

V@(w)
28).
D(w) + Z [03(w) + wiZ3(w)]H? (28)

= — UTCTE

where we performed the analytical 2z + 28— 1w and o = (2» + 1)=T.
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From Eq (28) we get

E,
T, = —=
U 2E %
T T 2E,
where
V
U=U|l+ —
( + o (30)
Eq. (29) can be approximated as
U VE
Ty =11+ 2
r2g [t (31)
and using for a the expression given by Keiser [9]
u VN@O)Ng| BY
T,=—]1 4 2 ein 2
? 2[ T N0 ] 32)
where
U
Ueg = (33)

E,
14 UlrL, tan™? v

Eq. (32) can be considered as the expression for the occurrence of the
polarons which appear to be pairs of localized electrons due to the potential
U, which 1s in fact the Coulomb interaction strongly enhanced by the electron-
phonon interaction (See Appendix)

From Eqs (27) and (17) we can calculate the critical temperature 7', from

the equation

A, ﬂmTz: : (34)
using the result
2w 1
AozAfzozhﬁm[~~_—1 35
2(0) o ) 7 P NIzl f (35)
The critical temperature T, Wlll be given by
nfe S ©(36)
Ty, fN(O)
which gives
T, =T, exp [ 257 (87)
ad — 1

and we see from Eq (37) that if

Ny {0) 2
(-—N(O) J Uege > 0 ' (38)
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he critical temperature T increases with U.y for a fixed g. If V is small
Jer can be approximated by U and using now
Eq. (6), we get (See Appendix)

U=U,+%¢C (39)
a

vhere C is a constant.
fukuyama and Hasegawa [5] considered that the electron-phonon coupling

onstant depends on x by as
oy = MO (40)
©p

vhere
bO + xbl, x << %

f(x)={ N

v, being a critical concentration obtained {rom the variation with x of the
attice constant a(x) This vaiiation has the form
a(x) = a—oax; x< e | (441)
B; x> x
~vhere b, b,, « and P are constanis.
For Egs. (39—41) we see that for ¥ < x,, U(x) will increase with ¥ which makes
:he condition (38) plausible.

4 Discussions. We showcd that the strong electron-phonon coupling may
sive rise to an increasing 1n the critical temperature of superconducting elec-
:rons Interacting with the polarons. Coulomb interaction U has been calculated
‘or this system and 1s drastically affected by the concentration x in the systems
La, M,),CuO, If V 1s small and U x 0.2 eV the polarons appear above T, x
~ 600 X and in this case the critical concentration is x = 0 2. The T ,(x) has
1 maximum at x = 005 which is 60 K is wp = 700 K. ‘

Appendsx

Let us consider the coulombian iteraction U given by (6) as .

U=U,d,—1— Zm(q 7))

where we will consider
‘@¥(g) = w} + »} cosga

a being the constant lattice
The summation over ¢ can be transformed in an integral and we have

1 1 "1'3' 41 dq sin ¢R
+g S qagsing (A.2)

S=— ] ——
V5 Joi folcosga . (@n)YVah F of cosga
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(a 2) we take R = a and the expression for S hecomes

i
1 S ¥ s x
2r2a? ol \/I + 22 cos »
0

dx

where Q! = w}/wd and gp is the wave vector associated with the Debye energy w,
The integral (A 3) can be performed and we get

S=—

1 f, e 2Q¢
a{l & cos gna + £1f E , ek di
magd? qu ¢ i )+ ( 2 1+ Qe

where E(p, ) 15 the eliptic integral

L4
E(p, k) = 5 46 /1 = o sin® 6
0

For small values of Q (w, » ;) we obtain

Then we can write (A 1) as

wh

(‘Dm\lpm»&swl\ﬁ:—‘

cre
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ABSTRACT. — Spliue-Type Deconvelution AppHed In Leecallzed RES Spectra.
A deconvolution method 1s used for ESR imaging, 1n which ESR spectrum
1s divided 1nto picewise functions and each function 1s approximated to a cubic
spline function and then deconvolution using the momentum of the resolution
function The obtained results show that the method works best when the
width of picewise function 1s equivalent to that of the resolution function
and 1s very strong against noise

Introducere. Formarea imaginilor de spin in spectroscopia RES localizatd
(ESR Imaging), presupune prelucrarea proiecfilor densitalin de spin [1,2].
Deconvolufia spectrali este una din problemele de maximi importantd. In RES
localizati apar, pe lingi fenomenele intrinsec: care lirgesc linla, largiri suplimen-
tare datorate gradientului de cimp magnetic. Tinind seama de valorile practic
limitate ale gradientului utilizat, este dificil uneori de a distinge intre compo-
nentele spectrale datorate despicarilor hiperfine, de exemplu, si cele datorate
gradientului. Astfel, in cimp magnetic de gradient constant largimea liniei spec-
trale AB este:

AB = AB, + AB, (1)

unde AB, este lirgimea intrinsecd, iar AB, este lirgimea introdusad de gradient.

Scopul metodelor de deconvolutie in RES localizatd constd in decodificarea
distributitlor spatiale ale centrilor paramagnetici din spectrele-proiectie.
Deconvolutia speetrelor proieefie. 53 admitem prin funcjia g(B) reprezentarea
distributiei spectrale intrimnseci a rdspunsului sistemulur de spini sau funcfia de
formi a lintei de absorbtie RES in cimp uniform. Fie distribufia eterogena
p (x,,2) a spinilor electronici din proba. Putem defim1 funcjia de distributfie
in lungul unei axe.

n(z) = S(ip(x. y, 7) dxdy @)

Daci proba este plasatd intr-un cimp magnetic de gradient constant, atunci
suprafetele pe care se integreazi relatia (2) vor {i secfiuni plasate in acelagi cimp
magnetic. Pentru oricare altd orientare a gradientului relaia (2) poate fi scrisd
in mod corespunzitor.

* Facullatea de Matematicd g Fasscd, Umv dww Clug-Napoca, 3400 Clus-Napoca, Romania
** Liceul ,Dragog Vodd", 4925 Ssghetu Marmajres, Romama
*ee S, Gen Nr 2, 3475 Def, Somama
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Dependenfa linjard intre cimpul magnetic si coordonata pe axi ne permite
sd stabilim relatia.

dB,
nle) = f(B.) ¢ = f(B.)G. ®
unde f(B,) este distribuf1ia de spmni exprimatd in coordonate experimentale
Semntficajia fizicd a produsului de convolutie intre doud funcin ne permite
exprimarea analitici a unui spectru in RES localizali

s(B) = (/(B)e(B — B)aB J (4)
) T e ,

Astfel spectrul convoluat s(B) codificd distribujule spatiale prin functia f(B).
Rezolvarea acestei ecuati1, sau deconvolutfia, va stabili f(B) pe baza cunoastern
formei linie1 g(B) (in cimp magnetic omogen) $1 a spectrului proiectie s(B) (in
cimp magnetic de gradient constant si la diferite orientin) i

In practica reconstructiei distribugier spatiale de spini, corectitudinea ima-
ginilor produse va depinde esenfial de acuratetea deconvolutiel realizate. Pro-
tectiile deconvoluate formeaza datele de intrare in algoritmn de reconstructie

In hiteraturd cele mai utilizate metode de deconvolufie sint de tip Fourter
[3, 4]. In aceastd lucrare prezentim posibilitatea de realizare a deconvolutter in
spectroscopia RES localizatd printr-o metodd de tip spline
Deconvolugia de tip spline. Dezvoltatd numeric, metoda prelucreazi spectrele
prolectii in spatfiul datelor experimentale. Degit binecunoscute avantajele func-
tiilor spline, metoda nu a fost valorificati incd efectiv in spectroscopia RES
localizatd (ESR Imaging), optimizarea frind in curs de elaborare [5] Admitem
cd funcfia — prolecfie f(x) din relatia (4) poate fi dezvoltati in serie Taylor

flo =) =fla) = /() 1+ = frnB = < f) P+ )
substituind in relatia (4), se obtine ;
s(x) = /() Mo ~ f'(2) My + f"(2) My— = f""(x) My ©)
unde :
+w
M, = S Img(l) dl

reprezintd momentele functier de forma a liniet de RES Admitem cd f(x) poate
fi reprezentati pe subintervale prin functii spline cubice

fE) =5 &) @)
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unde
0 dacd x < &,
$x(x) = apx® 4+ bya? 4 g -+ d,, dacid &, € x < &y 8)
0 dacd v > Ep4q
;) &, , &, {lind nodurile functitlor spline ddfinite mai sus Alcgem astfel

nodurl: incit f(x) =0 dacd z > &, si ¥ < &,, 1ar in serza Taylor (5) termenii
de ordin > 4 sd poatd {1 neglyjajt Admitan cid spectrul convoluat poate fi
dezvoltat prin functii spline cubice, cu accleast nodurt dar cu coeficienti diferifi:

n—1
s(x) = i) ©)
&=1
unde "
0 dacd x < &,
Sk(x) = Akxa + ka‘.’ + Ckx + Dkr daca E.k <X K Ek+l
0 dacid x < EJH—I
Prin 1dentificare se stabilesc relatule
ar = A4/ M,
by, = By/M, + 3a, M, /M,
cp = Cof/My + 26, M, (M, — 3a,M,[M, {10)

dy = Dy My + CuM My — buMy[My + anM /M,

Sa notdm ci o functie de formi simetricd (linule RES Gaussiene sau Lorentziene)
are toate momentele de ordin impar nule Algoritmul procedurii va cuprinde
urmitori pagi-

a) se mtcrpoleazd spectrul proiectie experimental s(x) prin setul de funciii
s; line cubice din rclatia (9), stebilindu-se astfel nodurile &, st setul de coefi-
ctent1 {4}, {Bs}, {Ci} st {Dy}, pentru 2= 1,17 — 1.

b) se calculeazd prumele patru momente ale i1 RES in cimp omogen.

¢) pe baza relatulor (10) se exprimi seiul de coeficieni {a:}, {0}, {cx} §i
{d,}, pentru k=1, — 1

d) Acesti coeficient1 impreund cu nodurile £, determind complet pe baza
relatier (7) valorie functiel proiectie peatru orice x € [, E,]

Dacd admitem dezvoltarea protecict prin setul de functii spline din relajia
(7), atunc1 dezvoltarea in serte Taylor din rclatia (5) este riguroasi numai dacd
argumentele / 1 x — I apartin la acelagt subintaival de defimifie a unei functii
spline, adicd [ € [§, Exy1], §1 de asemenca x — 1 & [§;, Exyq]. Aceastd con-
ditie cste aproximativ indepliniti numai dacé {functia ce formai a linier cste destul
de rapid descrescitoare spre zero cu crestcrea lut [x| In spectroscopia RES
localizatd aceastd metodd did cu sigurantid rezultate corccte dacid largimea func-
tier splinc intre noduri este comparabili cu largimea liniet RES Erorile care
apar evitabil in exprunarea proiectier cind x — £, pot {1 reduse prin extra-
polédri si alegerea unui numér corespunzitor de noduri
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Concluzii : In concluzie se remarci posibilitatea aplicirii cu succes a metode
spline in spectroscopia RES localizati. Sint evidente urmitoarele avantaje
a) fiind procedurd monopas nu amplificd diferitele tipuri de erori, in contras
cu procedurile iterative; b) se evitd netezirile exagerate §i oscilatiile parazite
c) erorile de trunchiere nu afecteazi restul valorilor proiecfiilor in contrast ct
metodele Fourier [6].

Metoda de tip spline imbogiteste astfel numirul procedurilor de deconvo-
lufie practicate in RES localizatd (ESR Imaging), neexistind in fond o metods
umversal valabild.
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ABSTRACT. — The motion of a particle around a pulsating star is studied
from three points of view stability, evolution of the unstable orbit, and time
scale for perfurbations Two applications are made, for an RR Lyrae pulsating
star and for a long-periodic variable. The orbits ate proved to be unstable at dif-
ferent time scales, according to the imtial distance of the particle.

1. Perturbing Aeceeleration and Equation of Motion. Let us consider a pul-
sating star of constant mass M and radius R, whose luminosity L changes
according to a law of the type (e.g. [2,6,91):

L(t) = Lo{l + a, sin (n,2)), (1)
or !
L(t) = Lo(l + 4y sin (2nt/T})), (2)

where L, is a mean luminosity, while a,, #,, T, are respectively the amplitude,
frequency and period of pulsation. Also consider a spherical, homogeneous par-
ticle of constant albedo, orbiting the given star at a distance ». If the only
two forces acting on the particle are the gravitation and the radiative force, the
perturbing acceleration undergone by the particle will be

F, = K[, (3)
where we denoted -
K = AL(t)]/(4nmec), (4)
or (equivalent):
K = 3L()/(16m#' pc). (5)

In these formulae, 4 is the effective cross-sectional area of the particle, m, #/, p
are respectively the mass, radius and density of the particle, while ¢ denotes
the speed of light.

Since the resulting force acting on the particle is central, the motion will
be plane and featured by the differential equation

@r|dft — Cfp® = —G(M + m)[r? + KJr, 6)

where C 1s the constant angular momentum and G is the gravitational constant,

* Centre for Astronomy and Space Sciences, 3400 Clug-Napoca, Romama
** University of Clup-Napoca, Faculty of Mathematies-Physics, 3400 Clug-Napoca, Romania
**% Industrial Secondary School, 3379, Baia de¢ Aries, Romansa
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If we introduce the notations

H = G(M + m) — 3L,/{(16=7'pc), (
ft) = (G(M -+ m)/H — 1) a,sin (2rt[T,), (¢
w=H (1 —f{)), (¢
the equation of motion (6) will acquue the form
drfdr — C¥rd = —ujr?, (1C

namely the same form as in the case of the {wo-body problem, but this tim
w is time-dependent In other words, we deal with a generalization of the Keple
problem [7]

In order to have always the particle under the gravitational influence o
the star, we naturally suppose that u > 0 Taking mto account (7)—(9), thi
condition can be written as follows

0<GM+mH—1<1 {11

For subsequent purposes we shall denote
o = a,(G(M + m)[H — 1), (12
g(t) = s (2rt/T,) (13

One ecasily observes that 0 << « <<'1 We shall consider that the pulsation ampl
tude 1s sufficiently small to have 0 << o €1 In this case, with (8), (12) an
(13), we can write

f&) = oglt), (14
where o 1s a small paramecter
2. Strobosecopic Equations of Motion. Consider that at the imtial mstant
f(0) = 0. Also consider that the nitial orbit is circular of radus 7, In this case
at the moment ¢ =0 we are in the frame of the two-body problem and we
have r, = C¥H
Let us mtroduce the dimensionless variables x(|x] < 1) and = [2, 79,13
by means of the relations
r=r7,(l + 1), (15,
t = 73 2, (16,
In other words, x is the dimensionless perturbation of the radius vector, while
< is a dimensionless time One easily sees that (16) can also be written

- = 27:t/TO, (17)

where T, is the period of the Keplerian motion on a circular orbit of radius 7.

Replacing (15) and (16) mnto (10), taking into account (9), and expanding
in x, the equation of motion becomes to first order mm x

Exjde + (L+ Y )x=f) (18)
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In order to study the motion featured by (18), we apply the stroboscopic
method [4], whose principle was described in [7—9, 13] and will not be repeated
here. For this purpose, we consider the trajectory i the phase plane (x, dx/d<),
m polar coordinates (yV? ¢) introduced as follows:

y = «% + (dx[dx)?,

(19)

¢ = tan}((dx/d=)[x),

or:

x = Y2 cos d,zj 0)

dxld~ = yV2sin .

We also must take into account the following relations

J(7) = «g(s), (21)
T =, (22)
A0 = Ay + 2=, (23)

The equation (21) is (14) written for the dumensionless time. By (22) we intro-

duced a new dimensionless time, =, called stroboscopic time. As to (23), the
variation of the polar angle ¢ was replaced by its variation modulo 2z, since
this 1s all we are interested in; the symbol A signifies the variation of the
respective quantity corresponding to a variation of < between 0 and 2.

With all these considerations, we can pass from (18) to an equivalent first
order system. The process is long enough and was exposed in detail in [2, 7,
9] We shall not repeat here the successive transformations of the equation (18);
at the end one obtains the system .

dy/d?: ((C,sin 8 — S cos 0)y12 — (C, sin (20) — S,cos (20))y)/=,

24
de/d?z {(Cycos 6 + Sysin 8)y—42 — Cyeos (20) — Spsin’ (20) —Cp)/(2x),. 0
where we denoted :
27 2
S, = S g(s) sin (j=)d=, C, = S g(=) cos (37) d=, (25)
0 0
with 7 =0, 1, 2. By (13) and (17), we have in (25)
g(=) = sin (k=) (26)
in which we introduced the notation:
k= T[T, (27)

Equations (24) are the stroboscopic equations of motion. They are very
useful for studying the motion over very long time intervals.
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3. Unstable Orbit. We have shown ([7] that the stroboscopic equations
in the form (24) admit an equilibrium point, whose polar coordinates in the phase
plane are given by

tan 0, = (C,S, — S;1(Cy + Co))/ (515, + C1(C, — Cy)), (28)
2% = Cy)((Cy + Cy) cos B, + S, s1n 8,) (29)

The explicit expressions of y," and tan 0, were given1n [2, 13], they are tunc-
tions only of &

The stability of this cquulibriumm poimnt 1s given by the nature ot the roots
of the characteristic equation of the system (24) One showed [2, 9, 13] that
for 2 < 0845 the equiltbrium powmt 1s a centre or a weak focus, the motion
has a neutral stability or 1s weakly stable For & < 0 845, the equilibrium point
is a sabble pownt, the motion 1s unstable

The direction 11 which the unstable orbit moves can be determined trom
the first equation (24), tor very small values of y, (mtial value ot ¥) For such

values we must have dy/dr << 0, 1n order to avoid unagmmary values tor x or
dx/dv (see the first equation (19)) From the first equation (24), and taking into
account (25) and (26), we deduce the existence of a critical polar angle in the
phase plane, given by (2, 13]

tan 0, = sin (2rk)/(R(1 — cos (2rk))), (30)

for which dy/dv = 0 Consequently, the imtial polar angle 8, may lie only 1n
certain domains on the trigonometric circle The study of the possible different
situations [2, 5, 9] leads to the tfollowing results (8, being considered as lying
in the first quadrant)

If sin (2rk) <0, Ak <1, we obtam

8, = (0., =) = x 1ncreases,
1 (]

0, = (v, 0. + =) = x decreases (31)
If sin (2rk) <0, 2 < 1, we obtamn-
0, = (6, — =/2, 0) =>x decreases, (32)

0, = (0, 0, + w/2) = mcreases

If sin (2rk) <0, & <1, we obtam
B, = (6, — =, 0) = x decreases, (33)
8, = (0, 6,) = x ncreases.
Finally, if sin (2rnk) < 0, 2 << 1, we obtamn -
0, = (0, + =/2, ) = 2 1increases, (34)
0, = (w, 8, + 3n/2) = x decreases
The increase or decrease of x were established on the basis of thesecond rela-

tion (20) If x increases, the unstable orbit moves outward with respect to
the initial circular orbit, if x decreases, the motion 1s performed inward
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The time scale for perturbations to become significant (charactenstic time)
can also be determined from the first stroboscopic cquation (24) Denote by y,

the value of y after a stroboscopic tune nterval of length -, when the pertur-
bation became appreciable Integrating the first equation (24) for fixed 6,, we
obtamn [10]
7= 2n/Y,In (Y, — Yoy }))[(Y — Ypy,/%)), (35)
where we denoted Y, = S, cos (70,) — C,amn {16,), 7=1,2
For our applications we considered [2, 13]

Ye=0, ¥p = 1/4 (36)
With (22), (25), (26), (35) and (36), the dimensionless characteristic time becomes :
- = w(k? — 1) cos 0,/(ak(1 — cos (2=k)) sm (0, — 6,)) (37)

Fiom lere, with (16), one can determine the physical characteristic time, .

A last remark all considerations made m tlus section are valid only for
nomntegral values of the ration &2 [2, 9, 13]. Integer values of £ lead to resonances.

4 Physieal Initiol Conditions. We can now study the motion of a particle
around a pulsating star by means of the mathematical model briefly exposed
m Sections 2 and 3 In order to have not a repulsive radiative force exceeding
(in module) the gravitational attraction, we took care to fulfil the condition (11).

Taking-into account the natural values of the density of the particle (1—
4 gfem?®), the condition (11) imposed infetior limits for the acceptable dimen-
sions of the particle So, in the two cases we studied, there was necessary to
consider limitative values for the radius » of the particle (' = 001 cm 1 the
case of an RR Lyrae pulsating star, and 7" = 1 cm 1n the case of a long-periodic
variable). If we consider smaller values (as to the order of maguitude), the con-
dition (11) is no longer fulfilled.

As to the central body of the dynamical system (a pulsating star), we had
firstly 1n view the RR Lyrae pulsating stars They are well known observa-
tionally and well studied, rcpresenting characteristic types for the oscillating
cosmic phenomena [3] But, as we shall remark i the next section, the orbits
of the particles around such stars are a prior1 unstable Conscquently, it was
necessary to consitder as ccntral body a long-pertodic pulsating star, too

In the next sections we shall study the cvolution of the orbit of a particle
around a pulsating star from three points of view stability of the motion,
evolution of the unstable orbit with respect to the mtial ciicular orbit, cha-
racteristic tume for perturbations to become sigmificant

5 Orbhits around an RR Lyrae Star. Let the pulsating star taken ito
account as central body of our dynamical system be an RR Lyrac variable.
We constdered this star as having the features of XZ Cygm1 (RR Lyrae pulsa-
ting variable), namely [12]

A =1036 10%g,

Ly, = 1886 10% cm?g/s?,

L., = 0842 10% cm?g/s?, (38)
R =3 2138 10%cm,

T, = 0.46647 days.
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For the particle we considered # = 001 cm, p = 3 g/cm3

We determined firstly the period of a ‘zero satellite” (a fictitious satellite
orbiting the star at the distance R), demoted 7,. From Kepler’s third law
written for this case:

T, = 2nR32ZH -2, (39)
we found T, = 231 days.

One observes immediately that, even without considering the small varia-
tions of the stellar radius [1, 3, 12], the mmimum value which can be reached
by the ratio & (for Ty = T,) 1s & = 4 95. Therefore, as we showed m Section
3, every eventual equilibrium point will be a saddle point, which 1s unstable.
The tests performed for other concrete RR Lyrae stars gave not qualitatively
different results Consequently, taking into account the fact that all RR Lyrae
variables have sensibly the same characteristics [3, 12], we may extrapolate the
conclusion : the motion of a particle (body with reduced absolute dimcnsions)
around an RR Lyrae pulsating star is a priori unstable Of course, as we shall
see, the characteristic time for perturbations can be very long, but the motion
of the particle, at this time scale, is however unstable.

Coming back to the central pulsating star with the features of XZ Cygni,
we adopted for the initial circular orbit the radius 4, =3 10% cm, which leads
to a revolution period T'j = 5.692 - 10%, namely k = 141238 7.

The singular point of the stroboscopic, equations of motion has the polar
coordinates in the phase plane:

Y2 =05 6,= —0°0003. (46)

This is, as we showed, an unstable eyuilibrium .point.

In order to determine the evolution of the unstable orbit, we applied the
considerations made in Section 3 (see also [5]). We found.

© 0, = (359° 9997, 360° =) x decreases,
6, = (0°, 179°.9997) = x increases,

namely, in the great majority of cases, starting with initial conditions near those
of the unperturbed motion (in the permitted domains for 8,); the general ten-
dency of the unstable orbit for very long time mtervals will be a motion out-_
ward with respect to the imitial orbit.

As to the time scale for perturbations, adopting the restrictions (36), we
obtained ¢, ~ 28 10¢ years. This value corresponds to the most favourable
case: 9, = 89°.9997, for which ¢, is munimum - The more 9, is far from this
value, in the domains (41), the longer #, will be.

Greater (or even much greater) values for ' do not lead to significantly
different wvalues for the domains in which 0, may lie and for the minimum
characteristic time.

Letting #, vary, notable results appear only at the estimate of the charac-
teristic time. So, assigning to », a double value as against that previously
considered, one obtains practically for the orbit only the tendency of motion
outward with respect to the initial orbit. The perturbations beingsmaller, one
finds for the characteristic time a value of about 13 10 years (minimum value).



UNSTABLE ORBITS AROUND PULSATING STARS 91

6 Orbhits around a Long-Periodic Variable. We saw that m ihe case of
‘he short-pertodic pulsating stars (as the RR Lyrae vanables are) the orbital
notion of a particle 15 implicitly unstable due to the great vealue of the ratio k.
(n otder to find stars whose features (obviously, conjugated with the characte-
‘1stics of the satellite particle) lead to the fulfilling of the condition 2 < 0845,
ve dwelt upon the long-periodic variables of the type Mira Cet1 (see eg. [3,
11, 14]) These ones are generally red supergiants of spectral classes M, R, N or
5, and thewr pulsation pertods can reach 700 days [11]

In order to model the orbital motion of a particle around such a variable
star, we cousidered a fictitious long-periodic variable with the following features

M =20 Mg,

Ly,=27 10L,,

R = 500 R, (42)
T, = 700 davs,

a, =01,

with Mo = 1989 - 1038 g, L, = 3.826 - 10® cm?g/s?, Ro = 696 1019 cm (solar
mass, luminosity and radius, respectively) With the iollowing characteristics
of the particle » = 1cm, p = 3 gfcm?®, the condition (11) 1s fulfilled

As 1n the previous section, we determined firstly the “zero satellite” period,
obtaming T, = 306 07 days Therefore we can consider 1 this case real satellites
of the star for which 2 < 0.845 We started with the mutial radwus 7, = 5  108cm
for T; = 4554 10%), which leads to £ = 0 753

Determming the polar coordinates in the phase plane of the singular point
of the stroboscopic.cquations, we obtained

yiz =40, 0, = 138° 3. (43)

This equilibrium point 1s stable, the motion of the particle can be stable and
pertodic for initial conditions 1n the neighbouithood of this point, but the value
of its polar radius 1s too great to be considercd Ior realistic imitial conditions,
the motioun will hence be unstable

We determuned as previously the direction of the evelution ot the unstable
orbit 1n the permitted domains for 6,.

0, = (126° 46, 180°) = v wmcreases,

(44)
6, = (180°, 306° 46) = x decrcascs

In the first casc, the unstable orbit will move outwaid with respect to the
matial orbit (the particle moves away from the star), i the second case. the
motion will be performed mmward At limit the particle will escape from the
attraction spherc of the star, or, respectivdy, wiull {all on the star

If 0; takes, m the domains (44), valucs near 1267 46 or 30G° 46, the charac-
teristie tume for perturbations will be very long The mimmum valve of this
one 1s obtained for 0, = 216° 46, condilion which lcads to 1, = 25 years The
orbit 1s hence very soon destabilized, in a direction or another This 15 accoiding
to expectation, having mm view the relatively small radius of the imitial orbit
of the particle (about 15 R), therefoie the great perturbations
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We also performed some tests with the imitial condition #, = 539 - 10% ¢,
which leads to % = 0.843 (near the critical value). The results arc not signi-
ficantly different from the previous ones, except the position of the cquilitbrium
point of the stroboscopic equations of motion, one obtains yi? = 223, an exces-
sively great value to be considered )

Keeping the conditions 7, = 5.39 10® cm, p = 3 gfem?® (the density of a
silicate), but letting 7 vary (increase), we have not obtained sensibly different
results. Even for an increase of #* with 4—5 orders of magnitude, the permitted
domains for 0, remain roughly the same, and the perturbations become appre-
ciable after a minimum interval of the order of 25 years.

Coming back to the conditions ' = 1 cm, p = 3 gfem®, we determined the
characteristics of the motion for greater initial distances from the central star,
for which the ratio % is greater than the critical value 0.845. So, for an mitial
orbital radius 7, =5 - 10%¥ cm, we obtained the equilibrium point -

Y2 =035, 8, = —1°7, (45)

which is unstable. The domains for 9, which decide the direction of the evolution
of the unstable orbit are:

0, = (856°-4, 360°) = x decreases,

. (46)
8, = (0°, 176°-4) = x increases.

The minimum characteristic time is of the order of 105 years.

Growing the initial radius at #, = 5 - 1015 cm, the singular point preserves
its polar radius, but 6, = 0°-016. The direction of the evolution of the unstable
orbit is given by:

0, = (0°-7, 180°) = x increases,

(47)
6, = (180°, 180°-7) = x decreases,

while the minimum characteristic time for perturbations increases appreciably,

reaching about 2.5 10° years. ‘

Other determinations were performed for the same last two values of the
initial orbitral radius, and for the same dimensions of the particle, but with a
density of 1 g/cm?® (corresponding to water ice grains). The results are in the
main similar to the previous ones, with an exception. the characteiistic time,
which becomes sensibly shorter. This is natural, having in view the greater
perturbations in this case (due to the smaller mass of the particle of the same
dimensions).

7. Coneluding Remarks. On the basis of the information provided by the
applications performed in Sections 5 and 6, we can formulate some conclu-
sions.

The motion around the RR Lyrae pulsating stars (and, generally, around
the short-periodic intrinsic variables) 1s a priori unstable, due to the great
value of the ratio k. According to the initial conditions, the direction of the
instability is particularly outward with respect to the initial orbit; the par-
ticle tends to move away from the central star. The mmimum physical time
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after which the perturbations become significant 1s of the order of 167—108

years.
In the case of the long-periodic pulsating stars, there can appear situations

i which the ratio 2 is smaller than the ciitical value, but these situations
need equilibrium points unlikely far from the origin in the phase planc Con-
scquently, a realistic orbital motion will be unstable

Choosing, for long-periodic pulsating stars, inmitial conditions lecading to
k < 0 845 (critical value), {he minimum time scale for perturbations to become
appreciable is very short, such an orbit 1s destabilized after some 25 years

An important part i the determination of the minimum characteristic
time is played by the pulsation amplitude and the mitial distance of the
particle. Small amplitudes and great initial distances lead to smsll perturbations,
for which the time scale to become notable 1s of the order of hundred million
years.

REFERENCES '

1 Giurgiu, I, Note on the Stellar Adiabairc Pulsations, Babes-Bolyal Univ, Fac Math Phys
Res. Sem , Preprint 10 (1987), 177—182.

2 Giurgiu, I, Contribufs la studwl miscdrie orbitale in cazul parametrndus gravitajronal vaiabil,
cu aplicafre la stele pulsante, Thesis, University of Cluj-Napoca, 1988

3. Lungu, N, Pulsatu stelare Teorwe matematicd, Ed stinfificd si enciclopedics, Bucuregt:, 1982,

4. Minorsky, N, Nonlmeas Oscillatrons, Van Nostrand, Princeton, 1962

5 Mioe, V, Unstable O1bit Evolution wn the Motion with Variable Gravilational Pairameter, Babes-
Bolyar Univ Fac Math Phys Res Sem, Preprint 10 (1988), 63—72

6 Mioc, V, Giurgiu, I, Deformations of the Indteally Crroular Orbit of a Body Moving
around a Pulsating Siar, Babes-Bolya1 Univ, Fac Math Phys Res Sem , Preprint 4 (1988),
57—68

7 Mioc, V, Pal, A, Giurgiu, 1., A Mehod for Studymg the Oibstal Motion with Chan-
gmg Gravitational Pavameler, Babeg-Bolyai Univ , Fac Math Phys Res Sem , Preprint 1 (1988)
79—90.

8 Mi1oc, V, P41 A, G turgiu, I, On the Motiwon arownd a Star of Lunearly Increasing
Magnitude, Babes-Bolyai Univ, Fac Math Phys Res Sem , Prepunt 4 (1988), 41-—56

9 Mioc, V, P4l A, Giurgiu, I, Orbual Motion with Periodically Changmg G)avitatronal
Parameter, Studia Unlv Babes-Bolyai, Mathematica, 33, (1988), No 4 (to appear)

10 Mio0c, V, P4 A, Giurgiu, X, Twune Scale for Pertusbations wn the Orbital hMotron
with Changing Gravitational Paiameter, Proc Conf Appl Math, and Mech, Cluj-Napoca, 20—23
October 1988 (to appear)

11. Pecker, J C, Schatzman, E, Astrobhysique générale, Masson et C-ie, Patis, 1959

12. Pop, V, The Physical Parameters of RR Lyiae Stars, Babeg-Bolyal Univ, Fac Math Res
Sem., Preprint 2 (1985), 64—78

13. Saslaw, W. C, Motion around a Source whose Lumunosity Changes, Astrophys, J, 226 (1978),
240—252

14. Ureche, V, Unwersul, Vol. 2, Astrofizicd, Ed Dacia, Cluj-Napoca, 1987



STUDIA UNIV BABE$—BOLYAI, PHYSICA, XXXIII, 2, 1983

ORBITAL MOTION WITH MONOTONICALLY CHANGING
GRAVITATIONAL PARAMETER

IOACHIM GIURGIU* and VASILE AIQC**

Received Dezember 15, 1988

ABSTRACT. — An extension of Kepler’'s problem 1n the case of a secular varia-

. tion cf the gravitetional parameter 1s done The elements of the oscilating
orbit correspondmg to an arbitrary instant ate determined analogously to the
case of ithe two-body problem.

1 Changing Gravitational Parameter. Consider a point mass m orbiting
another pomt mass M, under the only mfluence of two forces the gravitational
attraction and a perturbing force which is central (its support containing the
attractive centre Jf) and obeys an mveise square law Smce the resulting force
1s also «central, the motion will take place in a fixed plane (determined by the
radius vector and the velocity vector at the initial instant £ = 0), and will be
featured by the equation (e.g [11]):

djdtt — C2lr = —G(M + m)|]r* + K|, (1)
in which » = radius vector of m with respect to M, G = giavitational constant,
C = constant angular momentum, K/#?> = perturbing acceleration undergone

by m as an effect of the above mentioned perturbing force.
We shall consider that M, m, K and even G are time-dependent; hence
wc can write.,

g =qo(l +£,0), ¢ ={M mG K}, (2)

where the quantities ¢, are constant and represent the initial values of the quan-
tities ¢. This means that we imposed the restriction f,(0) ==

Such variations of thase quentitics were considered by several authois
(cg [1,4,6, 15 17]; for a detailed list, sac [2]), each peculiar case correspon-
ding to a comcrete astromomical problem or situation

We have shown [5, 7, 8, 10] that m these conditions the problem is
equivaleut to Keplet’s problem in the case of a timc-variable gravitational
parameter Indeed mtroducing the notations

H = Go(My -+ 11,) — K, 3)

where the cnnstant I7 1s called <ffective gravity and consists of the comstant
part of G{M + m), this one being the purely gravitational parameter, and the
constant part of K (which features the perturbing force), and

fit) = (Kcfxl(t) — Gol(Mo + m0) f6lt) + (1 + fc(t)) )
(M o) + mofulEN/(Go( Mo + 1120) — Ko),

* Industrial Secoadary School, 3379 Bata ar At ¢c Ruravie
% Centse for Asironosy and Space Scicices, 3100 Ciuj-Napoct, Roscs.a
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he equation of motion (1) acquires the form - )
Brjdfr — CHp® = —pfr?, (5)
where we denoted .

w=H(—f@) ©)

Observe that the equation (5) has the same form as the equation of motion
in the classical two-body problemn, but here p is function of time. That 1s why
we called p of the form (5), which appears in (5), changing grav.iational para-
meler. This is somehow an abuse of language, smce the nature of the pertur-
bing force is not specified.

We mention that some netural restrictions must be nnposed to the func-
tions f,(f) from (2), in order to illustrate realistic concrete astronomical situations

Such restrictions were discussed in [5]

2 Basic Formulae. In some previous papcrs [6—10] we considered that
the initial motion is circular and studied different problems concermng thc per-
turbed orbit by means of the method described in [5] In this papcr we shall
consider that the imitiel orbit is elliptic (of arbitrary subunitary eccentricity)
and use another method, in order to determine the osculating orbit and dis uss
some features of this one We impose to the function f(f) a single- condition
to be a monotonic function, that 1s the gravitational parameter undergocs a
secular variation ' ) ) .

We start with the basic equation of the trajectory, which, by (5) and (6),
can be written in the form -

djdit — Qr* = —H(1 — f(t))/7* (7)

Since the point mass » moves imder the action of a central force, 1ts motion
must observe the theorem of angular momentum, which we use in the form [14]

r2duldt = C, ) (8)

where # is the argument of latilude
We also use the integral of energy in polar coordinates [14]

(dr[dt)? + v*(dufdt)? = 2ufr + § 9)

e

In the classical two-body problem, p is the purely gravitational parameter (cons-
tant) and % denotcs the constant of encrgy In the case of our extension of
Kepler’s problem, p. 1s time-dependent, according to the law (6), and % will be
time-dependent, too ‘

Replacing (6) and (3) in (9), the mtegral of energy can be written as prime
integral of the basic equation (7) under the form.

: (@rdty + Cirr — 2H(L — f()fr = h() (i0)
The time-dependence of the orbital energy is given by -
dh(t)|d¢ = (2H[r) df (t)/dt, (11)

formula ‘which can immediately be venfied by differentiating (10) with reépect
to time and taking into account the equation (7) of the trajectory.
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As we said, the problem we study 1s the determination of the osculating
orbit at an arbitrary instant. So, we tackle this genecralized Kepler problem as
h{t) were constant (sce [9, 15]).

Cousider m the Fuchdean threc-space E; an inertial, rectangular, 1ight-
handed frame _lxyz, with the axes directed towards fixed points in space
In this frame, the constant angular momentum vector C will have the com-
ponents

C = C(C., C,, C), ' (12)
such that ' '
t= C2 4 C2 4 C, (13)
where C = [_(:‘[ Analogously, Laplace’s vector ?,_ will have the components
Jo=Felfre fro fro) : (14)
such that
=141+ .1

where f = I_?Ll

Consider now the orbital elements {a, ¢, Q, 1, o, f}, where a = semimajor
axis, ¢ = eccentricity, Q = longitude of the ascending node, ¢ = inclination,
o == argument of pericentre, f, = instant of pericentre {dynamical element)
The relationships between the orbital elements and the Cartesian coordinates
and velocity components are well known (e g. [1, 12, 14, 16]). Here we are inte-

rested in the relationships between the components of the vectors C and ?L and
the orbital parameters.

The components of C are [1j-

C, = Csin Qsin ¢,
C,= —C cos Qsin 1, , (16)
C, = Ccost, :

while the componcnts of fL are [1] !

Jrx = frL (cos Q cos @ — sin Q sin o cos 1),
Jry = Jfr {sin & cos © 4+ cos Q sin o cos 1), (17)
Jrs =fr sin @ sin ¢
We know that in the two-body problem there exists the followmg relation-
ship between the integration constants E f: and } (see eg. [1, 12, 16])
JE=u?+ Ch. (18)
In our generalized case, taking imnto account (6), the equation (18)becomes

Jlt) = (H(1 — f()* + CR{h))' - (19)
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With all these considerations and formulae, we can now determine the
osculating orbit at an arbitrary instant.

3. Shape and Dimensions of the Orbit. The shape of the orbit 1s precised
by the eccentricity From the formula

¢ = filu, (20)
we find the instantaneous eccentricity as function of time.
e = (1 4 Ch(e)/(HA(1 — f(1)H)=. (21)

We deduce from (21) two features concerning A(f) on one hand, %(f) must have
the dimension ot the square of the veloaity, on the other hand, A{f) must be
such that

fi)» 1=>e-1, (22)

namely %(f) tends to zero faster than 1 — f{¥)

The dimenstons of the orbit are precised by its semimajor axis Taking
into account the relationship (eg [1])

a(l — &) = Cy, (23)
we obtain the semimajor axis written in our case as function of time
= —H(1 — f(t))[r(1). ' (24)

Observe that, since A(t) is negative (elliptic-type motion) and due to the
fact that k() tends to zero faster than 1 — f(f), the semimajor axis will be
positive msofar f(t) << 1, a —» 0 for f(¢) » 1, and will become negative (hyper-
bolic-type orbit) when f(f) exceeds the umity.

4. Position of the Orbit Flane. As it 1s known, the position of the orbit
plane with respect to the Mlxyz frame 1s specified by the angles Q (angle bet-
ween the _flx — axis and the intersection of the orbit plane with the Mlxy—
plane) and ¢ (angle between the orbit plane and the /lxy—plane) Since the
point mass #m undergoes the action, of a central resulting force, its motion takes
place in a fixed plane (determined, as we already said, by the initial positions
of the radius vector and velocty vector) So, we have

Q=Q 1 =1, (25)

where the index signifies the values at the imitial instant ¢ = 0

5. Position of the Orbit in its Plane. Laplace’s vector determines the posi-
tion of the orbit in 1ts plane, the direction of this vector coincides with the
line of apsides (semimajor axis). In order to find this direction we need the
argument of pericentre (angle in the orbit plane between the line of nodes
(intersection of the orbit plane with the xy—plane) and the direction towards
the pericentre). This angle can be determined on the basts of Laplace’s vector
and angular momentum, according to the formula

tan o = f1,C/(fr4C: — f1.:C,) . (26)

7 —~ Pyhsica 2/1998
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The argument of pericentre can also be deduced, in a perturbative mannes
fiom the corresponding cquation of the Newton-Kuler system (in the case ¢
a central perturbing force)

dw/dt = —(S/e) cos v, (27
wheie S 1s the (only nounzers) radial component of the perturbing acceleratio:
(S = K/r%), the cccentricity 1s given by (21), while the true anomaly (v) can b
obtained from the orbit (quation in polar coordinates

r=a(l — e3)/(1 + e cos v). (28
6 Instant of Pericentre. The true anomaly being deteruﬁned, one can find
the eccentric anomaly {E) on the basis of the formula - I
tan (E/2) = ((1 — ¢)/(1 + €))¥? tan (v/2), (29)
with ¢ given by (21) Having the eccentricity and the eccentric anomaly, one
solves Kepler's cquation (c.g. [12, 13]) .
M=FE—¢smkE, (30)
obtammg m this way the mean anomaly ()
Let us now constder the formula ot the mean motion
} n = a= 32yl (31)
or, in our case, by (6) and (24)
= (=hUP/H — f#). (32)
With M giv'en by (33) and 72 gaven by (32), we finally find the instant of
pericentre .
ty=t — Mn =t — MH (1 = j(t))/(—h(:))** (33)
Now the problem is completely solved for the case of the elliptic-type

motion

7 Comments. Interesting information about the limits between which
the radius vector can lie are obtained from (21) and (24), by taking into account
the well-known relationships .

Tmin = a{l — &), Tmax = {1 -+ &) (34)
One finds [9, 15]
CHRH —f(1)) < 7mw < CH(1 = [{)) < Fmax < 0. (35)
0] ~Analogous results can be obtained from (11) and (35) for the orbital energy
0 < (dh|dt)mn < (RHA(1 — f(2))/CH)Af()]dt <
< (@h]dt)mx < (4HA1 — f(2))[CR)df (¢)/d2.

Observe from (36) that, for f(f) < 1, if the function f is increasing (the gravita-
tional parameter decreases) the orbltal energy will mcrease, too. Conversely,

(36)
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11 the gravitational parameter increases (hence the function f decreases), the
o1bital energy will decrease

We must emphasize that these results are valid only if f{f) 1s a mounotonic

function

Of couise, the evolution of the orbit in the case of a secular vaiiation of

the gravitational parameter can be studied by other methods, too. As cxamples,
we mention the method used by us in [5], or that used wm [15] If the sccular
change of the gravitational parameter 1s very slow as agamst the dynamic tume
scale, the problem can be also studied by using the theory of adiabatic mmva-
rniants (e.g [3])

10.
11

13

14.
15.

16.
17
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ROMANIAN PHYSICS IN 1988
The 1988 Romamau Physics moment,

hallmarked by the X-th Scientific Session ot
Romamia’s Central Institute of Physics, on
October 6—8, 1s particularly sigmficant for the
complex field of activity and of knowledge,
at both national and international level, 1n
that concurrently came out the written text
of the 1988 edition of ‘““Progress m Physics”
(pp 828) Even when metely reading this generic
heading — consistently repeated year by year
for a decade of scientific mformation, not only
by the caption of previous such events but also
by the publishing of some precursoiy books of
the Itke —, the truth that any science evolves
from the past (more remote or nearer), develops
in the present and wends 1ts way toward the
future — a future expected to yield as many
a concept as has done its progress from the
past to the present — once agam turns out
to be right This brief primoidial idea will help
readers understand, we trust, why ‘“‘Progress
i Physics” has been glossed as such and pre-
served through the short past of a decade and
viewed for the comung future of this imposing
domain of scientific knowledge

The book ‘“Progress in Physics’” (1988) 1s
for the physicists mn our country — and not
only for them, but also for those abroad, for
researschers both old or young — a valuable
meaus of mformation and optimum documenta-
tion about the achievements of the experienced
researcher 1 investigation and exploration of

lle physical phenomena, of the laws of relative

stability or instability of varied physico-chemical
substances The long beaten paths by the pio-
neer physicists, by the forerunners, and devi-
sers of research methodologies 1n the so diver-
sified field of physics justify our calling the
recent researcher — of which the text of the
book 15 largely evincive — as ‘‘physicist-per-
fecter”

The syntagm progress in physics was comed
m 1979 by the then whole group of Romamian
physicists and assigned to be the generic head-
lime of the domain scientific sessions on both
the research plane and of the education and
economic-industrial production in our country.

“Progress m Physics’, as set out — main-
tammmg the format of the previous editions
(1984, 1985, 1986 and 1987) —, catries no fore-
ward or afterword for readers, which makes
the anonymous reader — whether physicst or
not — elaborate it himself, but hardly achie-
vable yet not impossible, and with bramn pans
relied on certamn lermeneutfic principlés.

The text of the book complies with and
ensures the information flow abreast of the scien-
tific standards and actuality towards depth and
details in the description of physical phenomena,
especially through extension and correlation of
the operational procedures both in the mtra-
disciplinary domam of physies and in other
fields of knowledge as exacting to the metho-
dology of physics That 1s why we consider it
more appropriate to make an eurstical descrip-
tion on the type of the book, and lay by the
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preface and postface for some other future re
view
A first, general view of the text 1s evin-
c1ve to the physicist reseaichers’ having imposed
themselves to mirror su~cintly and concisedly,
rigorously and m a sample manner the accom-
plishments of the daily practice of the object
(matter substance, body, phenomenor, physical
and physico-chemical Jaw structural-functio-
nally apphed ete) subject tn rovestigations
And, as it 1s well known fact that in anv freld
of activity to be moderun is to be apphcative
— both theoretically and practically —, phy-
slcs itself being no exemption from that, it
follows that, while exhaustively consulting the
text of the book, one is called for a close look
upon the three differentiated ways of applica-
tion the self-application of physics — which
secures 1ts progress as dsslinctive science, exter-
nal application i e 1n othes domains, and, finally,
the application of other domams in physics
These three disaphnary and mterdisciplmary
application requirements and conditions, with
large dependence and interdependence on scope
methods of investigation in physics, compels,
us, as first readers of the text, to view the rela-
tion author-reader of an informational {ext
from three essential standpoints
First, in the book the aunthors make known
to one another therr accomplishments, benefit-
ting each from the other’s experience and from
the information amount therr texts convey
Second, the researchers as authors (of written
text) mform their readers about sound know-
ledge of specialty (physics), which circulates at
the international level and is characterized by
scientific standards and actunality, by profound-
ness and minuteness, by extention and correla-
tion among the varied chapters This event of
the human cogmtion, always mm extention, and
the ever more extensive expansion of the scien-
tist’s intellect are known today as ‘‘mmformational
outburst”. But to have this informational out-
burst take place on an mterdisciplinary level,
this event has been and 1s preceded beforehand
by another scientific event which occurs mside
each scientific branch, — as a specific event of
‘it — denoted ‘“informational explosion’ The-
refore the text of the book evidences a recent
informational break-out iu physics, which extends
over other domains (interdisciplinarity)}, outhmng
the informational outburst of physics
Third, the iext of the book is mdicative
to readers that due to previons development
the nowadays physics has won an autonomous
screntific status and poses a smooth progress,
making itself dominated by such a specialized
“information’’ that it not only contributes to
education of the natural mtteligence of the
human person (for those educating themselves

101

through 1t), but also by theory aud practice
to the soft drtven operation of what is known
of late to be the ‘‘artificial ntelligence and robo-
tistic”’ When phystes by 1ts experimental methods
aad theoretical ratiocination has turned out to
be a source of promoting imformation from other
diseiplines — no matter whih they are —,
we can say 1t has reached the ‘nerformance’
stage Thereby, the text of the here reviewed
boak must be looked upon as a competent and
performant text

Al the three requrements of the dyad
author-reader of informational text in physics
bemg met — as ilinstrated by the book m ques-
tion — fully prove that the Romawman physi-
cists have touched the competence stage to
write 1n their own field and eadeavour to man-
tain thus scientific spinit state In the light of
the above considerations, it comes out that the
book title ““Progress m Physics” 1s no mere pun,
a syntagm to be ignored, but a so-called “genenc
informational-informative” title also denoted
“Compendium of Presentday Phvsics’, having
its own paradigms aud hermeuneutic The book
1s edited accurately by a prestigeous editoral
team of the Central Inpstitute of Physies It
contains 828 pages, with a complex profile and
well outlined evolvement direction m all the
recent branches of physics, as follows Nuclear
and hard ions physics (68 subjects), Atomic
and molecular physics (34 subjects), Field theory
and elementary particles, statistical and mathe-
matical physics (34 subjects), Condeused state
physics (88 subjects), Plasma physics optics,
spectroscopy and lasers (73 subjects) , Brophysics,
radiobiology, radiomumunology (22 subjects),
Radiometry and dosimetry of the enviromment
(54 subjects), Earth physics, astronomy and
astrophysics (45 subjects) and, Nonconventional
physics aund technologles (45 subjects),

The title of each subject was principally
established by authors according to the sub-
stance subject to expriments, the chowe of the
phenomenon specific to this substance, the choice
and logical ordermng of the essential parameters
of the phenomenon as function of the way in
which they render out its law character and,
finally, the outline of the conditions of useful
application of the investigated substance m
laboratory or techunics (industry) Scientific eva-
luation of the obtained 1esults 1s clearly emergent
from the calculations progress, from {he drawmg
of the graphs and the law interpretation of
the phenomenon investigated

The graphs and tabulations accompanymng
the written text, with newest references emnsure
a deep msight into the specific characteristics
of the substances envolved, and the accurate
language of the text makes 1t easily compre-
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hensible even by mnonphysicists studying phy-
sics terdisciphnarily

A general view of the whole body of con-
cepts employed 1n the book and of the chapter
vocahulary 1s imdicative of a rather wide rec-
currence 1n the text discourse of the structural
components of the matter such as substance,
molecule, atom, atomic nucleus, neutron, proton,
mezoun, mneutmino, cleticutary paiticle, of {1he
terins denotmg physical constants as, for exem-
ple &, ¢, I etc, of many physical parameters
as well as of laboratory nstiumentation, of
terms designating physical or chemical pheno-
mena namely fission, fussion, (re)erystallization,
x-radiation emussion, y-radiation, wuv-radiation,
levels of electromagnetic energy aso

The informational load of more than
10 000 terms with semantic marks specific to
physics, chemistry, buwology, mathematics and
to other disciplines such as techmical discipli-
nes — prerequisites of the laboratory experi-
menis and iesearches, of the large scale indus-
trial application, respectivelv — enabler esearches
to documentate thotoughly i lus specialty
freld

The over 550 authors signing the contri-
butions, either mdividually or collectively, carry
out reseaich activity specific of the theme —
theoretical or experimental —, m laboratories
— erther didactic or non-didactic — belonging
to umversities, pilot stations of industrial aggre-
gates or of cnterprises and teclhmological instal-
lations, all these having research planming under
the Central Institute of Physics m our country

Informationally and documentardy, the
poster-like text desplay turns out an informa-
tional treasury and column of sound knowledge
i the modern freld of theoretical and applied
physics The mnformation bursting from the
texts gocs im part to the imformational flow
levelling 1nternational congresses, while some
other in the couniry and for other varieties of
scientrfic literature such as specialty treatise,
lexicons and dictionaries, school text-books, and
quite good a share comes to mass media sicen-
tific and techmical lterature

As for the researchers — authors of the
papers i the here rewiewed collection, many
of them having also authored the texts of pre-
vious volumes — they are heading upstream to-
ward next year and the followings, with an
ever more euriching experience

PETRU POGANCLANTU
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K Baumgartel and K Sauer, toples
on noelinear wave-plasma Interaetion, Birkhauser
Verlag, Basel—Boston— Stutigart, 1987, 222 pp

This monograph is devoted to theoretical
asnects of nonlinear processes at the interaction
of 1teuse electromagnetic radiation with unmag-
netized fully 1onized plasmas The book covers
several selected topics on nonlinear wave-plasma
interaction 1in a treatment based on a hydro-
dynamic plasma description The interest in
these processes has increased 1n connection with
the effort to bring about laser-driven fusion
and with active wave experiments in cosmic
plasmas {00

The text 1s divaided into mamn parts dealing
respectively with nonlinear processes which in-
volve only electrons (high-frequency processes)
and phenomena which include 1on motion (low-
{requency processes) The book has 11 chapters

Part T presents the dertvation of the basic
equations for both hgh-frequency and low-fre-
quency processes from two-flud equations of
a plasina A review on basic features of linear
wave propagation in nonuniform plasmas (reso-
nance absorbtion structure, resonances) s given
in the Part II Chapters 6—7 (Part III) are
devoted to high-frequency nonlinear phenomena
as the generation of harmonics, stimulated Ra-
man scatteiing and two-plasmon decay

Part IV (chapters 9—11) deals with low-
frequency phenomena as the stimmlated Mandel-
stam-Brillowin scattering, density profile defor-
mation, non-limear skin effect, envelope solutions
superreflexion

A list of General References is added and
at the book end an Appendix containing some
peculiar calculations 1s given

The coutent of this book 1s partly intro-
ductory and presents current results obtamned
as research contributions by the authors

The book 1s very useful for students and
scientists too, not only 1n field of plasma physics

SPERANTA COLDEA

.

I, Munchow, R Re1f, Recent
Developmenis in the Nueclear Many-Bedy Pro-
blem, Stiong wnieractions and nuclear structuse,
vol 1, Teubner-Texte, zur Physik, Leipzig,
1985, 152 pg , Nuclear reactions and dynamucs,
vol 2, 1987, 180 pg

This book treats modern approaches to
the nuclear many-body problem sterssing the
conseptonal points of view as well as the links



RECENZII

to other fields in physics. The text 1s drvided
into six chapters, vol 1, and ten chapters,
vol. 2.

Vol 1 The first chapter gives some infor-
mations on substantial content of nuclel in
terms of nucleons and quarks The classification
of baryons and mesons and quark-theoietical
interpretation are sketched together with the
attempts to explain the mass spectra within
a phenomenological bag model including gluon
exchange between quarks In chapter two, the
basic features of the free nucleon-nucleon inte-
raction are discussed There are also included
some comments on quark theoretical aspects of
the strong interactions between nucleons Chap-
ter 3 contains the present status of mean field
theories, starting from the phenomenological
shell model with configuration mixing More
principal considerations are based on the Har-
tree-Fock method The concept of nuclear matter
and the treatment of hard-core correlations and
Brueckner theory are given in chapter 4 In
chapter 5 collective vibrations of nucler are
investigated The modern aspects as rotaliomal
alignment and backbending phenomena are
discussed 1n chapter 6

A lst of 140 references 1s added. The book
i1s very useful for students and scientists which
are interested i1n modein nuclear research.

Vol 2 The basic concepts and formal
elements of the quantum mechanical collisions
theory, the description of nuclear reactions in
terms of the R-matrix and projection operator
techniques are presented (chapters 1—4). For
a comparison of theoretical results and experi-
mental data only few illustrative examples have
been selected.

The phenomenological optical model, direct
reactions, distorted wave Born approxumation,
zero-range approximation, coupled-channel ap-
proximation for inelastic scatterang, direct reac-
tions as a tool of reaction spectroscopy and
statistical aspects of nuclear reactions are discns-
sed 1n chapters 5—7.

The treatment of the few-body problem
in nuclear reactions is based on the Fadeev
equations (chapter 8)

In the last two chapters (9— 10), the authors
present the classical and semiclassical theory
of heavy-ion collisions, the phenomenon of
nuclear friction and the time-dependent mean-
field approach to heavy-ion induced reactions

Some approaches which could not be dis-
cussed 1n detail are Listed 1n a final section and
a list of 220 references 1s added, too

ONUC COZAR
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Stephen Parrott, Relatlvistic Elee-
trodynamlcs and Diiferential Geomeiry, Springer-
Verlag, New York, Inc 1987

This book 1s a complete exposition of the
logtcal structure of classical relativistic electro-
dynamics written 1n the language of coordinate-
free differential geometry

In Chapter 1 (Special Relativity) and
Chapter 2 (Mathematical Tools) the necessary
concepts from special relativity and differential
geometry are presented Chapter 3 formulates
the part of electrodynamics which deals with
continuous distributions of chaige Chapter 4
treats the radiation and presents the motivation
leading to the Lorentz-Dirac equation The last
chaptes, which 1s of a moie spectalized natuie,
explores further difficulties with the usual for-
mulation of electrodynamics and discusses alter-
nate approaches Much of this chapter 1s drawn
from the reasearch Iiteratuie

Fach chapter contains also exercises with
solutions

This very interesting book 1s addressed to
the mathematictans and phystcists which aie
familiar with the language of modern mathema-
tics (differential geometry) and with electromag-
netic theory

n

STELIANA CODREAXNU

Dimensions and Entropies in Chaotie Sys-
tems, Quantification of Complex Behaveor, Sprin-
ger-Verlag Berlin Heidelberg, 1986 (G Mayer-
Kress, Editor)

This volume contains the papers contributed
to the International Workshop on ,,Dimensions
and Entropiles in Chaotic Systems’” at the Pecos
River Conference Center on the Pecos River
Ranch 1n September 1985 The workshop was
held by the Center for Nonlinear Studies of the
Los Alamos National Laboratory It 1s known
that at the Center for Nonlinear Studies the
investigation of chaotic dynamics and especially
the quantification of complex behavior has a
long tradition

In September 1985 was brought together
an wdisciplinary group of scientists who worked
for one week The results was published 1n this
book which contains seven parts Imtroduction.,
General Theory, Mathematical Aspects of Dimen-
sions, Basic Problems, Numerical and Exper:-
mental Problems i the Calculation of Dumen-
sions and Entroptes, Compuiation of Lyapunov
Exponents, Relability, Accuracy and Data-
Requirements of Different Algorithms, Amnaly-
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sing Spatio-Temporal Chaos, Exzperimental Re-
sults and Applications

The volume is very useful for the researches
and serious students foir thewr own 1esearch
i the field of nonlinear chaotic dynamics

STELIANA CODREANU

Quantum Chaos and Statisties] Nuelear
Physles, Lecture Notes wn Phystecs 263, Springer-
Verlag Barlin Heidelberg 1986, (T H Seligman
and H Nishioka, Editors)

This volume contamns the proceedings of
the 2nd International Conference on Quantum
Chaos and of ihe 4th International Collogumm
on Statistical Nuclear Physics, held at Cuernavaca
Mexico, tn January 6—10, 1986 The conver-
gence 1in quantum chaos and statistical nuclear
physics of methods and physical background
yustify the meeting on both subjects

The sections of these proceedings are
Introduction, Spectra and Stales, Time depen-
dent systems, Nuclear reactions, Other topics

This volume, which concentrates the latest
researcl results, 1s very useful for the researches
on both domawms )

STELIANA CODREANU

Roger Penrose, Wolfgang Rin-
dlei, Spinors and Space-ilme, Two-Spinors
Calcwlus and Relatwistic Fields, vol I, Cam-
bridge University Press, 1984, England, reprin-
ted with corections, 1983, 458 pg

The present book represent the first mono-
graphy in which 1s given a concise treating of
the space-time geometry in frame of spinorial
formalisin The twistor theory 1s presented (a
development of Dirac’s bispinor) which had
been created 1n 1968 and strengthened as umitar
theory in '70 years

The 1nterest for twistor theory is related
with 1ts applications at the autodual solutions
from field theory (the instanton, the monopol),
the construction of supersymmetrical spaces, 1n
gravity theory N

The authors don't need a special introduc-
tion, they are well-known by gravity-physictens
through the terms which had ealready become
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customary ’’Penrose diagramms’’, ’Radon-Pen-
rose transformation’’, "Newman-Penrose forma-
lism”, ”Rindler metric”, "Rindler vacuum’'.

The first volume 1s composed from a pre-
face, five chapters-an appedix containing writ-
ting diagrammatical system, the bibliography
with 203 titles and an index of terms

Chapter !} — Geometry of world-vectors and
spin-vectors The simplest spinoi1al object 1s defi-
ned-a2 spin-vector complex with 2-components,
together with 1ts geometrical image 1n space-time-
“the 1sotrop flag"” determined by the isotropical
direction (the suppert of the flag) and bidimen-
stonal 1sotropical semiplane (the sheet of the
flag) It 1s also given a geometrical interpretation
for all spinorial operaticns

Chaper 2 — Abstract wndices and spinoy
algebra The necessity of the abstract indices is
explained in the tensoi1al algebra and from the
analogy of the tensortal structure with that of
the spin-vectors, spinorial algebra is build

Chapter 3 — Spwnors and world-tensors It is
tndicated how the spinorial structure of space-
time naturally leads to the 1sotrop tensorial struc-
tuie, which 1s defined by 4 complex liniar inde-
pendent vectors — the NewmanPenrose 1sotrop
tetrada The basic 1deea of 1sotrop tetrada led
to the Newman-Penrose formalism used in the
search for solutions of Einstein's ecuations.

Chapter 4 — Duferentration and curvature
The curvature spinors conform Weyl and Ricei
are analysed and a spinorial formulation for Ein-
stein theory and that of the Bianchi relations is
given Tlsing the exterior forms the spinorial
coeficicuts method 1s described, a method which
managed the substantiation of black-hole-fields
ot arbitrar spin interactions As an application
the topology of bidimensional surfaces 1s discus-
sed, choosing as an 1mportant case,j he 2-sphere
in Minkowski's space and the theory of sferical
harmonics with spinorial weight 1s build.

Chapter 5 — Frelds 1n space-tsme In gauge
field theory the matter fields (fermions), sections
are considered in vectorial bundles and the gauge
fields (bosons) would be the conexions of these
bundles, over basevariety (Minkowski's space).
In this way electromagnetic and Vang-Mills fields
1s approached. Also the general notion of con-
formal wnvariance, valid for curved space-tume,
1s introduced.

EMIL VINTELER

Municipiul Cluj-Napoca, Cd. nr. 575

@ INTREPRINDEREA POLIGRAFICA CLUJ,

v 2



In cel de al XXXIIl-lea an (1988) Studia Universitatis Babes-Bolyai apare in
specialitatile:

matematica

fizica

chimie

geologie-geografie

biologie

filosofie

stiinte economice

stiinte juridice

istorie

filologie

In the XXXIII-rd year of its publication (1988), Studia Universitatis Babes-
Bolyai is issued as follows:

mathematics
physics

chemistry
geology-geography
biology
philosophy
economic sciences
juridical sciences
history

philology"

Dans sa XXXIlI-e année (1988), Studia Universitatis Babes-Bolyai parait dans
les spécialités:

mathématiques

physique

chimie

géologie-géographie

biologie

philosophie

sciences économiques

sciences juridiques
histoire

philologie



Abonamentele se fac la oficiile postale, prin factorii pos

tali sx prin difuzorii de presa, iar pentru strdindtate prir

ROMPRESFILATELIA", sectorul export-importpresa

P. O, Box 12—201, telex. 10376 prsfir, Bucuresti, Cale:
Grivitei nr. 64—66



