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ATOMIC HOMOGENEITY IN THORIA-URANIA ADVANCED EUED

D. CIURCHEA*

RaeuuA : B a m b it 14, 19SS

ABSTRACT. — The paper deals with the influence of the processing varia­
bles on the atomic homogeneity of the (U, Th)Oj system as studied by X-Ray 
diffraction The experimental details and the numerical procedures used are 
presented The physical interpretation of the evolutions observed is discussed. 
It appears that the grain boundary diffusion is an important factor affecting 
the homogeneity of the solid solution

Introduction. Thoria-Urania advanced fuel is a promising future for the 
heavy water moderated reactors The homogeneity of the mixed oxide fuel is 
of prime impoitance to prevent local melting during power transients and to 
allow the reprocessing of the burnt fuel, since pure Tlioria is chemically inert 
[1. 2, 3]

The homogeneity may be studied at different levels of detail. macroscopic, 
by autoradiogiaphy , microscopic, by microprobe and atomic by X-Ray diffraction.

Among the X-Ray diffraction methods presented in the littérature [4, 5, 
6, 7‘], the method of Rudman [4] seems to be the best suited for the Thoria- 
Urania system, yielding quantitative data relative to the diffusion process. I t 
was successfully applied by Furuya et al. [8] by using the (620) reflexion of the 
f.c c. structure.

In this paper we present the influence of the processing variables on the 
atomic homogeneity in the T h02—U 02 system by using the (311) reflexion of 
the structure and by usmg our numerical procedure presented previously [9].

Theoretical basis. The study of the diffusion process at an atomic level by 
X-Ray diffraction is conditioned by some relation between concentration and 
the lattice parameter. Then the diffracted intensity corresponding to a given 
lattice parameter is proportional to the number of unit-cells with that concen­
tration. This rationale may be speculated in terms of the diffusion theory to 
yield the concentration profile versus effective penetration [9].

In quantitative terms, the number of unit cells with the concentration 
between c and c +  dc, N(c), is.

N ( c ) = Q - f (  6) (1)
where /(0) is the pure diffraction profile and

8d(c) l

„    8c d(c) s m 3 0 , n \

V _  KA(0, |i)[e/i +  (1 -  с)/г]3 1 +  cos2 20 1 '

University of Cluj-Napoca, Department of Mathematics ană Physics, 3400, Cîuj-Napoca, Romanţa



4 D CIURCHEA.

F i g  1 The dependence of the lattice parameter versus concentration m the Thoria-Urama sys­
tem The specimens were pressed at larger pressures then m the other experiments described

where c is the atomic fraction of U 02, f x and / 2 are the atomic scattering 
factors for U 02 and Th02 respectively, .<4(0, p) is the absorbtion factor, К  
is a constant.

The pure diffraction profile, /(6) should be obtained from the experimen­
tally measured profile, A(0) by unfolding with a reference specimen [9].
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The effective penetration, y, is 
obtained as

C

f N(c)dc

y  = \ -------- '(3)
I  N{c)dc
0

Since T h02 and U 02 have iso- 
morphous structures, the Vegard law is 
expected to apply through the entire 
range of compositions. This was chec­
ked by ns by using pellets pressed at 
large pressures and sintered at 1750 °C 
(see Fig. 1). Since Vegard’s law applies 
to the system, dd{c)jdc in Fq. (2) may 
be taken as a constant.

For compliance with other authors 
[8] the homogeneity parameter H  may 
be defined as the mass of substance 
migrated through the Matano interface 
reported to the initial amount, i e. 
(Fig. 2) :

H  = --------ë l+ J b --------  (4)
СоУт +  (1 -  c0)(l -  Ут)

However, the Matano interface has 
a specific definition,

C 1

J (Ут — y)dc = ţ  (y -  y m) de (5)
0 c

which is conected to the effective dif­
fusion coefficient Since this feature is 
not specrffieally used later in our study, 
we have taken ym as the same with c0, 
the initial concentration of U 02.

Moreover, m Eq (4) H  results m 
arbitrary units Therefore, it must be 
calibrated for 0% and 100% homo­
geneity, respectively

V / / / / / /M __________________ I

Ут У

Ут
( Ы

У

F i g  2 То the definition of the homoge­
neity parameter, Я, in terms if the concentr 
ation profile (a) initial, (h) intermediate ; 

(c) final stages of the diffusion process.

Ezgcrlmcntal. The U 02 powdei was obtained by the ADU process and ThOs powder by 
oxalate calcination U 02 and ThOa powders were mechanically blended in a ball mill for various 
time intervals The mixed powder was bilaterally pressed in a steel die at 2t/cm2 The samples 
were sintered m the temperature lange 1 000 —1800°C m reducing atmosphere.

The specimens co\er the following processing variables concentration, sintering temperature 
and milling time.



Oi

Experimentai jjnfolded
S' i g. 3 The evolution of the X-Ray diffraction experimental data with the sintering temperature Since the unfolded 

piofiles are smooth, without nples, the numerical procedure may he reliably validated.
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Afte annealing, the specimens were polished to avoid the influence of the surface diffsion.
Tile X-Ray measurements were performed with a PW 1130/00 Philips powdei diffractometei 

with vertical PW 1150/00 goniometer, a Cu PP tube and AMR graphite monochromator The (311) 
reflexion of the oxides was chosen for analysis for counting statistics reasons since the numerical 
proceduie is sensitive to this parameter [9] The reference sample was a pure UOa sintered pellet. 
The data were collected at 0 01° 20 intervals on a HP 9830A computer By using a Tikhonov 
régularisation procedure the unfolding was performed by the Stokes method The numeiical proce­
dure was discussed m detail elsewhere [9] Pig. 3 presents the evolution of the experimental data 
with the sintering temperature

As mentioned earlier, the homogeneity paiameter is defined in relative terms Therefore as 
0% homogeneity samples, mechanical blends of powders were chosen Sintered coprecipitated sam­
ples provided 100% homogeneity standards

The results of the expel lmcnts are presented in Pig. 4 — 7

Discussions. The decrease of the homogeneity with the U 02 concentration 
(Fig 4) may be explained simply by using Fick’s fust law Along with neutron 
economy considerations, this suggests that small UO, concentrations are pre­
ferable in the reactoi design. Moreover, the lineal decrease is a stiong support

Fi g .  4. The homogeneity variation versus TJOa concentration. The specimens were
sintered at 1800 °C.
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~1 i I I I----- 1----- 1----- 1----- 1----- 1----- 1------- —
1000 1Л-00 .. ■ 1800

Annealing iemperafure[°G]
F i g. 5 The homogeneity variation versus sintering temperature

for a simple diffusion model in the formation of the solid solution, e.g. by 
using Fick’s laws.

The increase in homogeneity with the sintering temperature (Fig. 5) is 
easy to predict. However, due to the small force used during the pressing 
process, the saturation effect at high temperatures is less pronounced in our 
data comparatively with Furuya et al [8] Since the results of the study 
apply at an atomic level this feature stresses the strong influence of thé grain 
boundary diffusion during the sintering process (occuring at a larger distance). 
Thus, from the point of view of homogeneity only, a pressing force as high 
as possible would be benefic.

The homogeneity evolution versus milling time (Fig 6) with its saturation 
effect may be further understood in relationship with the efficience of the mill,
i.e the dependence of the gram size (crystallite size) veisus milling time The 
similar hardnesses of -the two powders allow, this fuither processmg of the 
data. The results are plotted in Fig. 7. This linear dependence clearly demon­
strates the role of the gram,boundary diffusion iu the. formation of the solid 
solution. ; • -,
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P 1 g. 6 Tile homogeneity variation versus milling time The specimens were sintered at 1800 °C.

The obtained evidence that the grain boundary impedes the diffusion may 
be eventually used to remove the incertitude left in the theory that the effective 
penetration is given in relative terms, Eq. (3)

An appropriate study by nucropiobe of the specimens could îevcal a cor­
relation between the gram size and the maximum effective penetration, y  =  1. 
If such a study will be successful! the results may be used to the calculation 
of the effective diffusion coefficients and to the evaluation of the proper îole 
the gram boundary diffusion plays

Conclusions. In this paper we have successfully used X-Ray diffraction 
data and a performing unfolding procedure to obtain a quantitative esti­
mate of the homogeneity in the system Th02—U 02. This was possible since 
the two substances are isomorphous and the lattice paiameter obeys Vegaid's 
law

Without qualitative alterations in the results some simplifications may 
be applied comparatively to other authois [8] the use of the (311) reflexion
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0.05 0 10 0 15 0 20 0 25 0 30
crystallite size [pm]

F i g  7 The homogeneity variation versus effective crystallite size The plot was obtained from 
that m Fig 6 by taking into account the mill efficiene

with better statistics , one can avoid the effective calculation of the Matano 
interface.

The important role of the gram boundary diffusion is evidenced, suggesting 
the need for further woik by complementar}'’ methods to evaluate this con­
tribution.
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THE TESTING OF GRAVITATIONAL EFFECTS USING A ' LINEAR
GYROSCOPE

Z. GÁBOS*

Received : December 10, 1988

ABSTRACT. — The study is focused on the gravitational effect of a lotatmg 
mass, distributed on a splieiical surface, m the domain near the center of the 
spheie Testing of the gravitational effects can he peiformed using a gyroscope 
consisting of two material points with equal rest masses and invariant distance

1. Expression of the Lagraiujean. We consider that the rest mass M 0 is 
uniformly distributed on the spherical suiface of radius A, and this sphere 
has a nonuniform rotating movement around a fixed axis which crosses the 
center The quantities of the studied system are given in the laboratory sys­
tem К  which has the origine in the center of the sphere denoted by 0, and 
on the other hand m the system K', associated with the gyroscope, and with
the origine 0 ’ in its center. The angular velocity Q.(t) of the sphere, the posi­
tion vector A of a point from the surface of the sphere, the position vector 
X, and the translation velocity v of the center of the gyroscope are quantities
defined in K, and the angular velocity ы of the gyroscope as well as the posi- —► —►
tion vectors x 0, îepectively — x 0 of the materials points of the gyioscope (each 
of them with the rest mass »i0ß ) are given m the system K ’.

We will be satisfied with a second order approximation, in the domain 
near 0  we can write

| Z - * - % 0|-"  =  A -« [l +  ^ ( X ,  * +  ; „ ) - JA (x + x0Y +I A 2 A 2

+  2n(" 4+ ( X , x  +  xoy + . . . ]  ' (1)
A4 J

)
If we consider that due to the relativistic combination of the velocity v

—> —> ■—► —+

given in К  and of the velocities (« x x0) and — (to a- x0) respectively given 
m K ’, we obtain the square of the velocity of the material points of the gyro­
scope m К  as

• V% =  ------ - 1 -------- - { [v ±  '(« % x D) \  ( v x ( Z x  ж0))4 , (2)
Г 1 -* - t  - I  2 c2 ' I '
I 1 ± — (». *o) j

* Umvcrstiy oj Ch<j-Napoca, raçuity o f Maicmattcş and Physics, 34QQ Clvj-Napoca Romanţa
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and using the Eock-Ficlitenholtz Lagiangean, in the framework of the consi­
dered approximation, we can write

X ^  К  »0, »)* +  ^  f 1 -  -2l_) +  mJJLW +
c2 s i у 2A. j

+  —  (x20.2 -  з(х, П)2] +  ^  \x2Û2 -  3(x0, Q)2] -  (3)

where

4яг0Х
ЗА

(O , X, V) 4X r n

т0[х\Ъч x0tx0j). (4)

2. The Equation of Motion, h  et us consider the third axis of the system
1 -A —►

К  in the direction of £2 (thus Q has the components 0, 0, Q). The third axis
of the system K ’ will have the orientation of x0 If the position of the system
K ’ to К  is given by the Euler angles F, <p, VF, the components of ы and ■ x0 
are

co(& cos Y +  ф sin F sin Y, F sin Y — ф sin F cos Y, Ÿ +  ф cos F), (5)

;0'(x0 sin F sin Y, — %0sin D cos Y, #0cos F).ж

Using (3) from the Euler-Lagrange equation

d (8L ]8L   d !8L \ _
8x, dt \8 x J

0, (6)

we obtam the equation of motion wich describes the translation of the gyio- 
scope

d v  xiîa J rf. I 8X /X  Л  I 4X ,- p .— =  —  §rad ф +  7 7  i&xv) + — (Q.X x), (7)
dt 10 А ЗА ЗА

where
Ф =  x\ +  x\ — 4x\ (8)

Taking into consideration the equation (5), the Euler-Lagrange equation 
which describe the rotation of the gyroscope can be written as

£
dt

( 8L I— stjk I g T  %oj
8L

(9)



GRAVIATIONAL ETFECTS TESTING BY UNEAR GYROSCOPE 13

Using (3), (9) and the equation

(10)

we get the equation of motion which describes the rotation of the gyroscope 
as

The obtained results can be generalized for the case when the gyroscope 
presents sj'mmetry to a point

3 Conclusions. The calculations [1], [5], [6] performed up to present 
have been performed for a punctiform gyroscope, or for a spherical homoge­
neous gyroscope

For the lmear gyroscope we reach the above conclusions concerning the 
translation and rotation motion

The equation of motion (7) valid for the translation of the center of gyro­
scope is identical with the motion equation obtamed for a spherical and puncti­
form gyroscope

The equation (11) obtamed for the rotation motion is more complicated, 
because, this equation contains components of the tensor of inertial momen­
tum Between the contributions wich gives rise to a change in the rotation 
motion of the gyroscope are ' the coupling of the rotation moments due to 
the rotating sphere and the gyioscope, the quadratic training effect given by 
the rotation of the spheie as well as the training effect given by the non- 
uniform rotation of the sphere.

From the equation (11) we can eliminate the rest mass of the gyroscope, 
thus the equivalence principle concerning the translation motion (the insensi­
bility concerning value of m0) can be generalized also' at the rotation motion.

• —>
The magnitude of the relativistic effects is given by X/Л, Q, Í1 and \ x0\.

1 H T h i r r m g ,  Phys Z ,  19, 33 (1918), 22, 29 (1921)
2 1 G l ' i c h t e n h o l t z ,  JETF, 20, 233 (1950).
3 Z G á b o s, Analele TJniv "Al I. Cuza" Iaşi, 5, 101 (1959)
4 L L) l a n d a u ,  E M E î f ş î ţ, "Teoria timpului", Bucureşti, 1963, p 363
5 S W e i n b e r g ,  "Gravitaţia i kosmologia", Moskva, 1975, p. 251 — 257
6 B M a s h h o o n ,  F.  W H e h l ,  D S T h e i s s ,  Gen Rel. and Grav , 16, 711 (1984).

(И )

where
( 12)

r e f e r e n c e s
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RECTANGULAR WAVEGUIDE IMPATT OSCILLATOR DESIGN

LINDENMAIER J*. and D. STĂNItĂ*

Received: January 12, 1989

ABSTRACT. — The paper presents a com plet e analysis of a microwave oscilla­
tor m rectangular waveguide, using an IMPATT device ' The IMPATT diode 
is fixed m the wavequide by means of a metallical rod The diameter of this 
rod influence the frequency of the oscillator. We have performed both a theo­
retical and experimental analysis of the oscillation frequency as a function of 
the rod diameter The results show a good concordance between the theory 
and the experiment A computer program is also presented.

Theory. The frequence of the oscillator may be determined knowing the 
parameters of the wavequide mounture. The driving point impedance of the 
mount has been1 determined by the extention of the induced EMF method of 
Carter [1], developed by Eisenhart [2] Such a monture in a general case is 
shown in Fig. 1

/ The post mount equivalent circuit, for the H 10, mode is shown in Fig. 2.
The components X L and Y RP have the following expressions :

(1 )

CO

W« 1

' 1

è z,nn (-^r5-)Я1 — 1 V -evgn I

(2)

F ig  2. Post mount circuit for 
incident H10 mode.

University o f Cltij-Napoca, Faculty o f Mathematics and Physics, 3400 Clttj-Napoca, Romania
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where

„ _гФ_ ______Я8 -  Ку______
тп ~~ ah ’ (2 -  Sq) (Я* +  К% -  К*)1!2

is the impedance of the Hm„ mode,

Kpm =  sin K XS

is the post cupling factor,

I SM 9mi
l 9m i

is the gape coupling factor,

K x
X

i i
S„ - z {u 0 1 0

0 . “
WI7TC0

2a

WITT _ W7T
л У к

Ф =f ^  т
nng
26

(3 )

and 7) is the wave impedance.
In this way the equivalent circuit for the oscillator reprezented in Fig. 3 

becomes as shown in Fig. 4.
In Fig. 4 Zso represents the equivalent impedance of the waveguide with 

the shortcircuit m the right side of the IMP ATT device. Zsc is expressed as :

Zsc =  j Z о tg (4)
where

z  _  2b 377

■"Ч-ЮГ
l-s

P i g  3. Scheme of the waveguide oscillator. P i g .  4. General reprezentation of the equiva­
lent cicuirt.
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0,6 nH

X,

2xYrp

F i g .  5. Practical equivalent circuit

is the characteristic impedance of the 
waveguide ; RD is the negative resis­
tance of the junction ; CD junction 
capacitance ; L s wire inductance ; CP 
case capacitance.
At L — , Zsc becomes oo so that,
knowmg the diode parameters, the 
new equivalent circuit becomes as 
shown in Fig 5. "

The impedance of the active de­
vice ZD has the following expression :

£  _  -  Xp[Rd + }(XS -  Xp)]
- D nD + J(XS -  x D -  Xp)

From the resonance condition [3] I,„ZD = X L +  У we obtain the frequence of 
the oscillator

Exgerimenls. Such an oscillator may be seen in photographs 1 and 2
The theoretic calculus of the oscillation frequence has been obtained by means of a com- , 

puter program, given m Appendix, for different diametervalues of the rod.
The oscillator has also been experimented with seven rod diameters, The theoretical and 

experimental results are given in Tab 1

Tab I

D
(10“3m)

CO
1 (10"3ni) (10~3m)

s
(10-®m)

h
' (10-3m)

Ftheor
(GHz)

FcxP 
'1 (GHz)

2,7 5 11,35 2,4 1,2 9,48 9,12

3 5,4 11,35 2,4 1,2 9,7 9,35

3,3 6 11,35 2 1 9,9 9,26

3,5 6,3 11,35 2,4 1,2 10,3 9,8
4 7,2 11,35 2,4 1,2 10,9 10,45

4,2 7,56 11,35 2,4 1,2 — —
4,5 8,1 11,35 2,4 1,2 11,46 11,1

5 9 11,35 2,4 1,2 12,4 12,2

A =  22,7 1 0 - sm, В =  10,2 1 0 - s m

Conclusion. From Table 1 it can be seen that, the theory previously descri­
bed is in agreement with the experiment. The small differences between the 
theoretical and experimental values occur because of the ' following facts .
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Photo  1,2

1. The parameters of the im pa t t  diode strongly depend of the bias cu r­
rent

2. The equivalent circuit of the im pa t t  diode is a simplified one.
3. The resistive loss of the metallical rod has been neglected.

APPENDIX

1 REAL ъ  KP1 KPM KGN
2 DATA A/0 02277.B/0 0102/ S/0 01135/
3 N R =0
4 1 READ(105,3)W G.H
5 3 EORMAT(3F7 5)
6 PC=3 OOE+08/2/A
7 WR. TE(108 10)A B S W G M
8 10 FOR.MAT(5X A =  E7 5 5X B =  .r7 5 5X. S =  Er 5//
9 *5X ,W =. E7 5 5X G= E7 5 5X H =  E7 5/ //)

10 WP='W/A
11 P T = 3.14159
12 K P ^ S IN /P I*  S/A)*(SIN(PI* W/2/A)(PI*W/2/A))
13 E = 8  OE+09
14 20 CONTINUE
15 X L =0
16 YR.=0
17 DO 30 11=2 30
18 N = 0
19 ZMN= FZMN (A В PI M N P)
20 KPM=PKPM(M A S W PI)
21 XD=XU+ZM N* (КРЫ/КР1* * 2 * (1 -W P )'
22 30 CONTINUE
23 DO 40 N=1.30
24 Z = 0
25 DO 4111=130
26 ZMN= FZMN(A B PI.M N )
27 KPM=FiCPM(M A S f f  PI)
28 KGN=FKGN(N.B G.PI H)

2 — Physica 1/1989
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29 Z=Z+ZM N* (KPM/KGN)*  *  2
30 41 CONTINUE
31 Y R =Y R +1/Z
32 40 CONTINUE
33 Y R P=K P1* * 2 * Y R
34 D IF = X E + 1 / YRP/2
35 WRITE(108.50)F AE YRP DIF
36 SO FORMAT(8X F  18X XE 15X TRP UIF.//
37 *1X E14.7 4X.E14 7.4X.E14 7 4XE14(//)
38 EF(F GE 12 OE+09)GO TO 70
39 F = F + 0  1E+09
40 GO TO 20
41 70 CONTINUE
42 N R =N R +1
43 IF(NR ЕЕ 6) GO TO 7
44 STOP
45 END

1 FUNCTION FZMN(A B .PI.M N F)
2 REAE E
3 Т^д 3 0E+08/F
4 ETA=377 0
5. IF(N EQ O) GO TO 700
6 DO =  0
7 GO TO 110
8 100 DO =  l
9 GO TO 110

10 110 CONTINUE ' " '
11 F Z M N = (E T A *B *((2*P + /E )*  * 2 - (N * P I /B )*  * 2))/((A*2 *  P)
12 *(SORT((M*Pl/A)* * 2 + (N * P I /B )*  * 2 - (2 * P I /E )*  *2))
13 RETURN
14 END

1 FUNCTION FKPM(M A W PI)
2 FKPM=SIN(M* P I*  S/A) *  (SIN(M* P I*  W/2)/(M* P I*  W/2/A
3 RETURN
4 END
1 FUNCTION FKGN(N.B G PI M)
2 FKGN=COS(N* P I* H /B )*  (SIN(N* P I*  G/2/B))/(N* P I*  G/2/
3. RETURN
4 END 
MODUEE F MUATA TYPE P LONGUEUR 0558
MODUEB FZMN TYPE P LONGUEUR ‘ 0180
MODUEE FKPM TYPE P LONGUEUR 00D0
MODUEE FKGN TYPE P LONGUEUR 00D0
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ABSTRACT. — The object of the present paper is to evaluate moduli for 
higher order accelerations m a moving system of reference in a moving point 
trajectory m E3 Tor rectilinear trajectons, Taylor formula expressible in terms 
of integrals is deduced 'and used

1. Introduction. The very rapid evolution of the phenomena, where higher 
order accelerations occur, and, consequently, at the same time very high velo­
city, has oriented the scientific researches towards a higher analysis, both from 
the theoretical as well as from practical point of view. In a previous paper 
[5], I have investigated these accelerations by considering them as vectorial 
quantities.

In the present paper 1 resume their study with the purpose of discussing 
their behaviour ' with respect to a moving reference system.

2. The intrinsic ldnematical aspect. Let be x, v, ß the unit vectors of an 
intrinsic orthogonal reference system in the moving point P  of a trajectory 
in E3. The derivatives relatively to the time of these unit vectors are

T =  s C V, V =  s ( — Cx +  Pß), ß =  — s T  V, (1)
where s =  s(t) is the equation of motion of the considered point, C the trajec­
tory curvature in P, and T  the torsion of the trajectory in this point.

I t  is well known that the vector velocity of the moving point may be 
written in the following way

V =  V(t) ■ x(t). (2)
Further, in order to set out a correspondence between the order of the 

accelerations and the order of the derivatives, we shall call the vector velocity
V zero-order acceleration, its time-derivative v first-order acceleration and the 

W
vector v for i >  1 higher order accelerations.

By taking in (2) the first two successive derivatives, we obtain the expres­
sions

v= vx -j- v2C V,. (3)

v — v x Jr 2 v x Jr V x .  \4)

Polytechnic Institute of Cluj-Napoca, 3400 Cluj-Nafoca, Romania
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Or, the second order derivative of the unit vector x is

T =  <p2[t)x +  co2(t)v +  e2(f)ß, (5)
where

cp2(t) =  — (v C)2, w2(t) =  (v С)', e2(t) =  v2CT 
By virtue of (1) and on substituting (5) into (4), we get

v = f & b  +  g z W  +  КШ> l6)
where

f 2(t) = v — v3C-, g2{t) =  3v v C +  v2C, h2(t) =  v3CT
With regard to the notations from (6), it follows, immediatly, that the 

vector acceleration of r-order is

v =/.(*)t +  á'.Wv +  к ш >  (?)
(* =  1, 2, 3, .).

In accordance with the previous expressions (2), (3) and (6), the zero- 
order acceleration is directed parallel to the tangent of the trajectory, the 
first-order acceleration lies m the osculating plane of the trajectory, whilst 
the accelerations corresponding to г >  1 constitute a system of concurrent 
vectors m space m the moving point on the trajectory, each of these vectors 
possessing certain position with respect to the reference frame of Frenet

With the same relations as m (5), the time derivative of order i +  1 of 
the unit vector x may be written under the form

(*+i) _
v =  ф>+1 -Ь Mv +  £i+i M ß- (8)

3. The method. According to the Leibnitz formula, the vector accelera­
tion of order i has the expression

(0 ‘ ( г \ (»-*)№>
ä ^ S Ü  0

(* =  1, 2, 3, (9)

where
(*) *-*
T ^  T*+o (0)

o«=0
— +  ^(?(b s) T»+i(s) ds, 

о
( 10)

with the notations
(ft+o) _ (.+i)

X (0)=TA +o(0), T =  T,+1, QV. s)
(t -

(*-*)' ’
(k =  0, 1, 2, »')•

For k =  0, the expression (10) becomes
l

=  E ? . ( 0 ) i l +  U ( i ,  s)t,+ i (s) ds,
o«*0 al J

(i i )
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where
N(t, s) = {i -  s)' .

г 1

Now, by substituting (10) into (9), we get
(0 _ l ( 4\(»-ft)

V
(0 < /   ̂ \{*—Ä) г * —* ,n c
« =  23 , 1 * S  t *+° (°) +  \G(*. s) t»+i (s) ds ■b=o\k} |_o = 0 al 1

( 12)

On account of the initial conditions ,
(i) b) b) b)
V (0) =  v} (0), <p (0) =  9,(0), со (0) =  со, (0), c (0) s,(0), 0 =  0, 1, 2, ., i),
the expressions ''of the vectors t o (0 )  and t a+ o ( 0 ) ,  in the reference system v, 
V, ß are the following

to(0) =  ?o(0)t +  co0(0)v +  sa(0)ß, (13)
а̂+о(0) =  9a+o(0)t +  coA+0(0)v +  Efc+o(0)ß (14)

If v(t) is a given function, we may write down the equation

^K(t, s) vt_k(s) ds =  F{t), * V =  w,_j, (г — k =  1, 2, 3, . ..), (15)
0

where

K{t, s) =  , F(t) =  v{t) -  23 1 (0)

The above equation (15) is a Volterra linear integral equation of first 
kind [4]

Recalling (8) and (13), we see that Ъзг scalar multiplication of the vector 
equation (11) separately qith t, v and ß it results the following three scalar 
integral equations

è ï „ « > ) ^ + \N(ù,s) 9 . + 1  (s) ds =1, (Щ
o=0 CT1 )0

2 3 Wa(0) — +
t
\ n {î, s) соt+1(s)ds =  0, '(17)o = 0 су 1 J0

É « . ( 0 ) ^  +  ío = 0 a! -
1 N [t, s) s,+1(s)ds = 0. (18)

By introducing the notations

=  l £ 9 „ ( o ) , в д  =  è “ »(о) (t)= è £o(o) 4
a 1 o '  « „ г i о  I
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equations (16), (17) and (18) become

s)9t+1(s)ds =  Э Д ,
0
t

$#(*, s)ot+1(s)ds =  T 2(i). 
0

t
^N{t, s)et+i(s)ds =  T 3(i).

(19)

(20) 

( 12)

On the other hand, by resorting to the relations (7),' (8) and (14), after 
separate scalar multiplication of equation (12) with t, v and ß, we obtain

/,(* )=  +  i <Ж, S)«P.+1 (s) rfs
k=0 \fij [_o = 0 ° о

_ k t
У''- k+a (0) — +  Í Q(i> S)c0t+1 (s) ds
o=0 0 J*W_£

(22)

(23)

m  =  é í l f ^ Í E  £ft+o(0) ^  +  Í i)s‘+1 (i)
k ~ 0 \ f c j  [ a =0  °  J

ds , (1 -1 ,2 , 3 ,. . .) .  (24)

The functions /„  g4 and ht permit us to determine the modulus of the 
higher acceleration of order i

ywl = [fi(t) +  g*W +  ^*W]2 > (̂  — 1. 2, 3, .). (25)

The equations (15), (19) and (22) togethci constitute a system (Sx) of 3f 
equations with 3i unknown quantities

, Щ .  <P«+iW» -k{t)> (г =  1> 2, 3,. . .), (i k =  1, 2, 3 ,. . .) .

The equations (20) and (23) togethci represent a system (S2) of 2i equations 
containing 2г unknown quantities

gi{t)i w,+i(i), (г =  1, 2, 3,. . .).

The equations (21) and (24) constitute a system (S3) of 2i equations with 
2i unknown quantities

Ät(i), st+i( )̂j [ i — T 2, 3 ,. . .) .
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4 The solution of the system (S^. An appioximate solution of the sys­
tem oi equations (S-J may be deteimined by a method of numerical integration
[2] If we apply m the interval [0, h), >  0, the quadrature foimula

$/(s)& «  S É /(vS ), (ß =  1, 2, 3.........m),

where h  =  ßS, S =  — , the system (5X) becomes a system of 3mi algebraic 
m

equations with 3mi unknown quantities

P
F(h)  vS)w,_*(v5) =  0,

V«1

Ti(/3) -  s £ w ( / 3> vS)<p,+1(v5)=0,
.(26)

(<3 ) °  3
I  Ah) — ID J  v (b) ID Ф*+°(°)o V«/ Lo-o

8 TAQih> vS)<p,+1(v8)
v-1

=  0,

(* =  1, 2, 3, . . . ) ,  ß =  1, m.

These unknown quantities aie the following

/ i(S)i /» (25 ),.. <p,+i(S), 9»+i (2S), . . 9 ,+i (h), ut_s(S),

(0 .
The modulus of the acceleration v hi the points f3 is

I Л̂р)! — [/Л̂р) + _i_

gUh) +  Ш ] 2 (* =  1, 2, 3 , . . . ) .

The solutions of the system of equations (S2) and (S3) can be determined 
in a similar way.

a. The case of rectilinear trajectory. If the trajectoiy is îectilinear, we 
have

T =  const, g,(t) =  0. h , ( t )  =  0, f , { t )  =  v t { t ) ,

and (7) becomes
M
v =  v,(t)x. (27)



24 C TUDOSIE

The zero-order acceleration is given by the Taylor formula expressible 
in terms of the derivatives

As we see, the Taylor formula contains all the derivatives with respect 
to the time of the function v[t) m a certain point tv and namely from the 
derivative of zero-order till that of order n , this means that the Taylor for­
mula (28) contains all the accelerations at the time tv corresponding to г =  
— 0, .. ., n — 1 as well as the last acceleration v„ at the time

Our aim is to establish m what follows for the Taylor formula an expression 
in terms of integrals.

Tet be the Taylor formula expressible m terms of derivatives [1 [|

(28)

where

l  = к  +  0(i — k), 9 e  (0, 1).

(29)

where we have set u\t) =  ut\t).
Taking into account the initial conditions

u(0) =  «ДО), (j =  0, 1, 2, 3, , n +  1),

we have

— k*n-t[k)  ̂ [s)ds, (30)
0

with the notations

Fn-.(k) =  £  «.+o(0) - 4 ,O'

S H-i(k>  s ) —
(<1 -  s)*- * .

( n  -  i)  1

We also have

un{l) =  m„(0) +  (j «„+i(s)^s. (31)
0
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Now, on substituting '(30) and (31) into (29) it results Taylor formula , 
in terms of integrals

«(0 -  E  +  j S ,U h ,  s)un+1(s) ás] +,
0

+  [«,(0) +  J Ua+1(s) ás] , (32)
0

l  =  h  +  e(f -  ix), 0 e  (0,1).
In contrast to the formula (28), which '■-involves the n-j- 1 accelerations 

of all orders from zero to n, the last formula (32) contains only two accelera­
tions, that is the acceleration of zero-order and the acceleration of1 order n +  1 
With the purpose of determining their expressions, we introduce the socalled 
’’function of direct connection” cn»+i,o [t), by writing down the equation [6], [7]

, un+i{t) — “ »+i,o {t) u(i) (33)
By substitution of (33) into (32), it gives

n—\ ‘ h
= E  — ~ ï l)t\ Fn-Ah) +  {$»-,(*!, s)con+i,o (s) • «(s)ás]' +*=o г! л J0

5
+  - ~-ţ ‘■” [.„(0) +  ^“ „+1,0 ,(s) • «(s)Ssj • (34)

0
The’ equations (32), (33) and (34) together represent a system (A) of 3 

equations with the 3 unknown quantities
u(t), U„+i(t), “ „+1,0 (t).

The constant “ „+i,0 (0) is determined from (33) by putting there t =  0, 
that is

“ „+i,o (0) =  m„+i (0) [m(0)’]_1.
One obtains the approximate solution of the system (A) by applying the 

known method of numerical integration [2].
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ABSTRACT. — In this paper a method of deduction of the acceptations of 
any order is given when the diffeiential equation describes a very fast pheno­
menon, with a high degree of nonlinearity. The method was named by the 

author"a division method”.

1. Introduction. The natural phenomena, in their complexity, manifest a 
nonlinear behaviour. Consequently, a linearization procedure is adopted in order 
to reduce as far as possible the mathematical difficulties of the-nonlinear pro­
blem under investigation.

However, as a result of the linearization procedure the structure of the 
differential equations itself undergoes a modification, that leads tó the loss of 
certain qualitative features in the mathematical desciiption of the evolution 
of the considered phenomena. Or, if the evolution of these phenomena is a 
very fast one, the order od the differential equations is higher, so that the 
solving of the problem becomes still more difficult.

In the present paper we give a method to determme the accelerations of 
any order in the case when the considered differential equations describe a 
very fast phenomenon having a higher degree of nonlinearity. ,

2. The method. Let be the following nonlinear diffeiential equations -fiom 
the domain of phenomena with very fast evolution

£<*.(0 - 'ip+ i =  Aif), (1)
*=o

together with the following initial conditions 
(») M
ж(0) =  x0, [г =  0, 1, . . . ,  n — 1),

where
M W
x2p+ 1  =  i>]Zi+1, (P s  N, fixed).

With the view to determine all the accelerations appearing in (1), we 
will apply a method, that we have named “the division method” . Further, 
in order to introduce a consistent notation, we have called x  the zero-order 
acceleration, X the first-older acceleration, x the second-order acceleration and 
we have named the acceleiations for г >  2 the higher-order accelerations [2],
[3], [4], [5], so that the order of accelerations corresponds to the order of 
derivatives.

Polytechnic Institute of Cluj-Napoca, 3400 Clw-ftapoca, Rofnqmp
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Next, we introduce the functions » , _, t
0Vi+iW =  [*>,(*) ]ад+1, (*' =  0, 1, 2, n),

called "division functions”, we can write down the following equations 
M

at{t) • x2p+1 [t) =  2p+1{t) ■ A{t), [i =  0, 1, 2, .. ., 11).
By substituting (2) into (1) we obtain

T’fot ,2/H-lW =  1.' ■
»=0

(2)

(3)

(4)

(5)

Or, from (2) it follows

x(t) =  cù,(0 [«Г1 (0 • ^(í)](2í+1)-1; (г =  0, 1, 2, . n).
Then replacing here г by г — 1, we get

xjt) =  cù,_! (t) [atT\ (i) ■ ^(i)](2i+1) \  ■
Taking the îatio of (4) and (5) and integrating afteiwards, we get

ж (i) = <ж0)ехр| f^ T 1! (s) oo, (s)[a,_i(s) a~1 (s)](2ÿ+1) ‘íísl, (г =  1, 2, 3, ., n) {6)

The equalities (3), (4) and (6) together represent a system (S) of 2 (n -j- 1) 
equations with 2 (n +  1) unknowns.

These unknown quantities are 
(0
X, (ù„ (г =  .0, ,1, 2, , n).

a). The case A(t) =  0
If A(t) = 0 ,  the equation (1) takes the form

» (»)
a,(t) ■ x2p+1 =  0.

*=o ,
By introducing heie the following “division functions”,

e„2,+ i(t) = [ е Ш р+1,‘ (* =  1, 2, 3.........л), -
we obtain the equations

(7)

(»)
at[t) • #2^+1 (/) =  etj2/>+i (i) • -(г =  1> 2, 3, . . ., w)

For f =  0, this last equation becomes
, Äo W  ' X 2p( t )  =  B0' 2p +  i ( t )

Now, substituting (8) into (7), it results

P  e t, 2 p + \ { t )  —  0 -
1-0

(8)

(9)

(10)
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On the other hand, one obtains from (8)

%)  =  e,(t) • x[t] fp+1)~l, {г =  1, 2, 3, . . , n), (11)

and replacing here t by г — 1, we get

W =  E .- .W k k  (t) • x ( t ) f p+1)~ \  (12)

By taking the ratio of (11) and (12), then performing an integration, we 
obtain

(.-l) (<-i)
* (t) =  xD exp IS-1

£i - l ( s ) £,(s) (s) (lt ( s)](2i+I)_1 (»=1,2, 3, , »)  (13)

The equalities (9), (10), (11) and (13) together represent a system (Ç) of 
2(n +  1) equations with 2(n -f- 1) unknowm quantities The unknown quantities 
of this system are

M
ж, e„ (t =  0, 1, 2, , «).

3. The solution of the system (S). An approximate solution of the sys­
tem (5) of the 2{n +  1) equations (3), (4), and (6) may be derived by a nume­
rical integration method as follow's We will namely apply on the mterval 
[0, a], a >  0, a numerical method similar to that of the polygonal lines method,
that is to say wt will divide this mterval by the points tk=k8, 8 = — , k —l,m

m
and we will take into account the quadrature formula

ss h
[f(s)ds X 8 £ /(v 8 ) , (k =  1, 2, . , от) (1 4 )
о

Now, if v'e write down that the system (S) is verified for tk =  k8, and 
use (14) for the approximate evaluation of the integrals, we obtain the follo­
wing system of 2m(n +  1) algebraic equations with 2m(n +  1) unknown quanti­
ties,

»
' ^ (ût,2p + l (A8) 1 =  0>t = 0

< x(A8) -  cù,(k8)[at~1(k8) ■ A {k8)](2p+1)~' =  0, (г =  0, 1, 2, . , n), (15)

(’* W )  - ‘̂ o e x p js ^ c o r - i  (vS)co.(vS) •[<*,_, (v8) flT1(v8)](2#+l)~1J =  0,

(i =  1, 2, 3, . . . , » ) ,  (k =  1, 2, . . . ,  m).
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The unknown quantities in this system are

The values of the constant x0 result from (1) if we set there t=  0
(») I г  я - i  M
*0 =  a,:1 (0) A (0) -  y ;  a,(0) • x 2p+l(0)

The constants со, (0) are obtained from (4), for t=  0, (t =  0, 1, 2, . , n).

The diagrams representing the variation of the functions ж and co„ built 
up through the points tk, give the approximate evaluation of the solution of 
the system (S) on the interval [0, a], a >  0

The numerical values of the solution of the system (15) may be obtained 
by using a known method [1]

1 D é m i d o v i t c h ,  В ,  Ma r o n ,  I ,  Éléments de calcul numérique, Éditions Mir, Moscou, 1973
2 T u d o s i e ,  C , “Deduction of higher order accelerations by the method of associated angular 

velocity’’, Strojnlchy Casopis, 34, é 3, pp 337—341, 1983
3 T u d o s i e ,  C,  “Determination of higher order accelerations by a functional method”, Acta 

Techmca, ŐSAV, 2, pp 218-224, 1983.
4 T u d o s i e ,  C,  "A method for calculating the higher order accelerations”, Mathematica, Tome 

25 (48), 1, pp 69-74 , 1983
5 T u d o s i e ,  C,  “On a product-type differential equation” "Babeş—Bolyai” University, Faculty 

of Mathematics and Physics, Research seminars, Seminar on Differential Equations, Preprint 
8, pp 37-42 , 1988
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• ABSTRACT. — The free earner concentration of PbSQ 73 Se0 27 monocrystal- 
line semiconductors is determined by 1// noise measurement method and the 
result is compared with that obtained by Hall effect investigations The method 
was also applied to PbSe polycrystalhne films that obey the Hooge—Vandamme 

r relation. In order to obtain the free carrier concentration for polycrystalhne 
materials, additional electrical resistivity vs temperature measurements are 
necesarÿ. The method is very useful -in the case of semiconductor with high 
electrical resistivity and low Hall mobility:

R Introduction. In an infrared detection system, as in any information- 
transmitting system, spontaneous fluctuations, that are called noise, impose 
the ultimate limit on the transmission of, mformation This is why the electrical 
noise is largely studied and now a rather well understood phenomenon.

In  the particular case of .infrared detectors based on lead chalcogenides 
semiconductors, we can list as typical noises : the Johnson noise, the shot 
noise, the generation-recombination noise, the photon noise and the 1// noise, 
the last type of noise being do minant at usual ‘ temperatures and low enough 
frequencies ( / < 1  — 10 kHz) [1,2].

The 1 j f  noise manifests itself as fluctuations in electrical conductance and 
it is named 1 If  after its spectrum ■

s(f) ~ y j  ; к  X l (l)
The conductance fluctuations of an ohmic sample can be measured as 

voltage fluctuations when a constant current is passed thiough the sample or 
as current fluctuations when the voltage drop across the sample is kept con­
stant, so that one can write (3) :

SiU) =  S vV )  =  s * U )  =  Set/) =  £ l! L  (2)
J3 Vs R* G3 f

where I, V, R  and G represent the current through the sample, the voltage 
drop across the sample, the resistance and the conductance of the sample, 
respectively, and Sa(f) (a =  I, V, R, G) is the corresponding fluctuation spectrum 
Ci// is a number which is a measure of the relative noise of the sample. I t  
was empiricaly found by Hooge [4] to be

c,„ = f  (3)
Insittuta of Isotopic and Molecular Technology, Cluj-Napoca 5, P.0. Box 700, 3400 Cluj-Nap oca, Romanţa
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where aH is a dimensionless constant with a value of about 2 ■ 10~ 3 and N  
is the total number of charge cariiers m the sample

Combining (2) and (3) one obtains the Hooge—Vandamme lelation [5].
■S'»(/) _  rju J_ m
V* n ■ V'ff ‘ /

where n is the free carrier concentration and Vejf is the effective volume 
depending on the sample geometry.

For the infrared devices (detectors or diode lasers) based on lead chalco- 
gcmde materials the carrier concentration is a very sensitive parameter to the 
method of preparation and to the thermal annealing processes On the other 
hand it determines the final performances of the device

Unfortunately, for the pohfcrystallme semiconductor films used as IR 
dectectors (PbSe, PbS, PbTe) the usual Hall effect measurement is very diffi­
cult to be performed m any d c or a c setup because of the high electrical 
resistivities (1 — 104Ш), low Hall mobilities and large asymmetry voltages (orders 
of magnitude larger then the Hall voltage).

In these conditions a method using Hooge—Vandamme formula that does 
not involve experimental difficulties is to be prefered.

In this papei we extend the application of Hooge—Vandamme relation 
to polycr3Tstallme films (section 2 ) and, based on this relation, we determined 
the carrier concentiation for PbSSe monocrystals and PbSe potycrystals from 
1  If noise measurements (section 3). Some concluding remarks are presented 
in section 4

2 Theory. Startmg from the relation (4) one can obtain

with
Sv(f) =

a.n  • P R 1

»■V'ff f

R  =
еп\к

(5)

(6)

where ß =  1 jS is a geometrical factor and p is the actual mobility of the 
sample

Using (5) and (6 ) we obtain.

n
. f  s t(f) • V,•a ■e' ' I* (7)

If we put in (7) Ve{f = Vs and p =  y.L, where Vs is the volume of the 
sample and pL is the mobility due to pure lattice scattering, we can apply 
the relation (7) to determine the carrier concentration for semiconducting mono­
crystals

For polycr3rstalline films the lelation (7) presents two different features: 
(I) p is ieduced by an exponential factor due to the intercri-stalline barriers 
[6 , 7], so that :

p  =  p L • e
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where Eb represents the energy of the intercrystalline barriers and Veff can 
be different from the geometrical volume of the sample Vs. Usmg Bube’s 
method [8 ] we determined

(JV dVf
V „ = L --------=  —h -  v s

eff J f d V  1 +  Y
(9)

where j  is the total' current density through the polycrystalline film and у 
is a dimensionless parameter equal to the width of the intercrystalline region 
to the width of the crystallite ratio

Y h
h (10)

Usually [6 ] 1, l c and Veff, x  Vs.
Using (8 ), (9) and ; (10) m (7) we obtain for'the carrier concentration of 

a polycrystalline semiconducting film .

n =
-[■

«я* 1 * • ß*
/ •  Sv { f ) V ^ l

-
|3  e 3 * r

( H )

The relation (11) points out the fact that only the measurement of the 
spectrum of the voltage fluctuation, Sv(f) is not enough for determining n, 
additional electrical resistivity vs temperature measurements being necessary 
in order to find Eb.

3. Experimental. The noise measurements are performed on two lead chalcogemde types of 
material (1) a PbSQ ?3 SeQ 23 monocrystal of 6 x 2 5 x 0 7  mm3 and ЗП electrical resistance and 
(il) a PbSe polycrystallme film obtained by chemical organic deposition [9]j of 1 5 X 1 X 10~3 
mm+3 and 45 kQ electrical resistance The electrical contacts were evaporated gold and the wires

r I

1
R

F i g .  1. The electrical circuit used for 1 //  
noise measurements.

were soldered with silver paste
The'samples were placed in an electrical 

circuit represented in Fig. 1, where the load resis­
tance is almost one order of magnitude hig­
her then the sample resistance in order to ensure 
a constant current through the sample :

The spectrum of voltage fluctua­
tions, Sv(f) =  и г noise/Д/, was measu­
red with a Unipan 233 selective na­
novoltmeter with a selectivity ci 36 
dB, in the 10—10 000 Hz irequei-cy 
range.

The results are plotted, in Fig. 2 
and 3.

As one can see from figs. 2 and
3 the samples present, in this fre-
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V

PbSe

F i g  2 The voltage noise spectrum vs fre­
quency for PbS0 7sSe„ 27-

F i g  3 The voltage noise spectrum vs fre­
quency for polycrystallrne PbSe film.

qimcics range, a conductivity noise spectrum of 1 / /  type, the anomaly obser­
ved at around 100 Hz for PbSSe being probably due to generation-recombina­
tion noise [2 ]

Using the results from Fig. 2 m the relation (7) we obtain n =  1,4 •
• 1 0 17 cm - 3  for the monocrystallme PbS073 Se0 27-

For this sample the result is easy to be verified by Hall effect measure­
ments Passing through the sample a current of 1A at 0,69 T magnetic field 
we obtained a 1,3 mV Hall voltage which means n =  5,2 • 1017 cm-3. This 
result is in rather good agreement with that obtained from 1 / /  noise measure­
ments

In order to determine Eb> and to use the relation (11) for obtaining the 
carrier concentration for polycrystallrne PbSe films, electrical resistivity vs. 
temperature measurements were performed m a standard configuration [1 0 ], 
using a cold finger refrigerator sj^stem, in the 120—320 К  temperature range. 
The results are presented in Fig. 4.

Using the results from Fig. 4, and substractmg the T~ sl2 dependence 
of \iL [11], we obtain Eb =  0,13 eV Introducing in (11) this value, together 
with the value for the spectrum of the voltage fluctuations (Fig 3), we obtain 
n =  5 • 1017 cm - 3  for the PbSe films

4 Conclusions. The method presented in this paper, that uses 1// noise 
measurements m order to determine the free carrier concentration, is simple 
and does not involve experimental difficulties The method can be applied 
both for mono crystalline and for polycrj^stalline nondegenerate semiconductors, 
provided that the spectrum of the sample resistance fluctuations obeys the 3

3 — Physjca 1/1989
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ig(R[/i])'

1 5

Hooge—Vandamme relation Tor degene­
rate semiconductors the effective number 
of carriers N e)f available for the 1// fluc­
tuations is smaller than the total number 
of carriers N  m the band [12], the two 
carrier concentrations being related by the 
foimula :

n‘ff — ( 12)

1 +
0 T3 3 K7

el/ where EF is measured from the bottom 
of the conduction band.

The method does not give the exact 
values for the .carrier concentration espe­
cially because the value of aH can be dif­
ferent from 2  ■ 1 0  ~ * 2 3 4 5 6 7 8 9 10 for different types of 
samples [13] On the other hand the rela­
tions (7) and (11) are very insensitive to
the inaccuracies of measured and calcu­
lated geometrical parameters ß2 and Veff 
that are reduced by the power 1/3 Howe­
ver, relation (1 1 ) is very sensitive to the 
value of Eb, accurate electrical resistivity 
vs. temperature measurements being ne­
cessary

In  conclusion, even if this method gives only the order of magnitude 
of the carrier concentration it is very useful in the cases when Hall effect , 
measurements can not be performed : samples with high electrical resistivity 
and low mobility

0.5-1

2 3 4 5 M -V ]

F i g  4. lg  F _1vs 103/Г, plot m the high 
temperature region, for PbSe semiconduc 

ting film
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QUASI-LINEAR EQUATIONS FOR AN ELECTROMAGNETIC
INSTABILITY
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ARSTRACT. — The quasi-linear theory is developed to derive a kinetic energy 
change equation for a relativistic' electron heain by taking a Weibel-type elec­
tromagnetic-instability into account-in a collisionless magnetized plasma.

1. Introduction. The progress in the production of relativistic electron- 
beams (R E  B.) gives ground for hoping that the relativistic electron beams 
can be used to heat a plasma to the thermonuclear temperature. Coupling of 
the energy of a R E  В into a plasma the rough collective processes can occur 
by several mechanisms In the microscopic collective mechanism, the beam 
excites an instability, and the individual electrons interact directly with large 
amplitude waves Thus, the beam transfers its energy to waves, which in turn 
pass it to the plasma The instability which has received the most attention 
in this regard is ,the electron-electron two-stream instability [1 , 2 ].

In the beam-plasma system, it is found that an electromagnetic insta­
bility can be excited .independently of the electrostatic two-stream instability 
[3]. This is a Weibel-type instability. A linear theory for this instability in 
the R.E B.-magnetized plasma system has been elaborated [4]. Using the quasi- 
linear equations and some nonlinear results, Okada and Niu [5] have investi­
gated the stopping power of the plasma for R E.B. by the Weibel-type electro­
magnetic instability. However, the above authors consider the interaction of 
R E.B. with an unmagnetized plasma.

The purpose of this paper is to deduce the quasi-linear equations for 
Weibel instability in R.E.B -magnetized plasma system.

• 2. Deduction of the quasi-linear equations. In our model a warm R.E.B.—
with density пл  and a velocity v0 streams through a cold magnetized plasma
of density n0p along a magnetic field B 0. Due to relativistic electron beam
induced return current the plasma electrons have a drift velocity veo with 
respect to plasma ions [6 ] To derive the quasi-linear kinetic equations for 
R E.B. distribution function we will consider the following configuration :

1 =  (k, 0, 0) ; B 0 =  (0, 0, B 0) ; E x =  (0, 0, E x) ; B x =  (0, B u 0) (2.1)

where E x and B x are the perturbed electric and magnetic fields which satisfy 
the following Maxwell’s equations :

rot E x =  -  dBJdt (2.2)

* University of Clttj-Napoca, Faculty of Mathematics and Physics, 3400 Clttj-Napoca, Romania,
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and

- r o t  Б 1 = 7 +  £о^  (2.3)
IJ-o 81

The beam electron dynamics are described by the distribution function 
f[r, p, t) which satisfies the relativistic Vlasov equation

f  +  « • V f - c i E .  + v x  (B0 +  5 ,)] • V - / - 0  (2 4)

For the derivation of the quasi-linear kinetic equations we follow the 
procedure used in [5]. According to this, we consider the distribution function 
of the form

/( '.  l> l) =fo(p. t) + fi{r. P. 0  (2  5)
where

M l  t) =  </(;, p, t)> =  i .  [ n r ,  I ,  m i  (2 6 )

is the spatial average of the actual distribution function We also assume that
fóip, t) is a slowly varying function of time, while f^r ,  p, t) is the perturbed, 
rapidly oscillating part of the distribution function, which satisfies the con­
dition Л  ^  / 0.

Using a Fourier analysis for the peiturbed cantitics

# i (Л t) =  £  Eh exp [г (k ■ r — wi)] (2 7)
— CO

В it exp [| (Л- r — a>/)]

—* ' —► CO —>
/i(n  p , t )=  22 fvt exp [i(k ■ r -  « 0 ]

—CO

(2 8) 

(2.9)

the equation for f 0(p, /) is obtained by averaging the equalion (2.4), with the 
result

{E, + v x B ^ ) i  - ? â \  , (2 10 1
V /

Using (2.2) and (2 7) —(2 9) the equation (2 10) can be written m the 
form

where </i>= 0 and (v X B 0) • Sf0jop =  0 have been used

f S j l  = e (
Ы \

(2.11)
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■—► —>
The equation for f^r,  p, t) is obtained by substituting /  =  / 0 +  / 1  mto tlie 

Vlasov equation (2 4) and using (2 10) for df0jdt, vuth the result

ëJ± +  у ■ Щ -  e(E, +  V X By) • % -  e[v X B 0) ■ ^  -
^  8 1  dp dp

-  e(E1 +  » x 5 1) - ^ +  e / { E 1 +  v X BJ  • %  \  =  0 (2 12)
8 p \  dp /

To find df„[St to lowest order 111 perturbed quantities, the peituibed distri­
bution function / t is calculated as in lineal theoiy The linear solution to 
(2 12) is obtained by neglecting the two last teims in this equation In adition 
the tune dependence of /„ is neglected because dfajdt is second-0 1 der m per­
turbed quantities This results fiom the equation (2 10)

To find the lmeai îesult loi f x we write the equation (2 12) under the 
foi 111

of 1 
dl

+  Y« • -  - - Ф г  - r  VC x B J  — — — (ум X B 0) • ^  =  0 (2  13)
m r,~* in  du  'di du

where и is the relativistic reduced velocity, defined bjr [7]

v = yii (2 14)
with у =  (1 — w2/c2)h2 =  ( 1 -)- íí2/c2)-  h2 (2.15)

and m is the rest-mass of the electron
Since we arc interested with the relativistic beam, one can use the approxi­

mation mtioduced 111 [8 ]

v =  у и ~ Yo«o+ У oh -  To ~  hl I (2  16)
CZ

where

«0 =  vu/yo =  wu(l -  wg/c2) “ 1' 2 (2.17)
is the mean reduced velocity of the relativistic beam particles onented along 
the Oz-axis and

|A =  и  —  u 0 (2.18)
while (л11 is the component of [a parallel to the beam direction

Using the above expiessions and taking in the 1 educed velocity space a
suitable chosen cylindrical coordinate system having its Oz-axis onented along

) —>
the direction of external magnetic field B 0 =  B 0ec, we obtain for the Fourier 
component f lk of the peituibed distribution function / x the expression

/ u ( 0) =
Yo £:  /■<»>{v [

— со l  ^  L

exp [ ~ ** sm 0 +  1)0]
n + ß + 1

+

-H
exp [—ta sin 0 +  i[n — 1)0]

n + P -  1
+ — — exp [— la. sin 0 +  inb] 

« + P
(2.19)
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where
'гоИ* Iк =  — ± ; 
<*ce ß =  - úk

“ccYo
Cli ■— a/о

0 п̂

= е В „
(2 20)02 -  [ (м° +  ^

and ц*_ =  [г2 +  (л2
■ Substituting (2.19) into (2.11) and taking into account that the steady- 

state velocity distribution function is given by the expression [8 ] • ,

/о(Иа> !*„)-------- ^ п х р Г - l f Í  +  U í
1 (2*)3'V ±I*,| L 2 U i  ^îlJJ

(2 .21)

after the straightforward but tedious calculations we obtain the quasi-lmear 
kinetic equation for /„ under the following foim

dh
dt

B-K
j  [ “ -A sin 0 — k (y0u0 +  Yowll)cos 01 3/,1A

d\i +
•±

1 r7' - ■ —  ai8fu  +Ayo^ coso | U
dH

[Æ(Yo«o +  To H-ll) siu 0 -  “ - a cos 0] г_]_ 30 }  ( 2 .22)

3. Equation for the change in the ILE.B. kinetic energy. Using the quasi" 
linear kinetic equation (2 .2 2 ) the change in the kinetic tneigy of the relati­
vistic electron beam can be determined For this we define the aveiage R E  B. 
kinetic energy as :

Wb=  f i j / o U  t)

Taking into account that for RB.B.

-  -  1  =  ( 1 -  ^ /c 2) - 1'2 -  1  ^  — -  1  +  y0uoHl<?
Y Yo

the change in the beam kinetic energy can be written as
dWb
dt

— Yo _j_ Yo«o
F-ll j  Uj. - ^ ^ 1 1 ^ 1  á 0

(3 1) 

(3 2) 

(3 3)

To arrive at the equation for the change in the kinetic' energy of the 
relativistic electron beam, we take the appropriate velocity moments of (2 2 2 ) 
Thus, we obtain .

Æ l  =  <*2 £ '  ^  [“ -A'sm 0 -  % 0 «0 +  ySr ,)cos0] +
*  a ==“ 00 h Л  Yo c2 11 Яц±

+  — [ (̂Yomo +  ToUn) siu 0 +  cos 0 ] - ^ -  +  /«YoS*! cosO- ^ 1  jj.1 á|x1 íf(j.|i dQ 
f*_L 30 01*ц J

(3 4]
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Finally, after the algebraic calculations, we obtain the change in the R E.B. 
Kinetic energy under the form :

dWb
dt

. 3 “еУдЧдЩо
m k=~̂ca E  l ^ l 2e

b'v-i
4 e (n + I)sk 

(» + i)4V3 + ч
X

X (3.5)

wheie §ft is the lineal giowth rate of the excited wave and I n is the Bessel 
function of the first kind of imaginary argument.

For the following applications it is more convenient to write the equation 
(3.5) m terms of the usual velocity rather than the reduced velocity. To do 
this we remember the following relations [8 ] :

and
V0 — 4ou o ‘ (3.6)

' i  =  (Yo £ ± )2 (3.7)

where is the Watson’s and cowoikers mean square velocity differences from 
the average velocity [9]. So we obtain the final form of the R.E.B. energy 
change equation as :

dWb
dt 1)1 E  |B*l2e ùce To

(n + 1 )8a

(» + + 4
X

4 Conclusion. When an intense lclativistic electron beam is injected into 
a plasma, a part of the kinetic energy of the beam is transferred to the field 
energy and to the kinetic energy of the background plasma electrons. To deter­
mine the effective stopping length due to the electromagnetic instability the 
equation (3.8) may be used For this purpose must be calculated the right- 
hand side of the equation (3.8)  ̂ To do this it is necessary to construct a non­
linear theory of the interaction with a view to determining the nonlinear satu­
ration level of the excited waves. This will be elaborated in a forthcoming 
paper. ,
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COHERENT-POTENTIAL APPROXIMATION METHOD IN HIGH-T,
SUPERCONDUCTIVITY
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AU SIR ACT. — We give a method to calculate the critical tempeiature ol a 
high-I'c superconductoi using the colieieut-potential-appi oximation The genei al 
formula obtained has been applied for three-dimensional, two-dimensional and 
one-dimensional models of lngli-Tc superconductors - '

I  introduction. The general method used in conventional theory of super­
conductivity is that of Green function which is appropriate for the case of 
the 'itinerant-election systems The main approximation m this method is a 
generalized mean-field approximation which gives us the possibility to treat 
the weakly correlated fermionic systems. However, the discovery of the high-T* 
superconductors showed that this materials have a particular structure where 
the three-dimensional (3d) character is the result of a combination between 
the twodimensional (2 d) planes and onedimensional (Id) chains containing 
electrons strongly correlated.

In this case we prefer to the free electrons picture the tightbmding pic­
ture, and the most appropriate method to study the superconducting phase 
transition in this model is the Coherent-Potential-Approximation (CPA) used 
in the theory of binary alloys. We will present the general method and we 
will show how we can calculate the critical temperature Tc for a high-Tc super­
conductor using this method.

We have to mention that the method is more general 'than the standard 
Green function method and can be generalized at the study of the supercon­
ducting alloys with high Tc

I I  Coherent potential approximation. 1 The general method The electronic stiuc- 
tuie of disordered bmary alloys has been developed within the framework 
of the multiple scattering approach of a disordered system which has the form 
A xBy, where ж is the concentration of the A atoms and у  =  1 — a is the 
concentration of the В atoms In order to describe the physical properties 
of this system Soven [1] and Velicky et al [2] developed the so-called Cohe- 
rent-Potential-Approximation (CPA) using the multiple scattering approxima­
tion. In this approach the propagation of an electron or lattice wave in an 
alloy is regarded as a succession of elementary scattering on the random ato­
mic scatteres, which are averaged over all configurations of atoms.

The system consisting from electrons which are scattering on the atoms 
will be described by an effective one-electron Hamiltonian H  of the system 
in a given configuration.

Unticrstiy of Cluj'Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napoca, Romania
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The smgle-particle propeities can be obtained from the Green function
G{z) = ( z - H ) ~ i  (H I)

If we consider that the average on the configuration can be perfoimed, we 
will define the averaged (denoted by <.. )) Green function

<G(*)> =  ( s - # e//)- i ’ (2II)
where Hcff has the full crystal symmetry, but is uon-Heimitian and eneigy 
dependent.

We assume now that the exact effective .Hamiltonian can be well approxi­
mated by К  =  K(z) and m this case we have the identity

<G> =  R +  R(H,f f -  K)(G} (3 II)
where

R = { z - K ) ~ 1 ' (4II)
is in fact an equation for <G> given by the unpeiturbed Green function R.

At this stage of the investigation we will consider a lesult from the mul­
tiple scattering theory, where a similai equation foi the Г-matrix can be writ­
ten as

G = R + R T R  (5.II)
If we perform the average of (5 II), we get

<G> — R + R(T~)R (6 II)
and Heff can be expressed as

Htff =  К  +  < Г > ------- ------  ' (7.II)

where we used (2.II) and (6 II)
This lesult can be used m two ways The first one is to insert T(K) (the 
Г-matrix for a given K) m (7II) and to obtain a better appioximation for 
the Hamiltonian (7 II) The second way is to use the condition .

<Т(К)У= 0 (8 II)
to determine К

In fact we can apply the multiple scattering method if we can descompose 
the random-peituibating potential H —K  into a sum of contributions of single 
scatters associated with each site l.e

я  -  к  =  E  v nn
From the equation (5 II) and using the identity

G =  R  +  R(H‘-  K)G

(9.II) 

(10 II)
yields

T = (H — K){I +  RT) ( 11.11)
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or using (9.II) we get
T  =  £  F„(l +  ДГ) =  5j Ç» (12 II)

» П
This equation gives T-matiix as a sum of conti lbutions arising from the indi­
vidual scatteres Introducing

Ta = [ l - V aR ) - W a (13.11)
which is the Г-matrix for the site n we obtain

Qn =  T n( 1  +  R £  Qm) (14.11)
m ̂  »

and fiom (12II) and (14.11) we obtam the equation of the T  — matux as

T  =  S  T n +  S  T„R S  r,„ +  . . .  - (15.11)
» П W ̂  »

The equations (10.11) and (14.11) are exact, and lead to the exact averaged 
equations

<T> = £< (?„>  (1611)
11

< W  =  < r » ( l + ' Ä S W >  (17.11)Htján
equation which can be written as

<Qn> =  <r„>(l +  R  s  <<?».» +  <T„,I? S  ((?,„ -  <(?„,»> (18.11)тФп
The first term of this equation describes the effects of the aveiaged effective 
wave seen by и-th atom, and the second term correspond to fluctuations of 
the effective wave term which corresponds to the fluctuations of the effective 
wave, term that will be neglected, which is m fact a basic approximation of 
CPA Then (18II) becomes

<<?„> =  <r»>(i +  R  E  <<?».» ' (1911)тфп
Fiom (7II) and (16.11) the effective Hamiltonian can be written as

H'ff =  К  +  E  T„(l +  R< Tnyy- 1  (20  II)
n

We see that CPA-method combines two ideas namely
_ — to calculate the average for a given quantity associated with a random 

medium by introducing a perriodic effective medium ;
— to determine this effective medium by a self-cousistency lcquncmeiit 

l e. by demanding that the fluctuations of a given quantity due to local 
fluctuations around the effective medium average to be zero

2 Single — Band Model. The systems with strong coirelations aie generally 
described m the tight-binding approximations for the elections We stait with 
a'single atomic oibital |n)  which is considered to be associated with each site n
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For a pureciystal in this simple case'will lesult a ‘‘single band”. In the binary 
alloys there are two sub-bands which can be tieated in what is known -to be 
the single band model. The one-election Hamiltonian which describes such 
systems has the form

H  =  E  |»>ея<« I +  E  I nyt;m(m I (21 II)
n тфп

=  D 4- W< '
The second line defines the decomposition of the Hamiltonian in a diagonal 
paît D and an off-diagonal part W  m the Wannier representation for the 
electronic system The model is valid m the following assumptions, which are 
physically coriectly (and realizable) when the orbitals are sufficiently localized 
and the atomic potentials are not too different These assumptions are .

a) In the diagonal elements s„, the crystal field terms are assumed to be 
independent of the composition x and the atomic configuration. These ele­
ments may be regarded as atomic levels which assume one of the two possible 
values ел and zB depending on whether an atom A or В accupies n

b) The hopping integrals tn>m are asumed to be completely independent 
of the alloy composition The operator W  way be interpi eted as the Hamiltonian 
for pure crystal with zA = zB =  0 and sA +  W  and zB +  W, respectively, aie 
the Hamiltonians for pure A and В crystals.
We may conclude that in (20 II) D is diagonal but a random quantity, and
W  off-diagonal but translatioually mvaiiant
The operator W  is diagonal in the Bloch representation and
(k\W\ k'y is , ,

<h\W\ k'} =  Sr -. £  ton J Ä>e»“ » =  ^ W s ( k )
11

wheie

,l*> =  etfca»l пУ

The quantity s(k), which describes the /^-dependence of the band energy, is 
dimensionless.
In order to describe the band spliting it is convenient to intioduce

, '
eA = - D  S ; zB = -  -  HS , S =  -  ~ E-- (23 II)

2 2 D

Usually, because D scales the entile Hamiltonian, we take D =  1 The effective 
Hamiltonian Hcfi{z) has the full' crystal symmetry and’ m this case Heff is 
diagonal m the k — representation

<k\Hcff\k'y =  [s(k) +  Z(A, z)]Bt p
and

<С(г)> = ( z -  Heff)~ 1

(24.11)

(25.11)
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is also diagonal in this repi eseutation In (24 II) S is  the self-eneigy with lespect 
to the pei feet crystal having Hamiltonian W  We define

G(k, z) = <<A|G(a:) |A » =  [2 -  s(k) -  2(A, г) ] “ 1 (26 II)

which is defined by the spectial density

A(k, E ) =  -  -  ImG (*. E +  lO) (27 II)

or
CO

G[k, z) = f А (к, E) (28 II)
J z  — E

—  00

The density of states per atom

P(E) = ± T r < 8 ( E  - H ) }  (2911)
N

may be expressed in teims of the Green function as

p(E) - ---- - Im(n  - - 0 \G(E +  lO} \n =  0)

=  ^ £ a (a a ) (ЗОН)
jV k

Now, let us introduce the auxiliary function, specific foi the CPA approximation, 
and defined as

F(z) =  L  Tr(G(z)y =  <0 IG(z) |0> 

and the density of states (30.11) can be written as

p(£) =  -  -  ImF(E +  tO) 

which is equivalent with the spectia representation
CO

F{z) =  \ P (E)
—  00

3 Single Band Model, Single Site Approximation The single site approxi­
mation (SSA) can be used for the binar}’ alloys which aie described m the 
simple model of the single baud The basic hypothesis of this appi oximation 
is to considei that the total scattered wave is composed of contributions from 
each atom, while the effective wave incident on a given atom excludes the 
conti lbution of that atom The contribution is obtained as product of the 
atomic Gmatrix and the effective wave, which are both dependent on the 
configuration. The mam point of SSA is that these quantities are not statisti­

c i . II) 

(32 II)

(33 II)
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cally correlated Using these approximations we can perform the calculation 
starting with the unperturbed Hamiltonian :

H = W  +  £  I n)U(jn I = W + U(z)l (34 II)
П

where U(z) is analytic every where except on the real axis The quantities 
which appear m the calculations are

and

G°(z) = ( z - W ) ~ i ,  G[k, *) =  ( * -  s(Ä)]-i 

A{k, E) = — — ImG°(k, E  +  »0) =  8 (E -  s(k))TZ

p’ (£ > =  i r  £ > =  i ş « ( £ - *<*>)

00

— CO

(35.11)

(36 II)

(37.11)

For the Hamiltonian К  we can define the Green function

R(z) =  (z -  Ä)-i =  (z -  U(z) — W )-1 = G°(z -  U(z)) (38 II)
This equation shows that R(z) can be expressed simply in terms of Gn 
Then we can define

<0 |Л(*) |0> =  F°{z -  u(z)) = F°{z) (39.11)
a quantity which is specific for CPA method. From (21.11) and (34.11) we
set

H  — К  =  S  I n)  [s„ —u(z) ■] <» I
П

and using (9 II) we get

Vn =  |«>0 „ — «(*)]<»! =  I «>ея<»I 
From (13II) we calculate

Tn (z) =  I »>■ V„
■ < » l

1 -  VnF̂ z)

and this relation will be averaged on the configurations and we get :

(40.11)

(41.11)

(42.11)

<т „ у  =  I »>
t(sA - V )  y(eB -  U)

.1 -  -  U)F 1 -  (s* -  U) F

I ny[xzÂ +  yzBi](n I =  I riy T „ < Я  I

<» I

(3.II)
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Using (20II) we get

tfeff =  W +  S l » >' ' n '
and , the self-energy is

U +
l+ 'F i'll I

Ф)2 (£, z) = u(z) +
, ' . 1 +  r(z)F (z) ,

arid from the condition <T„) =  0  we get
£(г) =  u(z)

From (43II) and (46II) we obtain the equation
( e — u) — [(e — u)2 — ( e — u)(x ~  y )S — xy82]F =  0

with

e =  — 8 (x — y) 2

The equation (47.11) gives

U — ,e -f- xy S2-
1 + (и + c)F

which can be written as

where

£(;?) =  s +  xyS2------ --------------
, 1 +  (2  +  s)F‘ (z, 2

F 0(z, S) =  F 0(z -  S(*))
Taking now the density of states as

o/vi  Í — лID2 - E 2, \ E \ < Dp°{E) =  J 1 1
I 0  , \ Ë \ > D

we can calculate F° (z) from (37 II) using (50 II)
Using now the relation

« ------ ---------
f — гт dx =  ,7t sign у  J y 2 — a2 — -ку 
J  x  — у

(44.11)

(45.11)

(46.11) 

(4711)

(48 II)

(49.11)

(50.11)

ive get

. F*{z) =  ^ { z - 4 z 2 - D 2l ( 5 1 II )
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and using F°(z — 2 (z)) = F{z) the self energy is

2  {z) = z --------- -F{z)
V ' F {г) 4 v

(52.11)

and 49. I I —52.11) we get

-L p 3 -  -  |.г2 -  I  (8 2 -  1)]F -  (z +  e) =  0 (53.11)

result which is quite general and can be used to calculate Tc for high-Tc super­
conductors

Before we start such a kind of calculation we present what is known 
as the “alloy analogy”. Bet us consider again the binary alloy, the A com­
ponent being described by

G{k, to) ,= [to — z(k) — eA — 2(e)] 1 

where the self-energy 2  is ■
2  =  8*[1 -  (8 -  2 )F]~1

where 8 =  sA — ев. The function F  is defined by

F  =  ~  £  G(k, гео)
Л h

or using (49II) we get

F{z) =2{z  -  ^ z F ~ T )

where
íco — ел -  2Z =  -------- -------

D

In  the limit e  ̂ -» oo, the self-energy has a simple form

2 =  —  -

F

where x is the concentration of the A component. 
For a pure system we get for the self energy

2 =  -  ”
F

(54 II) 

(55 II  )

(56.11) 

(5711) 

(58 II)

(59.11)

(60.11)

where n is the number of electrons. This result will be .used m the calculation 
of Te. With these results we can start the calculation of T0 for superconductors 
in CPA. 1 '
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I I I  Criticai temperature for Iilflh-Tc.
1 General Method. In order to 
calculate the critical temperature 
of high- Tc we will present the 
general method which implies the 
CPA method
The equation foi the order para­
meter

gives the critical temperature as the solution of the equation

F i g  l

1 =  П(ГС) (1 III)
where

П(ГС) = — y sG{k, ш )G(-k,  -m )A (k ,  - k ;  ш, - m )  (2 III)
N

Л being the vertex correction and м = 7: 7 ' jVí +  The equation for the vertex 
correction has the form

F i g .  2

which can be written analitically as

Л =  U + A A E  QsU* [F*-* +  F’~*F_ +  . . +  FSF 2] (3  Ш )
s= 2 4

and we denoted by A and F  the quantities

A (ш) =  1. m)G{-k ,  —fto) (4.Ill)
N к

F  =  -L £  G(k, ш ) , F_ =  — £  G ( -  k, -Ш ) (5 ITT)
N  f, N  к

and by Qs a factor which is function of x and y.
The dotted line from Fig 1 and Fig 2 represents the “interaction” line which 
will be specified for each model The Green function G is

G(k, ш) =  [ш — s (A) — 

where the self-energy is represented as

s, -  S]-* J6 .III
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A

Z  -
/  s/ N

F i g  3.

and is given by
S =  U^QsiUF)

The equation (3 III) gives for the vertex function the solution
U

A  =
1 — A -  S_ 

F  — .F_
where A has been calculated as

A = F  -  F

2гм +  S -  2_

The equation (8 III) has the form
-  £ + £A =  U 1 + I

2гсо
r _  - - Б О Д  m ) G [ —p , — wo)
F  — N p

(7. III) 

(8 .III) 

(9 III) 

(10.III)

and from (1 III), (2 III) and (10 III) the equation for the critical temperature is : 

1 =  Ü f-L £  £  G(k, ioi)G(—k, -m )P(k)  +I #  M к 
I у  2ta — S S .

2701
S -  S. 
F

- н ) 2] (П.Ш )

where f{k), the symmetr3r factor of the pairing, is indicated by the model. 
Such an equation has been used first by Yoshioka and Fukuyama [3] m order 
to explain the superconductor-semiconductor transition m BaPb^^Bi^Oa or 
Li1 +JTi2_.t.04 compounds
The model proposed m [3] consist in taking this materials as a binary alloy 
system A 1_XBX, the Pb0 3 being assigned to the A atom and Bi03 to the В 
atom Using the CPA method the calculation of Tc suposed the solving of 
an equation of the type (53 II) for the non — magnetic Hubbard Hamiltonian 
reduced to the form (21 II) As such an equation has no simple analytical 
solution, the authors used the numerical method and calculated Tc as function 
of X  for different parameters U and D, where U is the one-site rejiulsion from 
Hubbard Hamiltonian and D is the band-width
As the CPA method goes beyond the mean field, it was leconsidered for the 
high-Tc superconductors by Fukuyama and Yoslnda [4].

2 The Model Strong Coulomb correlations are considered at the present 
time to play a very important lole in the pairing mechanism of lugh-Fc oxides. 
Indeed, Anderson [5] proposed a new mechanism for superconductivity based 
on the result obtained b}̂  Hirch [6 ] who showed that foi a Hubáid Hamiltonian 
with strong correlations an attraction can appear which gives rise to aniso-

— Pliysira 1/1989
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tropic singlet superconductivity hater many authors [6 —1 1 ] considered the 
standard Hubbard Hamiltonian

d, being the dimensionality of the system ' ’ -
This Hamiltonian has been obtained by U t and the coupling constant from 
(12.Ill)  is /  =  4i2/U. If we take the space where the double’ occupancy of 
the same site is excluded, the Hamiltonian (13.Ill)  is reduced to

Tc for 3d, 2d and Id cases Using these results we will give a general formula 
for Tc which will be analysed (for d =  3, 2, 1) as function of' the concentration 
of electrons and of the position of the Fermi energy.

3 The General Equation for Tc. In ordei to calculate Ţi we introduce 
the notations . ,

— UYi «ш at- (12.III)

which can be transfoi med in an effective Hamiltonian

Heff ■ I 5j (1 nt— a)CtaCja(\ Hj—o) H” J  X ( StSj 1 ,) (13 III)

where the band energy is now

s(A) =  -  2 1 /(A) (1 -i.III)
with

cos kxa -f cos kya for d =  2  
cos k a for d =  1 (15 III)

H*f = К  -  I  S  (An (A)C+ c+,f +  h.c.)A k
(16 III)

where the order parameter is defined by

At i(*)=2 J h f i k - p K c p ^ }
■h 1

(17 III)

As these materials are a special cases of 3d superconductors, we will calculate

^•„ .U  = DF\ V,= DFL .(18 HI)

and the quantities :

A x =  — Yi M G (k ,  ua)G[- k, - ш )
7J и '

(19 III)
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Using (15 III) and (18 III) we get
. d zV -  z_v

A l ------D- z — z_

and

where

^ 2 =  -   ̂ D-
1  - z2U — z2 V '

z — z_

ï to —(— (л — 2  _ — гео +  |i  — 2 _
_  D > л-  — D

With these results the equation (11 III) we get

1 =  ^ Г с£ 1 4 2 +  Д2* - * -  ST- S- At]
d со L 2x U — V

which can be written as

' =1Í L  \ + C(v +  x)V -  (v~- x)V]2 
4UV -  n(U -  V)

(21 III) 

(22 III) 

(23 III)

(24.111)

(25.111)

where tc=  . This equation has been obtained using the approximation (60 II).
This is a main point of the model which considers that the system consists 
from two levels separated by a large quantity This model is similar with the 
Anderson’s [5] Resonanting Valence-Bond (RVB) but not identical The equa­
tion (25 III) will be simplified because the first term (proportional to A 2) is 
independent of Ta and we will take •

U(x, V, n) ~ U(x =  0, V, n) (26.III)

V(x, V, n) ~ V(x =  0, V, n)

This approximation is justified if the band-width D > a)c where is the maxi­
mum energy from the system
With this approximation (25.III), becomes

co
1  =  I  ф(й) v) ( — tangh —  (27.III)

T .t J 2x 2xc
—  00

where

Ф(п, v) =  -  — ( U -  V) (28.III)
4г

these results will be applied for three dimensional (3d) superconductor as well 
as for the cases of superconductors of lower dimensionality 2d and Id.
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4 Three dimensional model for high-T superconductor. If we take the den­
sity of states of the form

^ ' - Л б У Ч ^ Г
(29.III)

the functions F  and F_ are given by

F = ^ [ *  h- (30a.Ill)

F-  = 5 - iz-  +  » V 1  -  z2) (30b III)

where z and z_ are given by (23 III). Using again the approximation Z =  
=  — njF we get

[7 =  2

V = 2

+ x - i ' y ^ l _ 7 L _ ( v  +

-  X +  i У1 -  j  -  (v -  *)*

which gives
и l v , 1

Z — — -{- — , Z_ — — —
4 V 4 V

Then we can write

[7— 7  =  4 ^ * 1  -  ^  ~  v2

and neglecting again the term m A 2 (27.Ill)  becomes
co

S t1  = zL- 
-t

1 — — — V2 
9

taugh —

The critical temperature will be obtained as

T f  — 1.13 co,; exp
X(n, v)

where

\(n, v) =  — — Ф(n, v)ГГ t

(31a III) 

(31b.III)

(32.Ill) 

(33 III)

(34 III)

(35 III) 

(36 III)

фзЛ«> v) =  v2

The next step is to eliminate the chemical potential contained in Ф by v 
Using now the general equation for the number of electrons •
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N  (г) =  -  !  I m { F - F _) =  -  -  I m F
7t 7T

we get

11 ==  -  -  lin j  d \ U  {l)
— CO

wheie i  =  X  V. If we introduce now the notation
9 -ia2 =  1 -----

2

the equation (38.I ll)  becomes
V

2 ( 1  -  a*) =  -i j
—a

which gives

>v2 ( 1  -  a?) =

We write this equation as
7Г 2

1  ----------arccos-----"
С/2 О

тг(1 -  a2)
=  / Ж

where

/(v/«) = - д/l “а у  fl2
aiccos

If we plot the function /(v/я) foi — 1 <  v/я <  1 wc sec that (43.Ill) 
appioxunated by

/ W„) » I ţ i - 1)

Fioin (42.Ill)  and (44 III) we get
3

—  «  —  l  
2 — 3aJ 2

V ’ - f
and using this result in (36.III) Ф3i(ii) becomes

(3n -  2)a /2(1 (1 -  n)
ф3 i(«) = C n 13/2

(37 III) 

(38 III) 

(39 III) 

(40 III)

(41 III)

(42.111)

(43 III) 

is well

(44 III) 

(45 III)

(46.111)
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The critical temperature obtained from, (35.I ll)  is

TT  =  1.13coc exp 

or as function of v

7it
11 3/2

(47.III)
/  (3n -  2)‘ *JZn(l -  n)

7lá=l ,13wc e x p ^ - y - ^ y i 2 _  1 7 V2 _  ^/v4 +  24v2] (48 III)

From (47 III) we can see that T  has a maximum for n =  0,2 and becomes 
zero for n =  3/2. This last result is not lelevant because it is due to the ave­
rage on the Ferim surface of the structure factor f(k) and appears m all aniso­
tropic models even if d <  3. The T3cd(v) has a maximum for v ~ 0 8 , result 
which show that the position of the Fermi suiface is essential m the high- Tc 
behaviour

IV. Critical temperature for lower dimensional superconductors. The expeii- 
mcntal investigations showed the importance oi the CuO planes as well as the 
Cu—О chains m the properties of high- Tc superconductors Then it is impor­
tant to consider the 3d behaviour as a superposition of the 2d behaviour fiom 
planes and Id from chains.

1 The two dimensional model for Jngh-Tc superconductor The density of 
states for a 2d electronic system is given by - '

N 2d(s) =  4 -  0(Z) -  |s |)K(Vl -  (s/ЛП (1.IV)7Z~U
where K{x) is the complet eliptic integral of Ihc first oidei and Q(x) is the 
step function Near the band edge (1 IV) can be approximated by

Яи(е) =  |s| )ln — (2 IV)
7~г 1 )  S

which is in fact an approximation used by different authois [13, 14] Using 
(56.11), (60II) and (18.III) we can calculate U2d and V2d for a density of 
states given by (2.IV). After a simple algebra we get the result

u 2d =  -  [K(2r) sign2 -  *K(V1 -  *“)]
7Г

(3.IV)

and

V2i= -  [K (*“) signz_ -  гКл/ l  -  г2) ]
те

(4 IV)

an expanding the function К  {%) as in (2 IV) we get

U2d ~ 2 fin 4 i In 4 1 (5.IV)

7 “  ~ * K . - < . + , h u ]
(6 .IV)
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In the calculation of T2'1 we will neglect the leal parts in (5.IV) and (6 .IV) 
because these give no contribution near the band edge and only the imagi­
nary part will be considered. Using the approximation

l n | * | ~ - ^ L  ' ’ (7.IV)

(5.IV) and (6 .IV) can be wiitten as
rT Í sign г _Uu = ---------- ,

1 ; , Z

The equation for the number of electrons can be written as m the 3d case 
and. we get

V2i= I sign z  ̂
z_ (8 IV)

de—-Sgne (9.IV)

and the singularity intioduced in fact by the appi oximation (8.1 V) will be 
approximated as

sign s 
e ~ p 1 -  ea 

1 +  e*
"(10.IV)

the parameter p  being a measure of the derivation fiom 2d chaiacter of the 
system. Using (10.IV) Ф2а calculated from (28.III) has been obtained as

Ф  2,1 pv‘ 1 -  va
1 +  V»

(11.IV)

and from (9.IV)

TC
TC
о +  2  arctg V — V — 1 ] (12.IV)

these (10 IV) has been used. Following the same method (12 IV) can be approxi­
mated as

and

where pb = к j2 (л — 2 ) 
The critical temperature

V =  ---- ----- n -  1 (13.IV)
2*(* -  2)

=P »-(2,ТпЧГ' a « v )1 -f  (I — bn)2

Т2СЛ will be obtaméd nowr as
-2d 1 13oi exp

7Г t , 1 -f (1 — bn)2 1
Jpb n{2 — im)(l — bn)2 J (15 .IV )
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or as function of v as

I f  =  1 13ие exp f -  —  - 1 + v* I (16.IV)

The maximum in T2d given by (15 IV) appears at n <  0 6  but for the same 
parameters we can see that is veiy sensitive to p, (by the parameter b) which 
shows that the approximation of singularity near the band edge by the Torcnt- 
zian (10.IV) is the main point of the 2d density of states.

2. The one-dimensional model for high-T superconductor. The density of 
states for Ы electronic systems in the tight-binding appi oximation is given 
by

N ‘M  -  (1XIV)
Using the general relation for F, we obtain Uu  and V ih as

. a — ~ i r r r -  7 *' =  T r b  <18IV>
which gives

Фи (п, v) =  I  _ ? ! -  д / l  -  -  -  Vs (19 IV)
1 K 2 1 — v2 V 4

The chemical potential can be eliminated as, for the 3d and 2d models

which gives

and

3ii -  2 /  2 + 1 1
2 у 2 -  n

( 3 » - 2 ) »  , / ( ! - . 0 ( 4 - n)»
16-6n — 9n2 V 2ji

The critical temperature T f  can be written as

(20.IV)

(21.IV) 

(22.IV)

T\d — 1 13w exp 

or as function on v

Td
7

16 — 6)t — 9 
(3)i -  2f V 2 n

(1 — n)(4 — ws)

T f 1.13mc exp { lit 1 4- V

7  v»'
(1 -  v)(9 -  6v)ll/Z 
4 +  2v -  3vs J

(23.IV)

(24.IV)

The equation (23.1 V) show a íapid decreasing of T 1/  with n and an increasing 
with v.
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This feature is very important for the study of the influence of the impu- 
lities on high-T,, which are considered to be localized in the chains.

V. Discussions. A detailed investigation of the possibility for high-Tc in 
strong correlated electronic systems showed that the CPA method is an appio- 
priate aproach for the calculation of Tc in this systems. We have been able 
to show ̂  that m the strong 1 correlated systems the critical temperature T3d, 
I f 1 and T\d is very sensitive to the concentiation of the electrons and to, 
the position of the Fermi energy
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STRESS MEASUREMENT IN EUECTRODEPOSITED NICKET WITH
(001) FIBER TEXTURE

D. CIURCIIEA*, M. POPOVICI** and M. SERGIIIUŢÂ**
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ABSTRACT. — The elecliodeposited nickel has a (001) fiber texture which 
yields an anisotropic lesulual stress in the suiface layei The theory of the 
stress me.isiuemenl by X-Ray diffi action is reconsidered to account foi tlus 
texfnie It is shown that T23 =  0 is a reasonable assumption allowing stiess 
deteimmatious fiom only two tilt measurements Isotropic bulk moduli should 
be consideied with caution.

1. Introduction. The stiess measurement by X-Ray diffi action is an ade­
quate means to contiol macroscopic îesidual stresses m thin layeis In nuclear 
technology, nickel electrode position is used to avoid coirosion

The method of stress measurement [1, 2] in the assumption of an isotropic 
polycrystal implies that the residual maciostrams slightly distoit the crystal 
The distorsion measured by X-Ray diffraction is related to the lsotiopic í esi dual 
stress T  by :

■d* ~ d' = l ± A T s n P i j ;  (1 )
d0

wlieie d^ is the lattice spacing measured at the ф tilt angle, d0 is the lattice 
spacing measuied at ф =  0, E  is the Young modulus and v is the Poisson 
ratio

Howcvei, the assumptions made in deriving Eq. (1) may yield systematic 
errors m the case of textured materials since the stress normal to the speci­
men and the anisotropy of the elastic constants are ignoied

The aim of this paper is to check the souicts of eirois m the case of 
electrodeposited Nickel

2 Experimental. The texture was measuied as direct pole figuies of the 
(002) reflection by using a Philips PW 1130/00 diffractometer with a PW 
1050 vertical goniometer and a PW 1178 texture attachement I t  was found 
that all specimens have a fiber texture with the (0 0 1 ) planes parallel with 
the specimen suiface The texture may be fairly well approximated to an uni­
dimensional Gaussian with a full width at half maximum of 15—20°. This is 
seen from the measurements of both the (200) and (420) reflectious — the 
lattei being the reflection couveuient for stress determinations (Fig. 1 and 
Fig 2 )

* University of Cluj-Napoca, Faculty of Physics, 3400 Cluj'Napoca, Romanţa
** Institute for Nuclear Power Reactots, 0300 Piteşti, Romania
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I? 1 g. 1. Characterization of the gaussian textuie in the (002) reflexion by using the ф tilt in the
DRON—2 equipment

3. Theory. By taking into account the very simple textuie obseived, the 
oiientation, distribution function таз7, bé written as [3]

co

fig) =  / ( Ф) =  £  C„ cos (яф) , (2 )<>=0
where Cn aie ielated to the Gaussian standaid deviation с т а  simple man­
ner. , . _ .

. For cubic ciystals, such as Nickel, the elastic constants are of tlm form
[4'] :

Sijkl — SyAI +  N i}lci r ( ф, 9 ) ‘ ' (3)

wheie Sykt is a constant, N tjU are the nonor components and г(ф, cp) desenbes 
the direction m the crystal. Since our procedure always uses the (420) reflec­
tion, the cp dependence of r(ф, 9 ) may be ignored Therefore, г(ф) may be 
expanded in Fourier senes also. The aveiaged elastic constants aie  then
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F i g  2 Characterisation o£ the textuie m 
the (420) reflexion by using the t}> tilt m 

the DRON —2 equipment

obtained by

5 ^ы(Ф)ЛФ) (4)

For the textuie described we obtain fi­
nally

A z A  =  (5 )
d0

=  ( 1̂ 1 ^12) [(^ 2 2  ' r j s i n -ф Fosili 2ф]

whei e T 22 =  Tu  are the stress components 
m the specimen plane, T33 is the sticss 
normal to the surface and T 23 is a non­
diagonal stiess component ?n and i ]2 aie 
given by '

Sn =  — (6 su  +  2 s12 -f s44) +
О

+  Ş  (2 su -  2 s 12 -  s44)

( 6 )

^12 =  ~  f à S ll "f" 1 4 s 12 S44) —16

-  ^  (2 Sll -  2 s 12 -  su )
lb

with C4 =  exp(—8 cr2), where a is the stan- 
daid deviation of the Gaussian

The comparison of Eq (5) and (1) 
shows that in the isotropic case, the de­

pendence versus sm2ili is linear In the anisotropic case when ^23 —1
=  0 the sin 2 ф term implies a deviation from lmeaiity Moi eover, i 41 — ? 12 
should be considered instead of ( 1 +  v)/E

4. Results and discussions. The measurement of the residual stress was 
performed on a DRON—2 equipment by using the (420) íeílection The reticular 
distance was measured as a function of the tilt angle ф By using the single 
crystal elastic compliance [5,6] . su =  7 268 10“° MPa“1, s12 =  — 2 726 10“e 
MPa- 1  and s44 =  8  097 10“ 6 MPa“ 1 the following values for TtJ were obtained 
by a least squares pioceduie’

Г 22 -  T33 =  (-6 7  6  ±  5 3)MPa
T 23 =  (-29.9  ±  12.5)MPa 

with a significance figure, '/s’jn =  0 .8 .
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F i g  3 The plot d veisus sm2ijj showing the fit for various models discussed ш the text. 1 
refers to the case T63 / 0 , 2 -  refers to the case Tt3 =  0 , 3  — refers to the isotropic case

Smce the value of T 23 is quite low, the assumption T23 =  0 was checked. 
We obtained T 22 — T33 =  (— 72 1 ±  5 7) MPa with a significance figure, X2jn =  
=  1  06.

The results of the fit are given in Fig. 3 The values of T22 — T33 in the 
two cases analysed are very close However, Ьзг using macroscopic bulk moduli, 
the value of Г is T =  (— 97.5 ±  10 8 ) MPa, i.e an overestimate of about 
2 0 %, which may imply rejecting of good items during quality control.

As a conclusion, the linear dependence of —— — versus эпРф my be relia-d0
bly assumed but single crystal compliances are compulsory The error in the 
measurement of the stress deviator is less than 10%. The X-Ray diffraction 
measurement, although expensive, is adequate for the nondestructive control 
of stresses Given the simple texture observed, the analysis of the stress aniso­
tropy is greately simplified comparatively to the general case discussed by 
Dolle [7,].
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TEMPERATURE DEPENDENCE ON THE MAGNETIC SUSCEPTIBILITY 
IN SOME THERNARY OXIDIC SEMICONDUCTING

a —(Ee20 3 A120 3 Cr20 3)

L. POP* and M. cniSTEA**
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ABSTRACT. — The temperature dependence of the magnetic susceptibility bet­
ween 100 and 1 200 К  has been investigated for some a—(Fea0 3—A130 3—Cr20 3) 
solid solutions The investigated samples consist of a constant a—Fes0 3 molar 
concentration of 50, 30 and 10. mol % and of ^variabile concentration of 
a—A120 3 and a—Cra0 3, respectively The system exhibits a second order phase 
transition from antiferromagnetic, ferromagnetic or a more cmoplicated magne­
tic order state to paramagnetic state From the linear pait of the tempera­
ture dependence of the reciprocal magnetic susceptibility was determined the 
effective magnetic moment per unit formula which has been found m good 
agreement with the calculated values using the formula pefi =  [2(/1 ' 1̂ ре3+ +

+  /гИ-сР1')!^2 where рРез+ =  5 92 and pCroi =  3 87 \lb

Introduction. In the previous papers [1—4] we have already reported the 
interesting magnetic behaviour of some a-(Fe20 3—A120 3—Cr20 3) solid solutions 
in the antifeiromagnetic oideicd range, and corresponding in the paramagnetic 
range pointing out the> magnetic phase diagram, the magnetic spin structure 
succesion of the second ordei phase transition and also the effective magnetic 
moment per unit formula.

Samples pieparatlon and experimental technique. The startmg materials for the preparation 
of the thernary oxidic system o—(Fe30 3—A h03—Cr20 3) were A1C13 • 6H20  ; FeCl3 • 6H20  and 
CrCl3 6H20  of ’p a purity.

The thernary oxidic samples were obtained by thermic decomposition of the aluminium, 
iron and chromium hydioxid coprecipitates The coprecipitates were calcined at 1 523 IC and then 
slowly cooled down, and finally calcined for 7 hours in five cicles The homogemty of the solid 
solutions has been checked out through an X-ray analysis, usmg a TUR—M—61 diffractometer 
and a Cu—Ka radiation [2] >

The thermal variation of the magnetic susceptibility has been determined usmg a Weiss and 
Forrer magnetic balance type, with 10-8 cm3/g sensitivity in the temperature range 100—1 200 К  
and in a 9 200 Gs magnetic field intensity

Experimental results and discussions. As pointed out in previous papers 
[3, 4] the critical temperature of transition from the ordered state to the 
paramagnetic state decreases as the a —Fe20 3 content in the thernary solid 
solutions of a —(Fe20 3—A120 3—Cr20 3) decreases from 880 К  for the samples 
with 90 mol% «—Fe20 3 down to 700 К  for the samples with 70 mol% a — 
—Fe20 3 Actually, if we represent these values as an a —Fe20 3 concentration

* Physics Department, Cluj-Napoca University, 3400 Cluj-Napoca, Romania
** Pohtehmcal Institut „Traiati Fu ta", Timisoara —1900, Romania
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P i g  1. 2 Magnetic phase diagram a—Fes0 3 concentration dependence of the effective magnetic
moment per formula unit.

function together with the critical temperatures for the samples investigated 
in this paper, i e 50 , 30 ; 10 mol% <x—Fe20 3, we obtain a linear dependence, 
as one can see from the magnetic phase diagram given in the Fig. 1. This 
means that the magnetic spm structure characteristic for the «—Fe20 3 still 
persists superposed on the magnetic spin stiucture characteristic for the a — 
—Cr20 3 denoting a more complicated magnetic spin structure for the solid 
solutions a—(Fe20 3—A120 3—Cr20 3) On the other hand the linear decrease of 
the critical temperature, TN, with the a —Fe20 3 content shows on the dilution 
effect of the a —A1 20 3 and a —Cr20 3 content m the thernary solid solutions 
More than that, this means that the samples are homogeneous solid solutions, 
m good agreement with the X-ray results [2].

These conclusions are also confirmed by the a —Fe20 3 concentration linear 
dependence of the effective magnetic moment per unit formula calculated from 
the slope of the temperature dependence of the reciprocal magnetic suscepti­
bility, given in the Fig 2 The linearity of the effective magnetic moment 
per unit formula can be also observed when it is represented as an a—Cr20 3 
concentration function

The complicated magnetic spin structure is revealed by the temperature 
dependence of the reciprocal magnetic susceptibility below critical tempera­
ture, as one can see from Fig. 3, for the set of three samples containing 50 
mol % of a —Fe20 3 One observes that for the less a —Cr20 3 concentrated 
sample, i.e. 25 mol% a—Cr20 3, the temperature dependence is similar to that 
of the more concentrated a —Fe20 3 samples [4], and when the a—Cr20 3 con­
centration increases the shape of the curves is strongly modified, the tempera­
ture dependence, of the reciprocal magnetic susceptibility havmg a minimum 
which corresponds to the Néel temperature. For T  >  T N the temperature 
dependence of the reciprocal magnetic susceptibility is linear, obeing the Curie — 
Weiss law.
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The magnetic spin structure picture is strongly changed when a—Fe20 3 
concentration decreases to 30 mol% m the a — (Fe20 3—A120 3—Cr20 3) solid 
solutions, as one can see from Fig 4, where is given the temperature depen­
dence of the reciprocal magnetic susceptibility for three samples with different 
a —Cr20 3 concentration The shape'of the thermal variation curves of the reci­
procal magnetic susceptibility suggests some kind of ferromagnetic spin struc­
ture, colmear and noncolmear arrangement of the 3d spins, depending of the 
a —Cr20 3 molar concentration In the paramagnetic region the temperature 
dependence of the reciprocal magnetic susceptibility is not linear.

The ferromagnetic ordering is better expressed when the a —Fe20 3 con­
centrations is lowered down to 10 mol %, as one can see from the Fig 5, 
where is shown the temperature dependence of the .reciprocal magnetic suscepti­
bility for the set of samples with the constant 1 0  mol% a —Fe20 3 and different 
concentration of a —Cr20 3 and a —A1 20 3.

The thermal variation of the reciprocal magnetic susceptibility is ' not 
linear, obeing the Neel law m the paramagnetic region, as usual for the ferro­
magnetic ordered materials. One sample breaks the rule, namely the 81 mol% 
a —Cr20 3 sample For this sample, at low temperature the reciprocal magnetic 
susceptibility does not change as the temperature increase towards the room 
temperature, but beyond this it obeys a Curie—Weiss law Such a behaviour 
is less usual, and we have reported it before for some binary solid solutions 
-a— (Fe20 3—A120 3) [5i] and for a—Fe20 3 [6 ]

From the slope of the linear part of the temperature dependence of the 
reciprocal magnetic susceptibility we have determined the Curie constant and 
afterwards we have calculated the effective moment per unit formula and per 
ion, using the relation

' i*eff =  [ / l P C r 3+ + / 2p F c3+']I'/2

where f x and / 2 are the molar fraction, and [rCr3+ =  3 87 \> B, PfW =  5 92 \i.B 
The obtained results as listed m the Table 1

Table 1

I Samples concentration mol % Molar V-ettlfV- Heff/ion, V-в 1W 10*- v-в

a—Fe20 3 a—A120 3 a — CrX>3 const Cjj/ V-в detei mined calculated

1 50 25 25 4 914 6 295 4 46 4 61
2 50 15 35 5 743 6 80 4 82 4 77
3 50 , - 5 45 5 935 6918 4 91 4 92

1 30 35 35 3 584 5 376 3 81 3 96
2 30 21 ‘ 49 4 252 5 856 4 15 4 21

. 3 30 6 64 4 603 6 093 4 32 4 48

1 10 80 10 1 118 3 003 2 23 2 13
2 10 63 27 1 498 3 579 2 74 2 53
3 10 44 46 2 157 4,272 3 22 3 03
4 10 27 63 3 078 4 983 3 59 3 53
5 10 9 81 3 707 5 463 3 95 3 88

\
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As one can see from the last two columns the determined and calculated 
effective magnetic moment values per ion arc m very good agreement If the 
value of the effective magnetic moment per ion is multiplied by 2 , then 
one obtains the effective magnetic moment value per unit formula determined 
from the molar Curie—Weiss constant value.

Conclusions. The investigated thernary system of the solid solutions a — 
— (Fe20 3—A120 3—Cr20 3) having the corundum crystalline structure presents 
interesting magnetic behavioui, depending of the molar concentrations of the < 
two components, l e Fe20 3 and Cr20 3

The temperature dependence of the reciprocal magnetic susceptibility poin­
ted out the existence of the magnetic ordei in the systems of the oxidic solid 

,solutions of different type, i e 1 antiferromagnetic order of the a—Fe20 3 type 
for the high a—Fe20 3 concentrated samples , antiferromagnetic order of the 
a —Cr20 3 type for the high a —Cr20 3 concentrated samples , superposed magnetic 
spin structure of these two types of magnetic structures and cohnear, respecti­
vely noncolinear ferromagnetic spin structures in the less a —Fe20 3 concentrated 
samples.

The concentration a —Fe20 3, and a —Cr20 3 dependences of the critical 
temperature, and of the effective magnetic moment per formula unit and per 
ion are linear.

The calculated and experimentally determined effective magnetic moment 
per unit formula and per ion are in good agreement.
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ABSTRACT. — Election .paramagnetic lesonance 'and static susceptibility 
■ measurements on GdJ+ were perfoimed in the system GdBa2Cu30 7 8 The

temperature dependence of g-value, lmewidth for the Gd3+ signal fmiction of 
. temperature, atmosphere and time of heat treating samples weie lepoited 

■ ■ The paitial substitutiuon of the nonmagnetic ’ yttrium with gadolinium were
investigated by EPR as a function of temperature ’

Intro dnttion. The discovery of high-Tc superconductivity [1] mitiated 
the search for new compounds, the experimental analysis and the proposal 
of theoretical models

There are numerous reports on the ERR measurements [2, 3] in high-iE 
superconductors above 90°K in the series of rare earth (Re) — Ba—Cu — О sys­
tems A study of magnetism m related materials should' serve for undersanding 
the superconductivity of the oxides Practical^, a Y —Ba—Cu —О system of 
poor quality ' exhibits a magnetic susceptibihiy of a Curie—Weiss type Elec­
tron paramagnetic resonance is a useful means to identity the magnetic ongm 
because it can specify the magnetic components through anisotropic g-values 
The high sensitivity of EPR measurements also favors the detection of impurity 
phases There are numerous reports on the EPR measurements m high-T,. super­
conducting Y —Ba—Cu —О system 'comparatively with Gd—Ba—CuO system 
EPR will be a fruitful technique to reveal the electronic state of Gd' and to 
probe ' the static and dynamic interactions with the superconducting system 
However, all papers concerned with the ‘Cu ions have failed to give any signi­
ficant information on the underlying superconducting system The single phase 
YBa2Cu30 7 material, with the optimal oxygen composition, has no Сине moment
[4] and it has been suggested that the observed Cu2+ EPR signal originates 
from an impurity phase The Gd m GdBa2Cu30 7 does have a large Curie 
moment and strong EPR signal [5 ,6  ]

However, in common with its Y parent matei iái, the EPR does not exhi­
bit the characteristic signature expected for a local moment m a superconductoi 
I t  is therefore useful to compare these signals with those originating from the 
principal impurity phases Intimately related to the “black phase” high Tc ~ 
cs 90 К  supei conductors YBa2Cua0 7 and GdBa2Cu20 7 and the “green phase” 

insulators Y2BaCu05 and Gd2BaCu05 [7 , 8 ], Gd+3 signal has in Gd2BaCu05 
an accurately Eorenzian shape and is temperature-independent at high tempera-

* Umvetsiiy of Cluj-Napoca, Faculty of Malhemtics and Physics 3400 Cluj-Napoca, Romania
*v Institute of Isotopic ană Molecular Technology, PO Box 700, R —3400 Cluj-Napoca, Romania
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tuie In contrast, in GdBa2Cu30 7 there is a slight asymmetry in the lineshape 
and a small temperature dependence in the hnewidth above Tc [ 5 ,7i], Gd2BaCuOs 
gives a Curie—Weiss 0 ~ — 20 K. and for GdBa2Cu30 7 a Curie Weiss law with 
0 ~ -  30 K.

In this paper, we report the EPR and static susceptibility measurements 
in nonsuperconductmg and super conducting GdBa2Cu30 7_s function of the tem­
perature; atmosphere and time of heat treating samples The partial substi­
tution of nonmagnetic yttrium with gadolinium have been investigated by 
analysmg the EPR  spectra in system Yx^Gd^Ba^CugCb-s

Experimental procedure. The samples studied were prepared by the solid 
phase reaction method through reactmg the mixture of Gd20 3 • CuO and BaC03 
m cation ratio Gd Ba • Cu =  1 2 :3  (samples 1 , 2 , 3 )  In sample 4, Y were 
substituted by 1% Gd The ceramic samples 1, 2 and 4 were obtamed by 
calcination of oxides mixtures a t 850° for 8  hours in air To obtain higher 

^homogenity the powders were mixed with absolut alchool m an agate mortar 
and recalcinated at the same temperature for other 8  hours The samples were 
pressed into pellets and firing m air for 10 hours at-940°C, and then cooled 
down to 200 °C m 8  hours Samples 2 and 4 were cooled m air atmosphere 
and sample 1 in oxigen Sample 3 were,firing in oxygen for 12 hours at 900°C, 
cooled down to 2 0 0 ° in 16 hours, then regrmdmg, the pellets and repeating 
the process

The electron paramagnetic resonance measurements were carried out by 
means of r a d io p a n  spectrometer S E /x /2 5 4 3  at room and liquid nitrogen tempera­
ture The samples were finely crushed and mixed by silicon fett Merck

The magnetic susceptibilities were measured using the standard Faraday 
balance

Results and discussions. The EPR spectra recorded from sample 3 at the 
room and liquid-nitrogen temperature (ENT) are'piesented’in Fig 1 'and for 
samples 1 , 2 m  Fig 2 and 3

The EPR results in tempei attire dependence of the peak to peak line- 
width of the first derivative of the absorption signal Bpp and the g factor are 
summarized m Table 1. 1

1 , Table 1

Sample Temperatuie A B PP 
(mT) • g

,  (A B PPÎr t

— (A B pp)N T Д g

1 RT 146 1 2 013 ±  0 002 * , 28 4 0 057
TNT 117 7 1 956 ±  0 002 , -

RT 105 5 1 982 ±  0 002
2 TNT 90 0 1 966,±  0 002 15 5 0 016
3 RT 113 3 1 974 ±  0 002 13'3 0 004

TNT 100 0 1 970 ±  0 002
4 RT 43 8 1 984 ±>0 002 1.1 ' 0 006

' TNT 42 7 1 978 ±  0 002 1
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Fi g.  1 The EPR spectia from sample 3 at the loom (RT) and liquid uitiogen tempcialine (LXll
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As shown in Fig 1, a clear resonance signal with strong intensity was 
observed m the sample 3 at the field corresponding to nearly g ~ 1,97, which 
is typical,,of the G,d3 + ions [5, 8 , 9] The crystal structnies described by 
Michel and Raveau [10] are orthorhombic with Gd3+ in distorted monocapped 
trigonal prisms of Gd07 with two neighboring Gd07 prisms sharing one tri­
angular face, forming Gd2On blocks and-the Cu2+ ions located-m distoited 
tetragonal pyramids of Cu05 The Gd3+ signal in sample 3 and their para­
meters are characteristic, of “black phase” in GdBa2Cu07_s supraconducting 
system The decrease of the g factor as function of tempeiature in samples 
1 and 2 indicates the presence of “green phase” insulator Gd2BaCu05 The g 
value for the sample 1  cooled in oxigen atmosphere evidenced greater amounts 
of “green phase” than m sample 2 colled in air The small decreases of line- 
width above Tc is characteristic of a “black phase” superconductive {4], while 
m “green phase” the Gd3+ line sharphy broadens and shifts, gi lower tempera­
tures, the linewidth beeing' lelatively constante for T  ~ 90 К  [7] The tempera­
ture dependence of Gd3+ g factor 'and the linewidth in'samples 1 and 2, indi­
cated the presence of two phases “black” and “green” that influence specifically 
the FPR  parameters. - , ' -,
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The EPR spectium for sample 1 indicates the overlapping over the charac- 
teiistic Gd3 + line of a narrow line at room temperature The disappearance 
of tins narrow line ,at liquid nitiogen ' temperrture is probably caused by the 
structural phase transformations m the microvicinity of Gd3+ that influences 
spiu-spm relaxation The origin of this signal' is not clear, and it is possibly 
to be due to the oxygen non-stoichiometry coupled with a structural tran­
sition ' , ■ ,
■ ' Sample 4 evidence a resonance signal typical of the Gd3+ ions in supei - 

conducting “black” phase This indicates that the substitution of the non­
magnetic yttnum  with gadolinium also leads to the appearance of a super­
conducting phase

Gd ions aie m the spin-only S-state and behave as paramagnetic local 
moments In this situation, one may expect the spin-lattice relaxation mecha­
nism to have little effect on the lmewidth. The shape of the resonance is 
determined by spm-spin relaxation [8 ] The line shape was found Torentziau, 
indicating the piesence of exhange narrowing Accoidmg to ’the general theory 
of magnetic lesonance, the exhange ' integral can be obtained from the Weiss 
temperature of. the magnetic suspectibilit}^

where z

, 0 = 2 z j  ■ S(S +  1)/3AB (1)
t 7

= 4 is the number of nearest neighbois [11] and 'S =  —for Gd3+.

The inverse of the static susceptibility as a function of temperature obtai­
ned by' the ’ Faraday balance method is presented in Fig 4 Susceptibility 
investigations performed in GdBa2Cu30 7 _ 5 doesi not follow a well defined Curie —
Weiss law The susceptibility can be fitted by %(Г) =  Xo +

T -  о
-m limited

„ range of tempeiature We obtained the paiamagnetic Curie temperatul es Qp =  
=  — 14 К and Qp =  — 24 К  for samples 1 and’sample 3 respectively

These negative values, of 0̂ , reflect antiferromagnetic interactions and sug­
gest the presence of antiferromagnetism ordering m these materials at low tem­
peratures and also the existence of the dipole-dipole interactions

By using, the experimental^ determined 0̂ , values we get the exhange 
lntegial J  =  3 92 -10- 17  (erg) and J =  6  72 • 10- 17  (erg) for sample 1 and sample 
3, respectively

Conclusions.^ We have obseived that the existance of the magnetic moments 
as shown by EPR and susceptibility measurements depends considerably on 
the treatment of samples The resonance of Gd3+ indicates the presence of 
two phases “black” and “green”, that influence, the EPR parameters. We 
evidenced at room temperature the presence of a nairowed line superimposed



75HEAT TREATING IN'THE Gd—Ba—Cu—О SYSTEM

24 -

22'

20 

18 

16 

14 
1 2

10 

8 

6 

4

1/%-10“4 [u.e.m/4j

X/
у /

0
у/

У/
/ */У

5*
у//У о-0"'o-tfOJ3- /.

/

/
/

/

J___ I I J___L J___ '
20 40 60 80 100 120 140 160 180 200 220 240 260 280 ТО 1 [К ]Т Т »

- 2 4  1 2 3 * S_ м  • . ,

S 'I g. 4 Tile mverse o£ the static susceptibility (1//) as a function of temperature (T) from sample
1 and sample 3. 1

over the characteristic .Gd3+ line The origin of this .signal is not clear Merasue- 
ments of static susceptibility leflect the antiferromagnetic intei actions and the 
fact that Qp is function of heat’ tieatment of samples The exchange, integrals 
have been also derived foi .these samples
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SPECTROSCOPIC STUDY AND DETECTION OF SOME HADOGENATED 
HYDROCARBONS BY OA DASER METHOD

ABSTRACT. — Laser optoacoustic spectroscopic study of some halogenated 
hydrocarbons, m the spectral range 9—11 pm, are reported The wavelenghts, 
for each molecular compound, at which the absorption cross sections are maxi­
mum in the mvestigated spectral range are chosen The trace detection in air 
for halogenated hydrocarbons was performed

I. Introduction. The monitoring of pollutants and toxic substances, both 
close and far from the emission, source [1 , 2 , '3], represents a special interest. 
The urradiation of a sample with a laser tuned on one of. their fundamental 
vibrational frequencies leads to their excitation Deexcitation, predominantly 
Ьзг collisions, of the molecules of the sample, produces a heat rising, respectively 
an increase of the gas pressure m the cell [4, 5] By modulating with a certain 
frequency the intensity of the laser beam, the pressure variations, AP, detec­
ted with a condenser microphone (or with èlectret) are converted into an elec­
tric signal, the optoacoustic (OA), signal [6 , 7] The OA signal depends on 
the following parameters the incident ladiation power, the modulation fre­
quency ,’ the concentration of the absorbing gas, m the cell (up to the satura­
tion level) , the nature of the absorbing gas through the absorption cross sec- 

' tio n , the nature and pressure of the buffer gas
The increase of the signal/noise ratio [8 ] is done by a convenient choice 

of the previously presented parameters > ’
Ţ1 E x p e r im e n ta l . The experimental О A setup, Fig 1, used for obtaining the absorption 

spectra and the detection of the halogenated alkanes traces [9] is composed of CCŢCW frequency 
stabilized laser, mechanical chopper, with frequency range 4—4 000 Hz) LM2 powermeter, Car- 
Zeiss Jena, frequencymeter, absorption cell endowed with condenser microphone, lock-in nano 
voltmeter of 232B Unipan type, HeNe. laser for the alignment of the OA’device componentsl 

The following halogenated hydrocarbons were analyzed halogenated alkanes — iodoform, 
dichlormethane and cloroform, halogenated alknenes — vmylchlonde and tnchlorethylene 

The air at atmospheric pressure was used as a buffer gas
The incident radiation power was mamtai- | GRATIN0 , 

ned at 0 2 'W and the modulation frequency was

ADRIANA BARBU* and I. BRATU*

Received April 77, 7989

H I. Results and discussions. For
the identification of a certain molecular 
compound from a multicomponent mix­
ture is necessary to know its absorption

12 5 Hz.

F i g  1. Experimental О A setup

* .Institute of Isotopic and Molecular Technology, P 0. Box 700, R —3400 Cluj-Napoca, Romania.
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spectrum in a large spectral ■ range The previously enumerated compounds 
were investigated in the emission range of the C02 laser, 9—11 |im, where 
these compounds have 'Specific cross sections [10]

Kg 2 'presents the absorption of halogenatcd alkanes, whereas m Fig 3 
the absorption spectra of halogenated alkenes are showed.

From the absorption' spectra presented in Fig 2 and 3 the wavelengths 
for each molecular compound at which the absorption cross sections are maxi­
mum in the investigated spectral range are chosen, Table 1.

■ Table 1
The mivoleiijjtlis a t ivliieh the analyzed molecular 
compounds p resen t'speciile absorption cross sections

Substance Xj([im) X([xm)

iodoform 10 72 10 65
dich lor rneth an e 10 74 10 76

10 22
cloroform 10 78 10 78
vmylchloride 10 49 10 61
tnchlorethylene 10 59 10 59

, 10 69



SPECTROSCOPY AND DEECTION EY OA LASER METHOD 79

u 4
mV)

10- -

10c1

О  2 ̂  13 

A C2H3Cl

Pu- 2.3 forr

a
i
^Ш ГГг|^/“ |тТТТГГГТТ7^// “ фтТ17^^^
9.24 9 31 9Л9 9.67 10 16 10.34* I0* 6 10.78 /Vpi)

"ГГ

F i g  3 The OA absorption spectra for halogenated alkenes in the 9—11 pm spectral range.
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The trace detection in air for 
halogenated hydrocarbons was perfor­
med for each substance partly at 
the wavelengths, previously specified 

In the spectral range 9 — 11 цш, 
at the wavelengths X„ the investi­
gated molecular compounds present 
maximum values of the absorption 
cross sections For better trace gas 
defection of these compounds m air, 
the use of one of the X, values is 
recommended The wavelength for the 
sample irradiation, X, used for their 
trace detection in these measurements, 
are specified in the Table 1, for each 
compound

Thus, ppm of halogenated alka­
nes in air were detected, exept dic- 
hlor methane

The trace detection for vinylc- 
hloride and trichlorethylene in air is 
presented m Fig 5.

In Fig. 4 and 5 the ratio of the 
absorbing gas pressure, Pu, and the 
total pressure in the cell, PM, that 
is the concentration of the absorbing 

gas, is represented on the abscissa whereas on the ordinate scale the OA 
signal is represented.

Due to the fact that the halogenated alkenes present absorption cross 
sections greater than that for alkanes, m the investigated spectral range, tenths

of ppm of alkenes in air were detected

F i g  4 The detection of the halogenated alkanes 
in air

Conclusions. The necessity of О A 
spectra registration for various molecu­
lar compounds results from the need of 
wavelengths determination at which, the 
absorption cross sections present maximum 
values in the investigated spectral range. 
These wavelengths are recommended to be 
used in the trace detection for each sub­
stance.

The lowering of the limit for trace 
detection can be done either by inci casing 
the incident radiation power (up to the 
appearance of the saturation effects), or 
by extending the spectral range. The aim 
is to find eventually other wavelengths at

P ig  5 The trace detection for halogenated 
alkenes in air
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which the absorption cross sections are larger, or to increase the signal/noise 
ratio [lli] (cell geometry, microphone sensitivity, cell walls manufacture, 
substance' purity etc.).
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ABSTRACT. — The .-experimental-methods, the ^nstailations designed,, b}T ,tlie 
authors to visualize, the, hysteresis loop, are presented and 'then, by means 
of experimental data, the variation curves of static susceptibility, differential, 
dielectrical .constant and. differential susceptibility depending on the electric

' field,; aije- traced , , . ,
> и* , - ' 1 ; ■

‘ . . - I ' n I !’
Intcoduetion. Eërroélectrical stibstances, based, oil ,BaTi03 Iceep being studied, 

and investigated in technical literature to modify composition, structure,,, even 
distribution of different; additives'in the ferroelectrical mass andr'size .reduction1 
below 1  jim of grains making up ferroelectrical ceiamic materials [1—9].

Experimental methods. Technical literature presents a number of methods and installations 
to measure ferroelectrical properties [6, 8].

For hysteresis loop study of ferroelectrical ceranuc materials an installation was designed 
and manufactured, and its block diagram is shown in Fig 1 This installation consists of tran­
sformer 1, amplifier 2, supply apparatus 3 of ±30  V d c for amplifier current supply, transformer 
TIT and block 4 to visualize the hysteresis loop on oscilloscope 5

In Fig. 2, the supply apparatus and the amplified consist of transformer 1 providing a 
voltage of 4—5 V a.c.
The signal obtained in its secondary winding is introduced into amplifier 2 made up of an inte­
grated circuit BA 741. This amplifier end stage consists of 2 complementary transistors of BD 
273 and BD 238 type, obtaining a mean power amplifier It feeds the voltage step-up transformer 
TIT (220 V/9,000 V — 50 Hz). The block 3 represents the supply apparatus 2 consisting of tran­
sformer TR which produces, in the secondary winding, alternating voltages resulting, by recti­
fication and stabilization, in direct voltages of ±30 V feeding the amplifier.

Fig. 3. shows the simplified diagram in 
which the supply apparatus and the supply appa­
ratus in Fig. 2 are replaced by the audio gene­
rator. The installation, presented and manufac­
tured, was used, after calibration, for vizuahzing 
the hysteresis loop for В a T i03 and rutile ceramic 
samples The polarization calculating relation is

», C0U0 Q ACqUq ,,,p  = --------  =  —  i= ---------  (l)
S S Ttd*

The relation (1) shows that polarization 
measurement consists in determining the condenser 
area S and voltage U0 Voltage Ux is applied 

to the horizontal inlet X  of the oscilloscope, being

2?0V
SuHi

F i g .  1.

* University of Cluy-Napoca, Department of Physics, Romanţa.
** IPG  — Plo\c<ti, Department of FEA, 2000 Ploiejtr, Romania
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proportional to  'fie ld  E,  'w h ich ' polarizes th e  electrical sam ple a n d  v o l t a g e  Г /0 o n  t h e  S t a n d a r d  
condenser C 0 1 is applied 011 plates ‘Y  which provide vertical deviation.

For the diagram 111 'F ig  3, it  was set for C0 =  0;47 • 10—°/2 'in 'F . V oltage"U 0 o n ' th e 's ta n -  
dard  ’ condenser ns 1 Uy =  U0 —-'Q0IC0, wheie Q0tis tile load on th e  condenser p late.1 Voltage • Uy  =  
=  c„Q  =  C0S P  => P  =  UyIC0S , Uy =  »div 2 F /div  =  2»diyV.. The horizontal and vertical axes 
of th e  oscilloscope .were calibrated m ,polarization units [C/m2] and electric field un its  [F /m ], 
1 e Uy ~  Pt and Ux ~  E.

To calibiate the installation m Fig 3 for setting out the cycle P  =  P (E ), t h e T a c t ö r S  6Î 
proportionality a and ß between the values P  and E  are determined, 1 e.

P [C /m a] =  aP [d iv ], where a =
8 1

---------------- 1 6S088 • 10° TC/ms]
102 C0S

E [ V l m] =  ß£[d iv], where ß =
141 40 
h  1 0 2

24 04092 ■ 1(11
Г F/m I
l div. J

)

where 7ir =  2 ■ 3 • 10-3 represented sample thick 
ness, m ;  141 — divisor ,(140 + 1I) charactenstic to  
the diagram in th e  measuring installation

I ' * ' 1 • 1
Experimental Results ^Interpretation.

Using the wiring diagram of the installa­
tion m Fig. 3; 'the hysteresis loop in 
Fig 4 were visualized on the oscilloscope. 
Each loop ‘in the'figure'was photographed 
on the electronic ■ oscilloscope ■ scieen and 
corresponds to a certain value1 of field E,

[GENERATOR'Alinm
1

' Щ  l l ' á i ^ ű á é í  0  V i i"

у комп

( н
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Using data resulted from Fig 4, the calibiation cuive in Fig 5 is repre­
sented. This cuive (P =  P(E)) selves to dcteimme the static susceptibility ys, 
the differential dielectnc constant and the differential susceptibiht5r

In Fig. 6 , using the data determined by ratio P/E — ys, the vaiiation 
y.s'=y.{E) is repi csented The differential dielectric constant ca = 7.s + 1  
allows to analyse the feiioclectneal matei ml behaviour m dynamic condition.

sf-

Fig. 7

In Fig 7, the variation cuive 1(P =
1 =  P(E)) and Ihe vaiiation curve 2(yj — 

= y„d{E)) obtained irom giaphical dcii- 
vation of cuive 1 aie îepresented.

Conclusions. I t  lesulis from the te­
chnical literature that the ferroelectrical 
mateiials keep bung studied to impiove 
ierroelectiical pioputies by elaboiatmg 
new tcclmologycs ol preparing ieiioc- 
lcctncal layer materials, mcicasing máié­
nál density, deci easing gram sizes below 
1  [rm and l educing encigy consumption 
when preparing diiferent materials based 
on ceramic materials

The installation for visualizing the 
hysteresis looii of ferroelectrical cera­
mic matei ials was designed and manu­
factured. Using experimental data, the 
curves weretiaced and the static suscep­
tibility, the difeiential dielectric con­
stant and the differential susceptibility 

' were studied.
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ON THE THERMAE CONDUCTIVITY OF SODIUM VAPOUR

CEZAR DOCA», and MELITA PÄNESCU' , , ,
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ABSTRACT. — This paper offers a calculation formula for thermal conducti­
vity of sodium vapour m the range of 600—1250°C at 001,  0 05,  0 1 ,  05  
and 1 atm, obtained bjr fitting the experimental data of Stefanov et al This 
formula was obtained by applying Gauss criterion to a family of functions 
with numerical coefficients, given by the least squares approximation method 
at each of the consideied pressures

1 Intro duettem. Processing and interpretation of the information obtained 
by experimen is with alkaline metals m liquid or vapour state i equires — among 
oihers — knowledge referrmg to the transport properties of the working medium 
This paper gives the values of the thermal conductivity for sodium vapour 
in the range of 6G0 —1250 °C, at pressures of 0 01 , 0 05, 0.1 , 0 5 aud 1 atm, 
obtained b}r fitting the experimental data of Stefanov et al [1]

2. The fitting function. The experimental data of Stefanov et al. reffermg 
to the thermal conductivity of sodium vapour are presented in Table 1 , they

Tabel 1

Thermal conductivity of sodium vapour k ■ 10* (kcal/mh°C), 
experimental data of Stefanov et al [1]

p( atm )
4  41 0 01 0.05 0 1 0 5 1 0

627 308
727 293 375 427
827 310 339 370 524
927 336 348 363 455 526

1027 363 369 377 429 478
1127 391 395 399 429 469
1227 421 423 426 444 465

were obtained with an average error of 20% [1] Sodium vapour can be con­
sidered according to the transport processes theory m alkaline metal vapour 
as an ideal reactive mixture with an atomic component and a molecular one 
The ideal behaviour deviation — m the real vapour case — does not modifj' 
the state parameters in the above mentioned range, more than 1% [2]. Meeting 
some experimental necessities of their own, the authors intended to evaluate 
the thermal conductivity of Na vapour at some other values of temperatuie

Institute for Nuclear Power Reactors Piteşti, PO BOX 78, 25930 Piteşti, Romanţa
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too excepting the ones presented in Table 1, using in this respect, fitting 
methods. Applying Gauss. cnteiion [3] to a family of several functions, fmaty 
we chose the formula :

k(t) =  асы +  ct -f- d (1 )

where thermal conductivity, k, of sodium vapour is expressed in kcal/m • h°C 
and the temperature t m degrees Celsius, mentioning that the values of the 
numerical coefficients a, b, c, d are established by the least squares approxi­
mation for each isobar separately In other words, five systems of nonliniar 
equation of the type

« £  *2Ы‘ +  с £  +  d £  Л  =  £  k / ‘>
t  г \  \

a £  t,e2bt> -)- c £  t 2eu +  d £  tte =  £  ktttebil
% % % г

« £  t / ti + cYiiï  + d £ í ,  =  £  Kh\ % 4 %
a E  ßW* +  c £  +  d N =  £  hb

(2)

have been solved, where N is the number of the pairs (tu kt), corresponding 
to each isobar.

The numerical results obtained by this method are presented in Table 2, 
while m Fig 1 the corresponding diagrams are traced, this notiemg a good 
concordance with the data reported by Stefanov et al.

3. Discussion. Taking into consideration that function (1) approximates — 
— as one can see — the data of Stefanov et 'al very well, we consider that 
it can be successfully used in processing and interpreting the results obtained

%
Ъ 600 • '

P i g  1 Thermal conductivity of sodium vapour, k ■ 104(kcal/mh°C) as a function 
of temperature, (°C); • data enclosed in Table 1, — data enclosed in Table 2.
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Tabel 2
Thermal conductivity ol sodium vapour A 10 (kcal nih C), numerical 

results obtained vvltli form. (1 )

£(atm )

0 01 0 05 0 1 0 5 1

01 02 03 04 05 06

627 308
630 307
640 302
650 299
660 297
670 295
680 293
690 293
700 292
710 292
720 293
727 293 375 427
730 293 373 424
740 294 366 415
750 295 360 407
760 297 355 400
770 298 350 393
780 300 347 388
790 302 344 383
800 304 342 379
810 306 341 375
820 308 340 372
827 310 339 370 524
830 311 ь 339 , 369 521
840 313 339 367 512
850 315 339 365 503
860 318 339 364 495
870 320 340 363 487
880 323 341 362 481
890 326 342 362 474
900 328 343 362 468
910 331 345 362 463
920 334 346 363 458
927 335 347 363 455 526
930 336 348 363 454 523
940 339 350 364 450 514
950 342 352 365 446 506
960 345 354 366 443 500
970 347 356 367 440 494
980 350 358 369 437 490
990 353 360 370 435 487

1000 356 363 372 433 484
1010 358 365 374 431 481
1020 361 368 375 430 479
1027 363 369 377 , 429 478
1030 364 ’ 370 377 429 478
1040 367 373 379 428 476
1050 370 375 381 427 475
1060 373 378 384 427 474
1070 376 380 386 427 473
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cntd.

01 02 03 04 05 06

1080 378 383 388 427 472
1090 381 385 390 427 471
1100 384 388 393 427 471
1110 387 391 395 428 470
1120 390 393 398 428 469
1127 392 395 399 429 469
ИЗО 393 396 400 429 469
1140 395 399 403 430 468
1150 398 402 405 431 468
1160 401 404 408 433 468
1170 404 407 410 434 467
1180 407 410 413 435 467
1190 410 413 416 437 466
1200 413 415 418 439 466
1210 416 418 421 410 466
1220 418 421 424 443 465
1227 ' 420 423 426 444 465
1230 421 424 427 445 465
1240 424 426 429 447 465
1250 427 429 432 449 464

within the vaporization and/or boiling sodium tests Using formula (1) one 
can calculate the thermal conductivity of sodium vapour at temperatures higher 
than the max limit considered by the experiments of Stefanov et al. However, 
it must be underlined that, for 1 atm isobar the experimental values we dis­
posed of were relatively insufficient, which implies caution m using the cal­
culated values of k  foi the above mentioned case.
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ON A NONLINEAR DIFFERENTIAL EQUATION FOR THE FAST
DYNAMIC PHENOMENA
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ABSTRACT. — Acceleiations existent m the thud order nonlinear differential 
equation of some fast dynamic phenomena aie determined A new mathematical 
method is used to calculate them, which I called "the method,of successive 
gtoups” ,

1 Introduction. In tins papei the accelerations existent in the thiid order 
nonlinear differential equation of some fast dynamic phenomena are deter­
mined

To calculate them a new mathematical methods used, which I called 
“the method of successive groups".

In view that the order of acceleiation be given by the order of the ,dcii- 
vative, space x was called zero older acceleration, velocity x was called1 iiist 
ordei acceleration, and deiivative x was called second older acceleiation.

2 Description of the method. Let us har e

a3{t)x +  a2(t)x +  «rOOM3 +  a0{l)x = A{t), (1)

the differential equation of a fast dynamic phenomenon, with the given initial 
(*) (<)

conditions x(0) = x0, (t =  0 , 1 , 2 ).
The coefficients at(t), (г =  0, 1, 2, 3) and A(f) are continuous functions 

on an interval [0 , a], a >  0 , at(t) ф 0  when l e  [0 , я]
By introducing “the grouping functions” F{t), G{t) and H{t), equation (1) 

is converted into the system of diffei ential equations

X  =  G{t)[az{t)} 1 (2)

* =  [F(0 - G í O l t e W ] - 1 (3)

( x f  =  H(t)[aim ^ (4)

*  =  [A(t) -  F(t) - (5)

Polytechmcal InsUUfie of Cluy-Napoca, 3400 Cluj-Napoca, Romania,
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, By integrating (2) and (3) it .follows
t (, ,

x[t) =  x0+  ^ G(s) [<*3(s) Q- 1  «is, , (6 )
0

t
x[t) =  J [.F(s) -  G(s) ] Щз)  ] - 1  ds. ' (7)

0

From (3) and (6 ) one obtains
t

[F(t) -  G(t) ] [a2(t) '] - 1  =  * 0 +  ]  G(s) [e3(s) ] - 1  ds. (8 )
1 , ' 0  

From (4) and (7) it follows
" ' l ' '

{H(t) K (i) ] J l } 3 =  J  1 7 »  ~G(s)]  K (s)]-1 ds. (9)
0

By integi ating (4) we have
i _i

X{t) = x 0 +  { {H(s) K (s) ] »  3 ds (10)
0

From (5) and (10) one obtains -* >
t

\A ( t ) -F ( t )  -  H(t)][aom ~ i  =  * 0 +  J {H(s)K (s)]-iy 3 ds. (11)
• о

Expressions (2), (3), (4), (5), (8 ), (9) and (11) make up a system (S) of 
7 equations with 7 unknown quantities

% ,  (г =  0, 1,. 2, 3), F(t), G(t), H(t)

3. Determination of system (S) solution. The approximate solution of 
system (S) is determined by a method of numerical integration On the inter­
val [0 , я], a >  0 , 0  we apply a method analogous to tha t1 of polygonal lines.
We divide the interval [0, я] through the points tk =  k — , k =  1, m, andm
we consider the quadrature formula

k — ' 1 1m

' ' $ 7 0 0 *  ~ - i i / f v - ) ,  (Ä =  1,2, . . . , » ) .  ' (12)
о m  v=l V ,
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By writing that system (5) is verified foi ik =  k — , and by using foimulam
(1 2 ) for the approximate calculation of the integials, we obtain a system ol 
1m algebraic equations with 1m unknown quantities

Kr) - G K)]NbC=a  

И ^ ) Г - я (Ь г)[“‘ К г ) ]

(13)

=  0,

‘ H  )■- [л ( * ; ) ■ - я  (*=■ ) - н  (* Щ “» Ю Г = °- 

( iF H )  - G (* ш ь  [к ; ) Г  -  ;  i G (’ й -  (’ ^ Л "

{a(*f)h(*í)rT-
- í l , ^ ( y f ) - GK ) ] h ( ' ' , r ) r —

И* =№■•(* ;!Г-
f H - ‘ (v =-)Г‘ г  -  *• -

(к — 1, 2, . , т)
The unknown quantities of system (13) aie

*’(*£ )• F (* ,r) '
(г =  0, 1, 2, 3), (k =  1, 2,

x0 —1

The constant x0 lesults fiom (1), foi t =  0.
The value of constants F(0), G(0), H(0) aie given by the relations 

F(0) =  x0 a3{0 ) +  x0 a,(0),

G(0) = 'x0 a3(0), H(0 ) =  (.г-0)3 *,(0)

lu  numerical values, the solution of system(13) is obtamed by the known 
methods [1 ].
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(0
The variation diagrams of accelerations x(t), (i =  0, 1, 2 , 3) and of the 

"giouping functions” F(l), G(t) and H (/), on the interval [0 , a], a >  0 , are 
constructed through points

The given method is valid for the linear or nonlinear differential equations 
of any order.
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ESR, IR  AND MAGNETIC ■ SUSCEPTIBILITY STUDIES ON 
xV ,05(l -  x) [2B ,0 3 • Di20] GLASSES

O. COZAR», I. ARDELEAN*, I. BRATU**, GH. ILONCA* ímű S. SIMON*

ABRSTHACT — ESR investigations of .îV20 5(1 — x) [2B20 3 Ti20 ] glasses with 
0 5 <  X <  50 mol % have shown that the geometry of VOJ+ complex is dis­
torted from Oh toward with the increase of V2Os content. This fact and 
IR data suggest that the V20 5 oxide is a former network at lugh concentration 
Also, the magnetic susceptibility investigation show that only a small fraction 
of vanadium ions ale m the V1+ valence state and the Nv^ /N vg^ ratio decrea­
ses when the V20 6 content increases

1. Introduction. Vanadyl ion (VO2+) incorporated in glasses as a spectios- 
copic probe has been nreasuied by sevei al îesearches [ 1  — 1 0 ] m order to cha­
racterise glass structuie. This involves many particulai aspects as the geometry 
of stiuctural units ol the glass network, the character oi chemical bonds 111 
glasses as well as the coordination polyhedra (local symmetry) of tiansition 
metallic ions and its change with the composition of glasses

Thus, Bogomolova et al. [5] and Hosono et al [7] have found two sets 
oi Ivyperfme structure for vanadyl ions in some phosphate glasses containing 
Mg, Zn, Be, Cd as modifier cations

Toyuki and Akagi [3] pointed out that the ligand field absorption eneigy 
ДЕ =  B2— E£ of V 02+ sensitively reflected the electron-donating ability of ligand 
oxyrgens coordinating at equatorial positions (Oe) oi V02+ — complex Howevei, 
Hosono et al [6 ] have shown that the response AE of V02+ is associated 
not du ectly with Oe but with Oa (vanadyl oxygen) which is isolated from the 
glass network

Recently, we [11, 12] harm shown by ESR method that m the x(CuO •
• nV ,05) (1 — x) [2B20 3 • K20] glass systems ruth  0 ^ x ^ 40 mol % and 
n =  2, 3, the C4v distortion oi V02+ complex tends to relax towaid Oh sym­
metry because of the sixth oxygen atom coordinated m the transposition oi 
the vanadyl oxygen

In the present woik, the influence of the V20 5 content on the local symme­
try and interaction between vanadium ions in lithium—borate glasses has been 
investigated byr ESR, IR  and magnetic susceptibility methods.

2 Experimental. In order to obtain further informations on the local symmetry and interac­
tion between metallic ions in oxide glasses, we have studied the xV20 6(l — x) [2B20 3 • TiaO] 
glasses with 0 5 <  x <  50 mol %, maintaining the B20 3/Li20  latio constant Thus, initially, the 
glass matrix 2B20 3 • 1л20  was piepaied by mixnig H3B 03 and Ti2C03, and melting then this admix­
ture in a sintered corundum ciucible After cooling, the host glass was crushed and the resulting 
powdei mixed with V20 5 before final melting at Te =  1150°C for 1 h. The melting glasses was

* Physics Depaitment, Umv of Ctuj-Rapoca, 3400 Cluj-Napocaţ Romania
** Instituie of Isotopic and Molcculai Technology, 3400 Cluj-Napoca Romania
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pouied onto a stamless-steel plate The structure of glasses has been studied by X-lay diffiaction 
analysis and did no reveal any crystalline phase up to x =  50 mol %

The ESR measurements weie performed at 9 4 GHz (X —hand) using a standard JEOE—JBS 
— 3B equipment, at the 295 К  IR absoiption spectra m the range 400 to 1700 cm-1 were íecorded 
m KBr pellet form on a Carl Zeiss Jena spectrophotometer (UR 20 model) The magnetic data were 
obtained using a Faraday type balance in the temperatuie range 80 to 300 K.

3 Results. 3 1. ESR spectra ESR spectra obtained at room temperature 
foi glasses with small content of V20 5 (x 5 mol %) show a well resolved 
hyperfine structure typical ior isolated vanadium ions m a ligand field of Civ 
symmetry, presented as V 02+ species (Fig 1) These are similar with the spec­
tra leported by previous workers [1—9] foi vanadium ions m other oxide gla­
sses and may be analysed by an axial spin Hainii toman

^  =  ßoL?li HsSz +  +  HySy)] +  A ii SjJ2 A±(SXIX -f- Syly) (1)

Heie ß0 is the Bohr magneton while £ц, and Ац, *4j_ are the compo­
nent of the g — tensor and hyperfine structure tensor, respectively Hx, Hy>

F i g  1 ESR spectra of aV80 6(1 — x) [2B„03 LuO] glasses at 295 K.
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H -, aie components of the magnetic field Sx, Sy, Sz and I x, I y, I z aie the 
component of the spin operatois of the electron and the nucleus, respectively 

The magnetic field positions of the parallel and peipeudicular hyperfme 
peaks taking into account the second older perturbation terms, aie given by 
[7, 9]

Я „ (;») =  Ян (о) -  iuA и -  -  Hi!j (2)

Я j_(?h) =  Hj_(o) — niA± — I, + A\)
( 0)

63
4 (3)

Heie m is the nucleai spin magnetic quantum numbei taking the values 
±7/2, ±5/2, ±3/2, ± 1 /2 , Я „ (о) =  Ttv/g,, ß0 and H L(p) = hvjg^g О ther no­
tations have the usual meaning

The FSR parameteis obtained for the studied glasses are given m Table 1 
The covalency degrees of the in-plane V—О a bonds (ßi) and of it — bonding

Table 1

ESK Param eters, bonding coefficients and Fermi contact term  values for studied glasses

[mol %] *11 f l
A II

[10“1 cm“1]
A±

[10~4 cm-1] Pi (1 -  $ К

0.5 1 941 1 997 170 7 61 4 0 81 0 83 0 77
1 1 941 1 998 173 5 63 0 0 81 0 87 0,77
3 1 945 1 999 174 1 64 3 0 76 0 90 0 79
5 1.944 1.997 173 8 64 2 0 77 0 83 0 79

10 1.941 1 998 176 3 68 5 0 81 0 87 0 83
20 1 941 2 000 176 3 67.1 0 81 0 93 0 81
30 1.940 2 000 176 2 71 5 0 82 0 93 0 87
40 1.937 1 998 177 3 71 3 0 86 0 87 0.86

with the vanadyl oxygen (e£) were evaluated with the help of LCAO—MO scheme 
developed by Kivelson and Lee [13] We have taken the spin-orbit coupling 
constant X =  170 cm - 1  [13] and the energy transition Дц =  B2 — В* and 
Др =  B2 — e£ of 16800 cm-1, and 10500 cm-1, respectively [3] Also, having 
m view the results reported by Toyuki and Agaki [3] we have considered 
ß® =  0 93 for the studied glass system. The values obtained for ß 2, (1 —  e 2) 
and Fermi contact (K) parameters are given m Table 1, too.

The shape of FSE. spectra is modified with the increasing of vanadium 
ions content (Fig 1). This consists from the paitial disappearance of the va­
nadyl hyperfme structuie and the appearance of a broad line at g ~ 1 96 va­
lue chai actenstic for the dipole-dipole coupled ions Thus the spectra obtained 
for X >  2 0  mol % may be considered as the lesult of the superposition of two 
ESR signals, one with resolved hypeifine structure typical for isolated V02 + 
ions and one consisting fiom a bioad line without structure typical for asso-
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dated ions [9]. Their number increases with 
the V20 5 content The concrete shape of the 
ESR spectra depends of the relative weight 
of the concentration of the two types of 
V4+ ions

The modification of the ESR spectra in 
function of the V20 3 content is illustrated 
by the ratios of the heights of some hyper- 
fine peaks from the parallel band (Fig. 2) 
The I ej l 8 latio increases together with the 
V20 5 content because I e is situated close on 
the maximum of broad line due to the clus­
tered ions (Fig 1) and thus its height incre­
ases w ith the number of clustered ions Their 
contribution at the I 8 peak is not significant 
The I 3/ / 5 ratio practically remains constant, 
both peak being situated near to the extre­
mum positions of the broad line Thus the 
these hyperfme peaks is the same

F ig  2 The composition dependence of 
the ratios between some hyperfme peaks 
from the paraleli band and of the clus- 

tered/isolated ions (Ij l , ) .

contribution of clustered ions at

As a measurement of the ratio between clustered and isolated ions (I cj l ,) 
we have considered [9] •

(4)

where I 6x 'and ■ / 8l are the 
heights of the 6  and 8  pe­
aks from the parallel spec­
trum of the sample with 
X (mol % V20 5) content 
and a is the value of I e/I8 
ratio sample with x — 0 5 
mol % We have considered 
that in glasses with ж < 0 5 
mol % all V4 + ions are ma­
nifest as isolated species 
The variation of (Ic//,) ra­
tio versus V20 5 content is 
shown inJFig. 2 I t  can be 
observed that for x > 40 
mol % dominates the spe­
cies of clustered ions

3 2. I R  Spectra. Fig 3 
show's the IR  spectra of 
xV20 5 -( l-x ) [2B20 3 -EiPQl

'vHcnr1J
F i g  3. IR spectra of *У,СК(1 — x) [2B2Oa • 1Д20 ] glasses

j  — Physica 1/1989
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glasses These contain the absorption bands characteristic for 2B20 3 ■ 1л20  glass 
matiix and also for the piesence of V20 5 oxide

The band which appears at 720 cm - 1  in the IR  absorption spectra of 
vitreous B20 3 and which was attributed to the bond-bending vibration of the 
В —О—В groups [14] appears also in the IR  spectra of studied glasses at 
about 700 cm-1.

Another important band of vitreous B20 3 at 1265 cm - 1  characteristic for 
В—О stretching frequency is also maintained m the spectra of oui glasses as a broad 
feature around 1250 cm-1. We note that these В—О bonds involve B3+ atoms 
The band which appears at 1070 cm - 1  may be also attributed to stretching 
vibration of В—О bonds, but these bond involve B4+ atoms [14]

Another broad band is centered at around 1400 cm - 1  As already repoited, 
the characteristic В—О <  stretching is assigned to a broad band from 1428 
to 1333 cm - 1  m Na20 —B20 3 glasses [15] and to a broad band at 1450 cm - 1  
m crystalline B20 3 The fact that for our samples this band appears at lower wave 
number than m crystalline B20 3, confirms the amorphous nature of these samples 
[16]

The presence of 1л20  in the vitreous matrix leads to the appearance in 
the IR  spectra of a little intensity band at 410—430 cm-1. In our case this 
band occurs at 415 cm - 1  indicating the existence of 2B20 3 • 1д20  structural 
units in the studied glass system [17].

V20 5 oxide determines the appearance in the IR  spectra of two absorption 
bands at 950 cm - 1  and 1070 cm-1. The 1070 cm - 1  band is characteristic for 
vanadyl V =  О bond and the 950 cm - 1  band may be attributed to V—О bonds 
and also to the poly vanadate (clustered) ions formations [18].

The intensity of the 950 cm - 1  band increases with the increase of V20 5 
content, while the 1070 cm - 1  band decreases.

The composition dependence of the ratio between the two absorption bands
(A1070/A9s0) i s  presented m Fig 4 
This suggests that the number of 
V — О bonds or polyvanadate ions 
formations increases more rapidly 
than the number of V— О bonds with 
the mciease of the V20 5 content. 
Also the variation of the Ag50/A700 
ratio veisus x(V20 5 mol %) shows 
(Fig. 4) that the number of V =  О 
bonds is slowfy modified with the 
change oi the glass composition. '

3 3 Magnetic susceptibility data. 
The temperature dependence of the 
reciprocal magnetic susceptibility of 
the various glasses from this system is 
piesented m Fig. 5 For these glasses, 
in all concentration range of vanadi­
um ions, a Curie law is observed. 
This suggests th a t the predominant

P i g  4 The composition dependence of the IR 
. ahsorbtion bands.



HSR, IR AND MAGNETIC SUSCEPTIBILITY STUDIES Ö9

j F i g  5 The temperature dependence of the reciprocal magnetic susceptibility.

part of vanadium- ions are magnetically isolated and that no magnetic order 
is. present This behaviour agrees with the FSR study conslusions.

To 1 determine accurately the values of the Curie constants, CM and atomic 
magnetic moments, pat, a correction due to the diamagnetism of the glass matrix 
and 1 V20 5 was taken into account The composition dependence of the Curie 
constants, Cit is presented m Fig 6 . The values of the Curie constant, which 
is proportional to the paramagnetic ions concentrations, increase with vana­
dium ions concentration Having in view that the Curie constant is

3 к
(5)
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it results that this depends on the square of the effective magnetic moment. 
The experimental values of Curie constants and of the atomic magnetic moments 
obtained for these glasses are smaller than those which correspond to V20 5 
content, considering that all vanadium ions are in V4 + valence states. In this 
way, we suppose that m these glasses are present both V4+ and V5+ ions, the 
last being diamagnetic The presence of V4+ ions and their increase with V20 5 
content was evidenced by ESR measurements (Fig 1, 2). Other valence states 
of the vanadium ions in oxide borate glasses, up to now, have not been eviden­
ced [1—9].

In this case, having, in view that the atomic magnetic moment of free 
V4+ ions is ixv4+ =  1 73 J±B, which was usually observed in paramagnetic salts 
[19], we have estimated the molar fraction of the vanadium ions which are in 
V4+ valence state (Table 2, notated by y). I t  results that only a small fraction 
of vanadium ions are in V4+ valence state and this fraction decreases when

I
I
I

i
I .
I
I - - - - - -  -
!--------------- 1__________ 1__________ I__________ 1__________ L

Ю 20 30 40 50
X [ mol % ] — « * -

F l g . 6 The composition dependence of the Curie constant.
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the V20 5 content deci eases. From these data we have estimated the Nv4+/Nv5+ 
ratio (Nv4+ and NVs+ are the molar fraction, of- V4,t and V5+ ions, respectively). 
These ratio decreases when-the V20 5.content increases.

, 4 Discussionand -Conclusions. .The small values of-,the Fenni contact
term (K ^ 0.79) for glasses w ith ,x < 5 mol % suggest- a,hexacooidinated geo-

, - I i - !
1 - - Table 2.

Curie constants, am oun t,o f the vanadium ions in the V4+ 
' ‘ valence stnte (y) and NV4+/NV5+

[mol % YaOs]
CM

[emu/mol] - [mol-% VjO*] Nv4+ /Nvs+

3 0 0197' 1.75 1.40
5 - 0.Ö2279 2.00 0.67 1

10 0.02705 , ' ' 2.40 /  0 32
, , 20 0.0296 2.65 ' - 0 15

30 0.03221 2.90 0.11
40 ’ 0.03556 3 20 1 0.09
50 ' ’ 0.0413,'

1 1 ‘ f
3.70 0.08

metry of the V02+ complex ’near = octahedral' (Oh) symmetiy because ,of the 
reduction[.of the V—О inteiaction m- ,the vanadyl group caused by a stiong 
axial perturbation arising from the sixth oxygen atom. coordinated in the trans­
position to the'vanadyl oxygen This1 geometry of the V02+ complex is typical 
for. high alkali (20—30 mol % R20  =  1д20, ,Na20, K20) borate glasses [3, 6 ].

The values of ß2, со efficient shown an appreaciable.covalency-degree/of the 
in plane V—О c-bonds This fact is also consistent with a reduced V—О in­
teraction and an increased V—О bond lenght in the vanadyl group [20], 
both being related to an increase of the electron .donability of the "four oxygen 
atoms coordinated in xOy plane. ‘ , ,

The К  values increase (>  0 81) with-the increase of V20 5 content (x >  20 
mol %). This suggests [3] a strong, V =  О interaction which makes the bond 
leght in the vanadyl group (V4+—Oa) to be shorter than others V—О bonds 
from complex. Thus the geometiy of V02+ complex is distorted from Oh toward 
C4v, which is characteristic for low alkali (<  5 mol % R20) borate glasses [6 ]. 
The increase of the ligand field along the O* axis is consistent with a n ’weak­
ness of the in plane V—Oe bonds. The mciease of ß2 values for glasses with 
x ^  20 mol % (Table 1) shown a decreasing covalency degree of the in plane 
V —О a—bonds in agreement with a C4v local symmetry of isolated vanadium 
ions

On the other hand the stiuctural distortion of the V02+ complex from 
Oh toward C4v symmetry which is 1 correlated with the change of borate glass 
composition from high alkali to low alkali suggests that in our glass system 
the V20 5 oxide is a former of the network at high concentration (x >  20 mol 
%) together with B20 3 oxide.
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The same conclusion- results from -the variation mode of the 1070 cm" 1  
and 950 cm - 1  band intensities with increase of ‘V20 5 content

The magnetic susceptibility investigation show ■ that only a ■ small - fraction 
of vanadium'ions are th e ’V4 + valence state and’lthe NV4+/NV5+ ratio1'decreases 
when the V^0 5 contentmncreases. ' • A 1

The experimental results obtained from EPR, IR  and magnetic suscepti­
bility studies suggest tha t the V2Os is a former of the netwoik at high conce- 
tration (x >  20 mol %) together with B20 3 Also, the V4+ ions seem to be 
randomly distributed m the glass matrix and experience dipole-dipole interactions
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R E C E N Z II

The Spectroscopy of Molecular tons. (A
Discussion organized and edited by A Carrington, 
F R.S , and B. A Tlirus, P R S j m  Philosophical 
Transaction of the Royal Society of London A. 
Mathematical and Physical Science, Vol 324, 
pp 73—294, No. 1578, 26 January, 1988, Publi­
shed by Royal Society, 6 Carlton House Terrace, 
Eondon SW1Y 5AG

Molecular ions are now recognized as 
major chemical reagents m extraterrestrial and 
terrestrial environments where ionization occurs 
Spectroscopic analj'ses offer the most compre­
hensive means to understand their structure and 
to pursue their behaviour

The herereviewed volume consits of IS 
papers, all m the field of molecular ions spectro­
scopy The collection opens with an account 
on some major topics partainmg to the spectro­
scopy of molecular ions, compiled by Wtt. Wing 
from the Department of Physics, University of 
Arizona The papers following provide discussion 
on the use of various techniques to obtain infor­
mation at the level of different moleculai lous.

Thus, infrared spectroscopy of carbo-ious 
(T. Oka), infrared laser spectroscopy of cations 
(P В Davies), infrared diode laser and micro- 
waves spectroscopy of molecular ions (E. Hirota), 
photoelectron spectroscopy of reactive inter­

mediate ions (V. Butcher et al ), fluorescent 
excitation spectroscopy of ionic cluster contai­
ning the CeÊ " cromophore (C Y Hung et al ) 
are but a few of the papers gathered m the 
volume

Many of the papes are accompanied by 
interesting discussion meant to better understand 
the issues treated.

The Specttoscopy of Molecular Ions is an 
easy to read book. the style of the papers is 
clear, concise and straight-forward, and also 
just the right amount of prerequisite is provided 
for a synthetic presentation of the aspects discus­
sed The concepts and techniques specific to 
the spectroscopy of molecular ions are har­
moniously presented so as researchers may avail 
tliamselves of the experience of previous con­
tributors to this field of science The collection 
also stands out m that up-to-date techniques 
employed m molecular ions spectroscopy investi­
gations are approached and described. It is 
intended for student environment, as well as 
for the research milieu — students and the 
teaching-staff and researches may find that the 
nature of the problems to be solved necessitates 
rapid acquisition of some knowledge of that 
subject.
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In cel de al XXXTV-lea an (1989). Studia Universitatis B abeş-Bolyai apare în specialităţile :

matematică
fizică
chimie
geologie-geografie
biologie

r; - • ■
»

» ; 4 . i .

filosofie » • ’ • ' f.\
ştiinţe economice
ştiinţe juridice : \ / '» • 

t  :
istorie ţ , v- '
filologie

. -i. .4 * '

In the XXXIV-th year 
issued as follows:

t ■ t . *
of its publication (1989), Studia Universitatis Babeş—Bolyai is

j i . 1 ; ,

mathematics
physics • . ** *, §■ ’ »
chemistry s , ■
geology-geography
biology
philosophy
economic sciences
juridical sciences
history
philology '

t- • •. • » ■ i . t, ■ . :

Dans sa XXXIY-e année (1989), Studia Universitatis Babeş— Bolyai paraît dans les spécia­
lités :

mathématiques
physique
chimie
géologie-géographie 
biologie , 
philosophie 
sciences économiques 
sciences juridiques 
histoire 
philologie
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