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STUDIA UNIV BABES—BOLYAI, PHYSICA, XXXIV, 2, 1989

DIELECTRIC PROPERTIES OF SOME RUTILE CERAMIC MATERIALS

\

AL. NICULA® and LIANA SANDRU** >

Recesved  Juns 6, 1089

ABSTRACT. — By modifying the percentage of ZrO, and SaQ, in rutile
ceramic material composition, variation curves ¢ == &(f) and tg 3 = tg 3(f)
are obtainéd, and they have a more complicated behaviour because of the
relaxation phenomena. The theoretical deductions, greatly doublet by experi-
mental deteriminations proved the existence of some unique optlmum values
of the correlation for each sample type.

1. General Considerations, Technical literature presents a very wide range
of problems destined for the study of a great veriety of ceramic materials begin-
ning with those having a very high strength and finishing with those being the
most sensitive to receiving and transmitting electrical signals [1, 4]. ’

High frequency current operation of electronic devices increased the rese-
archers’ interest in obtaining new substances having dielectric constants cor-
tesponding to the condenser capacitance increase and to other practical property
improvement {1, 2, 5, 6, 8].

2. Experimental Methods. Ceramic materials with dielectric properties were obtawned from
synthesis raw materials: oxides (309 TiO, rutile, 40.1%, TiO, anatase, 319, ZrO, natural had-
deleyite or 319 ZrQ, synthetic, 13% SnO,, 3% ZnO), alkaline-earth carbonates (BaCO,) and
89 zettlicz kaolin (12 ALOQ, - 2 SiO, - 2 H,0). After sample preparation and calcination and sin-
tering treatment, new substances resulted : BaZrQ,, p— SiO,, BaTiO,, ZnTiO,, 8—Al0, and ZrTiO,.

By obtaining ceramic samples, 1t was intended to esetablish the influence of SnQ, and ZrQ,
on dielectric constant and losses and some technological factors of rutile ceramic material prepara-
tion.

The influence of ZrO, and SnO, on dielcctric constant and losses was studied in the fol-
lowimg sample versions:

ay, by and Cy respectively a,y, b and Cy
ey, by and C4 respectively a,,, b, and C,y
4y, b and C, respectively a,s, by, and Ca

The samples ey and by, have a similar composition (the difference is of 2.19% in comparison
with TiO, rutile and ZrQ,). There are differences between these two samples and the sample
Cy of about 113% i comparnson with ZrQ, and 13% in comparison with SnO,

The différence between the samples a, b and C and the samples a;,, b, and C,, both ver-
sion having n, m and A subscripts, consists of using ZrO,; nh for the first three versions and
ZsO, synthetic for the other three versions (n represents uncalcined samples, M — samples ground
i porcelain mortar and A — samples ground in agate mortar).

During the sample preparing process, some versions were not calcined and others were cal-
cimed to 1050°C and then thermally treated for sintering to 1.280°C. Samples were worked 1z
accordance with the techniques presented in technical literature {8]. For the measurements desti-
ned for the calculations of dlelectric constant £ and delectric losses tg 3, Q-meters were used and
therr frequency f was modified between 1—30 MHz and 30—135 MHz.

° Unwmily of Cluj Napoca, Depariment of Physws, 3400 Clug-Napbca, Romsms -
— Piorayts, Departmend of PEA, 2000 Plowegts, Romama
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The calculation relations for the experimental results processing, afier 'the measurements of
dielectrie constant, loss resistance R, quality factor Q and dielectric losses tg 8, were those presen-
ted in technical literature [2, 8].. ) .

3. Experimental Results Intepretatiren, Using the experimental data obtai-
med after the measurements ot the samples mentioned above, Fig. 1 presents
the variation curves of constant ¢ = (/) lor samples ay, by and cy

£
36|
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3 -
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26
24+
2+
201t
!

2 1 1 | ! 1 1 L 1 1 1 L 1
10 20 30 40 S0 60' 70 8O 90 100 110 120 130 f[MHz)
Fig. 1. Varnation curves e =="g(f).

, In the first. group of samples, with M subscripts, both veisions have abou‘L
the same variations of constant ¢ = ¢(f). Analysing the shape of curves m Fig. 1,
it vvas estabhshed that they represented.the cubic polynomual, ie - }

e=4 of? + A1 f2 +AJ+A

Based on “the least squares prmc1ple ‘the system of normal equations is
written as follows" ) . -

ndo o+ 4, LA TS A B A= Zlf,

A }Zf.+A Zf2+A Ef*‘ A, Ef"‘““ Ef.

Lol oo 1==1
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Ay S P44, Zf3+A Zf‘ A, Ef"’” Zfz“ (L.1)

3= 4r=]

1 n .
A ST F A S A N A T = N
1=1 $== 1=

By solvmg the: system of m imdependent linear equations, the optimum
values foxs:the coefficients 4,, 7  [1, m] are determined. As the function fprm
was arbitrarlly constdered, the way in which the obtained data reflect the real
process is checked.

By solving’the system (1 1), the following regression relations were obtained
’tcrrespondmg to samples Wy, bar, Car and ayy, bary, Cia, respectively, ie

T gy e 4,500 3 10705 1 129 X 10-3f2 - 901 x 102/ + 10 71
&, = — 1.696 X 104/ +'8.53 X 1074f2 — 9.90 X 1079f + 11.07

s mf 2.‘1,.5f1 X 107¢/% 4100 x 107°/2 + 146 X 1072/ 4 624
Cfay, = 3200 X 1075/ — 476 X 10792 4 313 x 1071/ 4+ 7.41
e, = 2334 x 107573 — 382 X 1073/ 4277 X 1071+ 7.07
e, =, 8200 x 107/ — 947 X 10742+ 128 x 1071/ + 7.34

S

The follc')wiug conclusions "ire attained by studymg the connecting function
vaniation in.Fig 1 -between' the analysed parameters (e = ¢(f))"

— The maximum value of curve €4, cotTesponds to frequency f =217 403
MHz and then, for higher frequenmes the value of the constant decreases;
— ‘The maximum value of curve ¢, 4 15 Obtained at a frequency of f = 329391
MHz and.then, at higher frequencyes, the value of the constant decreases,
’ — At curve €C,p it comes out that ¢ 1ncreasmgly depends on frequency JA
:a peak value of the dielectric constant failing to be analitically attained.

It results {from the study of the £ = ¢(f) connecting function variation for
samples Sa,p €0y and. £ that this dependence increases, a peak value of the
dielectric” constant failing to be analytically attained.

Technical literature  [2] explains.some phenomena referring to variation
e = ¢(f) In static field (co = 0) and for hlgh frequencies (v — o), the dielectric
constant 15 a real value The Debye dispersion relations of the dielectric constant
demonstrate that dielectric dispersion occurs within a wide irequency range.
In the case of substances whose molecules present, beside electronic relaxation,
a phenomenon of bipolar relaxation, a Debye dispersion phenomenon must occur,
based on the hypothesxs that all the molecules have the same,relaxation times,
what is not verified in the case of many substances

The desciiption of relaxation phenomena by means of Debye relation is
quite simplifying and, consequently, the existence of a continuous distribution
of relaxation times within the range [0, oo is assumed. In these cases, the mathe-
matical relations for the phenomenon description are quite complicated.
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It comes out that the absence of SnO, i sample Cy results i decreasing
constant e. Zirconia ZrQ,, during thermal treatment, reduces the tendency to
non-stoichiometry of TiO,. Sample dosage with ZrO, results in increasmg cera-
mic material porosity, determining dielectric constant decreasing By increasing
the percentage of ZrO, nh. in
sample ay = 319, to sample Cy =
= 40.7%,, dielectric constant value
decreases according to ay and Cy
curve behaviour in Fig. 1.

On the other hand, ZrO, con-

tributes to liquid solution forma-
tion by 1somorph integration of
cations Zr** Sample C, has a
lower dielectric constant value be-
cause the quantity of ZrO, and
SnO, is too mgh.
+ The experimental results of
710, influence un rutile ceramic
material composition ranges among
other researchers’ preocupations
and results. Thus it is' mentioned
(7] that, for BaZrO, ceramic ma-
terial obtained from BaCO; and
Z10, with an additive of 209, TiO,,
e is maxXimum, then it decreases
and increases again with an addi-
tive of over 30% TiO,.

W0 20 30 L0 S0 65 70 €8 50 100 W0 FIME] 'The curves tgd = tg8(f) in
i) Fig 2 have two distinct shapes of
Fig. 2. Variation curves tg § = tg 3(f).  them belonging to a certain frequ-

ency range If it is written tgd =1
and. the equation system (1 1) 1s used, for the curves in Fig. 2, the following
regression correlations consisting of two parts are obtained -

= —6977 X 10783+ 4719 X 10-6f2 —7.622 X 1075f |- 448 x 1074,
for f = [1, 44] and
4.052 x 1077f2 — 3560 x 10—5f 4+ 125 x 1078
for f = [50, 125]

ty, = — 6.608 x 1077 /2 4 3372 X 10T-5f 4 2.27 x 1077,
for e [1, 50) and
6.132 x 107/3 — 1768 x 10-8f2 | 1.873 x 104 — 6.05 x 10~
for f = [50, 130]

b o= — 9208 X 107*/2 41041 X 1075/ — 1.45 X 1075,
for f = [1, 85] and
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i
1

— 5585 x 10785 + 1.863 x 1052 — 2.083 x 10~3f + 7.37 x 10~2
for f & [95,130]

h, = 7.950 x 107103 — 1633 x 10-7%% + 7771 x 107%/ 4 7.52 x 10~°
for f € [1475] and

9.368 x 10~% — 702 x 10—4, for f = [90, 135].

The following conclusions result from the variation analysis of polynomial
functions representing the curves in Fig. 2°

— The maximum of the concave curve b, within the range f = [1, 44}
15 obtained for f= 34 55 and then it decreases around f = [3455 4393]. The
mmimum of the first part of curve 4, corresponding to frequency f= 4393

also represents the beginning of the second part of the curve, when the function
is convexly increasing.

— The maximum of the concave curve #,, within the range f e [1, 50}
15 obtained for f = 2551 MHz. Within the range f = [1, 25517, the function
is increasing, then it decreases within the range f = [25 5], 50] For frequencies

exceeding 50 MHz, the function is increasing and convex to frequencies of 130
MH:z

— The maximum of the concave curve £, within the range f = [1, 70}

1s obtammed for f= 53 MHz Within the range f = [1, 53], the function is in-
creasing and then it decreases to f = 85 MHz TFor frequencies at which f =
e [85, 130], the curve is convexly increasing.

— The maximum of the concave curve f,, within the range f = [1, 75,
the function is concavely increasing and then it decreases to f = 75 MHz. Within
the frequency range 75—135 MHz, the function is straightly increasing

It results from the comparative analysis of curves in Fig’ 2 that the highest
dielectric losses occur at curves by, and then decrease in decreasing order for
samples b,, by, and by.

On the first part of the polynomial functions, the curve behaviour is gene-
rally concave, their maximum occurs at frequencies of 34.55, 25 51, 53 and 30.65
MHz. On the latter part, the curve behaviour is convex and increasing.

It results, from the analysis of curve behaviour tgd = th(,() for the samples
mentioned above that, within the frequency range of 1 to about: 70 MHz, maxi-
mum losses are recorded, next they reach a mmlmum Afdy then dJeIectnc losses
increase very much. -

The polarization mechanism of, the studlﬁd ceramic. materlals differs from
the other polanzatlon phenomena bécaise: ofthie posmbxﬁt) ef charge rmgratlon

and accumulation in the polycrystal grdin separating tiyers - interfacial polari-
zation [2, 6].

In the case of a dielectric ceramic inaterial, the dxfference tg8 = tg3(f) is.
more complicated because the relaxation phenoniena depend on the- frequency
range. Instead of one relaxation time, a series of 1elaxation. tiines miust-be used
what complicates the mathematical model

N
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4. Conclusions. The sample composition, whose percentage of ZrO, and
Sn0, was modified, influenced the dielectric constant and loss values The absence
of SnO, in the samples results in decreasing constant = and ZrO, reduces the
tendency to non-stoichiometry of T10, during thermal treatments.

Variations ¢ = =(f) and tgd = tg3d(f) for the studied samples’are more cont-
plicated because of the relaxation phenomena dependent on the frequency range.
The ‘correlations established for dielectric constant and losses demonstrate the
correctness-of curve tracing and the accuracy of e‘cpenmental result interpreta-
tiomn.

The theoretical deducttions, greatly doublet by experimental determinations,
proved the existence of some unique optimum values of the correlation tor each
sample type The'equations used for determining the coefficients A4; to establish
.polynomuials, solved by computer, certify the correlation between experimental
results and calculated results.

The dielectric losses for samples havmg 7 subscipts are higher than those
for samples having M and 4 subsmpts This fact 1s explained by higher porosity
of uncalcined samples
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DEDUCTION OF HIGHER ORDER ACCELERATIONS BY THE METHQD
OF DIFFERENTIAIL OPERATORS

CONSTANTIN TUDOSIE®*

Recawed May 17, 1989

ABSTRACK. — In tlus paper we give a new method for the deduction of
the higher order accelerations, existing in the linear differential eguation of
order » of very fast dynamical phenomena, The proposed method relies on
certain “differential operators” and allows determination of the accelerations
of any order o > .

1. Imtroduetion. In a series of previously published papers [21], [3], [4],
53, [6], we have developed various methods for the determination of higher
order accelerations, which exist or do not exist in the linear or nonlinear dif-
terential equations describing very fast dymamical phenomena. These methods
tely on certain operators introduced by means ol some unknown functions of
time as independent varnable ,

In the present paper we give a new method for determining the higher order
accelerations by using certain “difierential operators’.

2. The method. Let be the linear differential equation of a very fast dyna-
wmical phenomenon

i3

(%)
2o al) x() = A@), (1)
1) [
with the mitial conditions x(0) = x,, (¢ =0, 1, 2, ., # — 1). The {functions
A(t) and a,, 1 =0, 1, 2, ..., #) are continuous having continuous derivatives

on [0, a], a >0 and a,{f) #0, ¢t « [0, «a]
Introducing the “differential operator”

A5, (6=01,2 .. un+1),
and denoting
wlf) = afl) o), 6 =0 1,2 u), ' (2)
equation (1) becomes
2”0 w ) d5t) = A@)d W), (3)
(6=0,1,2 . nt1).

* Palytechme Instiluie of Cluj-Napoca, 3400 Clup-Napoca, Romanta
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( , Then, by integrating (3) and differentiating (2), it follows

‘ ‘ (o) (@ , . ()
A() 0 — 4(0) 7~ § A(s) 7ls)ds

0

L (O] (o) ® (9

— 2 4a) - %) - x(t) — 4,(0) - % - x5 — (4)

| _‘ (;,(s) [a‘(s) - ;)(S) La (;) _";1%5)] dsl =0,

(6=0,1,2, .. ,5n+4+1)

The equations (4) constitute a system (S) of # 4 2 nonlinear integral equa-
tions with »# 4+ 2 unknown quantities

(o)
x(#), (6 =0, 1, 2, , 4 1)

)
3 Determination of the solution of the system (S ) In order to determine
the solution of the system (S), we will apply on the interval [0, a], @ > 0, a method
similar to that ol polygonal lines [2], [3]

Thus, usiig the quadrature formula

a
k—
n

S s)ds = -~ Ef(v —), = 1: 2, 3, , Y,

0

for the appiroximate evaluation of the integrals, we obtain, on the considered
interval, a system ot m(n + 2) algebraic nounlnear equations with sm(n 4- 2)
unknown quantities

a (o) a (o) a _k a (o) a
A(k m) x(k mJ_A(O) xo——EA(v“”:] x(v;)—

m
v=1

(o)

Bfafh2) 2] et e B
SRl 2 U a2 2

(6=0,1,2 , n+1)

}:0, (5)

(m) (n+1)
The values of the constants x, and x, follow from (1) fo1 # = O, either

directly or by derivation
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(o)
The diagrams of the variation of the variable quantities 2, (6 =0, 1, 2, ...,

n -+ 1), constructed through the points ¢, (¢ = 1, m), give the graphical approxi-
mation of the functions ot the system (s), on the considered interval [0, a,
a> Q

The numencal solution of system (5) can be carried out, using the known

methods [1]

(@)
The method presented here allows to determine accelerations x (¢), for

any ¢ > .
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COMMENTS UPON THE SOLUTION OF SOME LINEAR AND NONLINEAR
DIFFERENTIAI, EQUATIONS OF:CERTAIN KIND

CONSTANTIN TUDOSIE*

Recesved, May 8, 1989

ABSTRACT. — In this paper the ligher order accelerations are determined
for the case when the linear and nonlinear differential equations of certain
kind describe phenomena having a very fast evolution In solving the pro-
posed problems one uses linear and nonlinear operators, defined through the
so-called “functions of direct or inverse connexion’.

1. Introduetion. By resorting to the so-called “functions of duect and
inverse connexion” exhibiting linear operator character, we have developed. in
a series of pievious published papers a method for constiucting the solution of
certain diflerential equations whose coefficients are function of time, evaluating
in this way at the saine time the higher order accelerations {2], [3], [4], [3], [6].

Actually, our aim 1n what follows 1s to determine the higher order accelera-
tions, when {he linear or nonlnear differential equations of certain kind describe’
phenomena having a very last evolution

In solving the proposed problems we use linear and nonlinear operators,
introduced — as we had made in the above cited papers — by means of the so-
called “tunctions of direct and wmverse connexion’

2 The linear equatien. We will fusily consider the limear differential equa-
tion
" (1)

gl afl) x = A(), (1)

, ) ()
together with the mnitial conditions x(0) = x,, 0 =1, 2, 3, , # — 1), where
the tunctions a4, (1 =1, 2, 3, , #) are contmuous with continuous deri-

vatives on [0, a], A being also a continuous function of /11 the same time 1ater-
val
Dy integrating the equation (1), we obtain

t 1
d (1—1) " (1—1)
Y [a, x (6 ( cls} =K -+ gA(s) ds, K =Y, a,(0) x, @
=1 5 0 1=1
Then, the mtroduction of the so-called “lunctions of direct connexion’
@, 1), =1, 2 , 1), [4] leads to the equations
(¢) (:—1)
x2(t) = o1 (f) - & (), =1, 2, 3, , ) (3) =

* Polviechme Institute of Cluj-Napoca, 3400 Cluy-Napoca, Romania



SOLUTION OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS

Now, replacing (3) wmnto (1), it follows °
" (t—1)

E al(t)(‘)f, =1 (t) * X (t) = A(t)

=1

Integrating both parts of (3) we get

(1—1) -1
x (1) = x, exp [Sw,, —1(9) ds],

c]

(t=1, 2, ..., n).

13

{4

&), -

The equations (2), (3) and (3) constitute a system — denoted by us by (S} — of

2n 4 1 equations with 2# 4 1 unknown quantities

(3 .
X% o1, =12 ..., %)

3 Determination of the solution of the system (S ). We apply on the inter-

wal [0, a], a > 0, a similar method to that of polygonal lines.
That is, we apply the following quadrature formula-

[ k , -
Sf(s) BN OB (=12 ..., m)

in order to obtain an approximate evaluation of the encountered integrals, amf
-we get, on the considered interval a system of m(2n 4 1) algebraic equativ.s

with m(2n 4+ 1) unknown quantities

n

K+3§k_] A — Y [a, ®3) -2k — 5 Y "2 ) 6 (VS)]

1=1 v=1

® (1 1)
x(k3) — 0, 51 (R3) - x (RD) =

(s-1) (i—1)
x (RS) — x, exp[SE Oy, 41 vS)] 0,

v=1

(=1, 2, n), k=1, 2, , )
The constant mo follows from (1), if we put thete £ =",

%=ﬁ@k@—§mw%}

1=1

Oun the other hand the constaﬁt values %, and o, (), 1

{6}
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follow by setting into the equations (3) and (4), { = 0, constructing 1n this way
a system of n# 4 1 algebraic equations with # 4 1 unknown quantities

(] (s—1)
Xg — 0, —1(0) - x, =0, 1 =1, 2, , M),

i (i—1)
A(0) — Zx a,0) - o, —1(0) - x4 =10
§ ==

With the purpose of aetermin1ng the numerical solutions of system (6), one

applies the well known methods [1] The diagrams illustrating the variation
{2)

of the functions %, %, o, ,—;, (1==1, 2, ..., #) are constructed using pouts
on the considered interval [0, a], a >0 ,

We observe, that the equation (2) 1n the system (S) may be replaced by the
equation (4) ,

4 The nonlinear equation, Let Le the nonlimear equation

” (1) s+y,.
Y anls] =40, @
1=0
o ) " ®
together with the imitial conditions x(0) = x,, 1 =0, 1, 2, ..., # — 1), and
€12, 3,4, ..
By resorting to the “functions of inverse connextion” [4] o, .4, (f), (1 =
=0,1, 2, ..., #) we may write down the cquations
07 et
[x] x = m,,,ﬂ’(f), (=0, 1, 2, , 1), 1, =12, 3 4, .} (8)

Subsequently, mulliplying (8) by (1 + 5,)dt and integrating afterwards
we get
H

(¥ o)™ =[5 + @ 420 o, (s, %)

0
(=0, 1, 2, 1, (=23, 4, ).
By substituting {9) into (7), we obtamn

go a,(t) {[(;)o] T -+ (- 7)) S°’1,«+J,(S) ﬂ} = A(1), (103

]
(1=0,1,2, . ,n), (,=2, 3, 4 )
Equations (8), (9) and (10) constitute a system (Q) of 2# 4+ 3 equations with
2#x + 3 unknown quantities

(1) (+1)
X, X, O 4y, (t=0, 1,2, . ,u), {,=2 3, 4, )
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In order to get a solution of the system (Q) we apply the same method as
zhat we have used to solve system (S).

(I") (n+1)
The constants x, and x, are determined from (7), directly and by derivations,

{or £ =0.

The constants «,, 4, (0) are determined from (8)

) ]1+7'~1 1)
Oy, sy, (0) = L%, c %y (=0, 1, 2, ..., #n),

(1,=2, 3, 4, ...).

5. The seeond method. We will write down now the equation (7) under the
following form

W[+ T aF T+ % anlx] ™ =40,y

=0 k=g+1

where the functions g, (=0, 1, 2, , #) and A are continuous, with con-
timuous derivatives on [0, 4], @ >> 0. By introducing the “functions of inverse
connexion” for 1+ < o, and the “functions of direct connexion” for %z > s, that
s

S ats,(0) and e o4y (),

0=0,1,2 ..,0—1), k=0c+1 0c+2, ..., n),
we may write the following equations

() (o) o+ ' ! -
() = 21,0455 (0) LFw]™, =012 ., 6= 149

(k) (o) oty
x(¢) = s,,,c,ﬂu(t) I:x(t)] , F=6+1, c+2, . ,6». 1 {13)

By sabstituting (12) and (13) wmto (11) we get

wlt) [%0)] 7 + uil a,(t) {31,0+J[, o [xw) °+’°} L

1=0 .

£ 5 a0 oen, 0F0]™ M =a0. 0

k=oc+1
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Then, by resorting to the “functions of inverse comnexion”
S ei (), =012 ..., 6 — 1), we way write down the equations

G+ 0 ety
T = cnons, O La0] T, (i =0,1,2, ..., o—1), (15)

By integrating (12) and (15) we obtain

(*) ®
20) = 5o exp{§ s e 007 Lo1ons, (57 a5}, (16;
4]

1=0,1,2 ..., 6—1)

©On the other hand, for A=oc 4+ e+ 1, and k= o + ¢,
fe=1,2,3, ..., »— a), the equations (13) become

(o-+e+1) (a) LR .
0 = carernon,0[F0] T (17
(e+e) [(d) ]GH,,
1) = coraong 0 L20)]) 7, (18)
(e=1,2,3, ..., n— o).
Now, integrating (17) and (18), it results (
(a-+e) (o+e) ‘
% (f) = %o eXP{S [Sotet1, o, (s)] [Eu+z,n+J° ()17 ds}, (19}
°
(e=1,2,3 ..., 27— 0.
For k= » -} 1, the equation (13) becomes
(n¥1) [(u) a7,
5{0) = eapn,on () L2 (0] (20;

(»+1)
We obtain the function x (f) by dernving the equation (11).

The cquations (12), (13), (14), (16), (19) and (20) constitute a system (QU}‘
{1 (@) B
of 2{n 4+ 1) equations with 2(# + 1) unknown quantities x, %, %, &, o4y,

Tk, oty T omtl, oy
(1=20,1,2, .. ,0—1), k=0+1, oc+2, .., #)

() (n+1)
The constants x, and x, are determined directly from (7) and by deri-

ving it, then settmg =10
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The value of the constants g g4y, (0), s g4y, (0) and euyy, o4, (0] follow
from (12), (13) and (20), if we put there /=0,

W [ty ) (u):l“'”-’
£y, 644, == Xg * L% » Ea, 6+.4.,( ) = %% ’
(1) [ (o)~ lo+sg )
Ept1, o+;o( = X, ] , p=0,1, 2, ..., ¢ —1),
(f=0c+1 o+2 ..., 1

The solution of the system (Q,) will be obtamed by applying the same
method as that nsed to solve the system (S).
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THE INFLUENCE OF ‘CDW (SDW) ON T,

L. MACARIE*

Recewved * June 6, 71989

ABSTRACT. — The model of the carriersin CuQ, layers which are divided wnto
two groups heavy and light holes, 1s used for a study of the influence of
charge density wave, CDW (or of the spin density wave, SDW) on T . A
calculation of T as a function of the exeitomic gap W, 13 made using a.pho-
non mechanism in the Cu—O planes.

1. Introduetion. In high— 7, superconductors there 1s a competition bet-
ween the superconductivity and a structural instabulity which'is generally accom-
panied by charge density wave (CDW) formation In BaPb;_,B1,0; there 1s a
clear evidence for a CDW formation, but in La,CuO, and V¥ Ba,CuyOg, - there is
evidence for an antiferromagnetic state, which could be a spin density wave
(SDW) However, as the doping is varted the antiferromagnetic 'and supercon-
ducting states seem to be anticorrelated low doping favouring the antiferro-
magnetic, high dopmng the superconducting state

In a two-dimensional model, considering Cu—O planes, the plane band 1s
a hybridized p—d band The CDW transition can be imterpreted as a localization
transition of the d-holes More accuratelly, 1t might be described as the formation
of a covalent bond between:the Cu and the O Such an interpretation of COW
formation has been discussed by Cohen and Anderson [1] and McMillan [2].
If we base on the papers of Hirsch and Scalapino [3] and Markiewicz [4], we
will have that the CDW transition localize the d-holes and opens a gap near the
high density of states parts of the Fermu surface ungapped. The holes are separa-
ted into two groups associated with high and low density of states regions of
the Fermi suiface heavy and light holes respectively Only the former aie 1mnvol-
ved in CDW formation, while both can be involved in superconductivity.

The present two hole picture of the Fermt surface 1s 1n excellent agieement
with recent photoemission experiments (3]

The transition to long range order may not occur at all for T > T, there
may be only short range 2D CD'\/V correlations present An analogous situation
occurs m La,CuO,, where strong 2D spin deusity correlations are present for
hundreds of degrees above the antiferromagnetic transition [6] This occurs be-
cause long range order cannot exist 1n a strictly 2D system the antiferomagnetic
transition 1s driven by extremely weak interlayer corrclations In the present
case there 1s an 1interesting possibility that the superconductivity itself provides
the interlayer corielations which cause the long-range CDW order

2 Caleulation of 7, Starting from this model described, we can study the
mfluence of CDW or SDW on 7, because the theory can also desenibe SDW

* Unsversity of Clug-Napoca, Faculty of Mathematics and Physics, 3400 Cluj-Napoca, Romama
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formation by a slight modification [7]. We use a Billbro—McMillan (BM) hamil-
tonian [8] which has already been used to interpret the superconductivity at
BaPb,_.B1,0; [9] and La—Sr—Cu—O [10], although, the model would pro-
bably overestimate the 1sotope effect in this material [11] (the model involves
a purely phonon-induced pairing .interaction). But, to explain the very high
T.s found in Y—Ba—Cu—O or the T! and B1 compounds 1t 1s necessary to add
an “excitonic” term H,, to the BM hamiltonian

The density of states according to the two hole picture can be written

o () =N, In b N, = , associated with the heavy holes
g

Tty
’ (Vo 13 the unit cell volume)
p(e) = (1)
pa(z) @ N, , associated with the light holes (away from the van Hove
" singularity)

where I, ZE?B and Ez 1s the full band width

For a prevailing phonon mechanism (H, = 0), the calculations from a BM
hamiltoman lead to the superconducting gap A equation which can be writ-
len :

g

A FTET S
A=V : ‘ l
BCSSd P1(3)2~/E,+Az+w, th oT T
e
+ Vics f de pyfe) — sy VTR 2)
aJera 2T

—,

where W is the excitonic gap, w, 1s the BCS cutoff , Vpes is the BCS attracuve
mteraction.

The critical temperature 7, will be obtained irom (2) taking A(T,) = 0
and the equation for T, becomes

1 = Vpes S de pile) g ‘/E’f L Vs \ Pal®) yp © ge (3)

Je’+w’ 2T, . € 2T,
0 0

a
Using the substitution ¢ = 32 —w* and the approximation i’ <1, the first
- - y
integral becomes

4/¢|)=+W‘

bed Sl
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If we introduce the notation: x = §,¥, where 8, = ZIT and using the approxi-
mation B W — 0, I, becomes: ’

B, \/“’3“‘"" B \/“’3"'“" "~
L= ( Zingfy-thr— { Zinjal - thex
B, * 8, *
= In Bulo - In (8, of 02 + W2) + a In B4, (5)
We
where o = —S h;; dx = 0 818 (the well-known integral from BCS theory)
o x '

0

In the same approximation, the second integral from (3) becomes:

Qe 4h £

L e ) 0

-1
0

Eq. (5) can be transformed if we use an approximation for Z,:
ty ~ 10 Afwd 1 P2
The number before the square root results from the condition :

lim ¢, ~ 10w, because ¢, ~ 05 eV
W -0 0, ~005eV

And eq (5) becomes "’
I = 2 (8, o + W2) + (2 + o) In (B, /ol + W?2) + 2a (7)
Using the notation N, = N, - Vpes
N, =N, Vpes and X = In (8, /ol + W2)
and the Eq (6—7), we obtamn trom Eqg (3)
N, X2+ X[N, + N2+ o)] + [aN, + 2aN, — 1] =0 (8)
From the solution X=m of this equation, we obtain the expression ior 7:

_ = = N (N o a0 — 1y 2
T, 0,50 oI T exp | — et M@4 o) [1 — ANl 2ol ”} +
i oN, N+ N2+ P

+J\Z+ﬁl(2+a>} ©)
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This general form for T is hard to be interpreted. Anyhow, we can see that
the presence of CDW (SDW) modifies T,.

3 Discussion. We shall interpret the relation for T, in a particular case:
a) at the van Hove singularity, when CDW is absent (W = 0):

T, 113 o, exp(— L ) (10)

A

b) when the CDW transition has occured, at the van Hove singularity N, =
=0) and:

T, ~ 050 /o - WZ exp (_ J%_) (11)
where 1
S sﬂqu - Vses JT—l_W_ (12)
Introducing (12) in (11) results-
T, 050 /ol T W2 exp [ @o X PO (13)

1
- Vg
\/ 52V, cs

We see that, T, decreases in the case IV = 0 because the exponential term
varles stronger than the factor /e 4- W2

4. Coneclusions. Therefore, there 1s a competition between superconducti-
vity and CDW or SDW transition. If CDW (SDW) transition does not occur, a
superconducting transition can take place at a higher 7, which could be e‘{plamed
by the large total density of states Once the TDW ‘sets 1, it opens a gap W
for the heavy holes and the total density of states will be reduced As we can
see from Eq (13), T, will decrease according to reality

This model could be applied ior the high— T, superconductors but we must
take mto considerations the contributions of the other parts of the systems, too
{not only Cu—O planes) and the interactions between them In the same time,
in Y —Ba—Cu—O or the Tl aud B: compounds 1t 1s necessary to take H, # 0.
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PARAMETRIC OSCILLATIONS OF A MAGNETIZED PLASMA IN AN
ELLIPTICALLY POLARIZED ELECTRIC FIELD

S. COLDEA* and J. KARACSONY"*
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ABSTRACYT. — The parametric instabilities of a magnetized two-component
cold plasma are studied in a left hand polarized electric field and in a hybnd
pump freld, by applymmg a method based on multitime scale perturbation.
The growth rates of 1nstabilities are calculated for the dipole approxima-
tion.

1. Introduction. Parametric excitation of plasma waves intensively stu-
died (1], [2], [3].- The growing interest for this problem 1s due to the appli-
cations 1 fusion experiments, pulsar electrodynamics, propagation of electro-
magnetic waves 1n ionosphere and other applications In the present paper, by
applying a previously given method [4], we will study the parametric action
of a left-hand elliptically polarized electric field on a magnetized plasma. The
parametric oscillations of magnetized plasma 1n a right hand elliptically polan-
zed field was also studied [5]

On the other hand the linear and nonlinear stage of the parametric effects due
to an extraordinary electromagnetic pump field 1s studied in [6], [7]; 1n the
tramework of nonlinear relativistic theory it 1s found that parametric 1nstabili-
ties due to interaction of four elliptically polarized electromagnetic transvers
waves can occur

By using the propagation equation

1 2 iz 8
grad div — V2 ‘)Ecx:—_—— 1.1
ré v T 2 o t 2 ot ( )
and the motion equations
dv
— = Ecxt - [U H] (12)
dt me

we have arrived for the pump field, which propagates in the same direction as
the externally imposed magnetic tield, to the expressions

Eue = Re{(Epyey — 1Eo: cg) expla(kcx — vi)]} (1 3a)
Hew — ¢, H, (13b)

* Umversity of Cluy-Vapoca, Facully of Bothematics and Physies, 3400 Clw-Napoca, Romamia
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at the {ollowing algebraic system ior the electric tield amplitudes:

' E,, [czkg — v ot v,fm + Eo o} v&”_ﬂm] =0 (1.4a)
E} 2 — + Eq [c-k“——v‘—f—co :’m]ZO (1.4b)

where
o} = ATt ‘ (1.5

3

tepresents the square of the plasma frequeuncy, #, 15 the electron density and e
and m represents the electron charge and mass.

On the other hand the electron cyclotron frequency is
Q=¢Hme (16}
¢ bemg the light velocity

Following the usual method, from {1 4) we can obtam the dispersion rela-
tion for the externally 1mposed field (1 3):

R IR R LN (1.7}
v—Q

which is identical with that obtained m an other paper [4] for circular potatized
field

2. The zero order state, Here we will neglect the spatial variation of the
pump field and consider only the time variation of this tield:

— —

Egt = ey - Epycos Vi — 5 - Eg 51 vt (2.1}
I we linianize the Boltzmann—Vlasov equation_we will obtamn

o,
éd

eE,y

+ (~ cos vi — o 7:,) h —}-( s vt +
me »

Say

Y0 2o
y) avz ( 7

» M

The equation for the characteristics are, therefore, the iollowing.

L vy = (2.3a)
1 0 6Ey,
— cos vt — Q v,
m
_ dy (2.3b)
2 smvt+ Q vy

9
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From the equations (23) we obtain that

v, = d; Aoy Bor s vi — Qu,; (2.4a)
dat wm
@ _ Bt sin vt + Qu, (2 4b)
dt m
, o (1 Q) — _ Eey (w<-'+me_ 1 )
(0l + ) exp (1 Q1) = — B2 [ L)y
e—1v+Q)t 1 6Eqe [ attv—2¢ 1
(v -+ Q) T 1(v+ﬂ)}+ 2m [s(v—ﬂ) (v — Q)

eyt 1 2.4
o m+m]+%®%%m@ (2.40)

where v,(0), v,(0) and v,(0) are the velocity components at ¢ = . The general
solution of Eq (22) may Dbe written as-

Jo=F(d; 4, 4, (2.5)

where I denotes an arbitrary functional relation A;, 4, and 4; are the con-
stants of integration given by (24) and

Ay = v,(0) ~ (2 62)
— By (1 1 *Eor (! ! 26
4z = v0) 2m (v—.O. ‘J+Q)+ 2m (V—Q+V+Q) (260)

One can see from (2.4) and (2 6) that 4,, 4, and A, are related to v,(0),
v,{0) for a particular orbit

On the other hand (2 4) gives the velocity of a particle on the unperturbed
orbit

o) = Vt) + Uft) (2.7)
where

i

V) = S0l(0) + 65 {0,(0) cos Q ¢ — v,(0) stn Q £} +

+ ¢4 {0:(0) - cos Qf + v,{0) - sin (Q2)}

=g - ¢E . 1 1 = eE, .
Ult) = — ¢ 6°’s1nvt( ] €, —2% sin vt -
() 2 2m v—ﬂ+v+ﬂ - 2‘7m
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26
1 1 ~ ¢E,, 1 1
B e f i —
‘v—n+v+n}+32mcosv( v-n+v+n+

2 sin €.

~ e+ B in Qt(

2m

17
v—Q v+ﬂ)+2

1 1
._I..
v— 1 v+ Q

'(—‘—l——'—)_ ‘;;df"’ cos Qt(

v— 1 v+ 0 " )+

= ¢E,, 1 1 — - ,
+ eg——=% cos Qf - 4+ ) — 20n - Pom 57
3 Ian (v — 0N v+ 0 ( .

For the distnibution function we choose f;, to be Maxwellien in velocity space

A'+A'+[A,+5E°y( 1 _ 1 )+
t ' 2m {v— Q v+ Q

- t — no .
Jolv, 1) (2r0)%2 =P 20
¢E,, ( 1 1 )-
2m v—Q v+ 0 Mg . (:—— l_J’(t))' R
20 T (2r0)%2 exP( 20 ) (28

¥ beeing the kinetic temperature ot the plasma As it was mentioned 1z [4
we need the zero order external current in view of the full description of the time

dependent zero order state. We arrive at the following result

— - . — 1~
— 47 Joxt = V(— E,e, sin vt — ¢E,; cos vi) — mf,{— 7 e, E,, sin v/

E

1 1
. eg 2 s Vi - — — ey - E o5 vt -
(v—ﬂ+v+ J—,_ (v—.Q v—I—Q' 4 2
1 1 - E 1 1
- — egc08 V=2 . | — — )
( v—ﬂ+v+ﬂ)+ 8 2 ( v—0 v+ 0 +
-, E 1 / 1
e, sin Qt %2 — ) e, sin Qf - — —
e 2(\;-—0 v+ﬂ+2 2{ v— 0
1 o 1 1 - o
— )—escoth—(———— — egcosf) ¢ - =2
v+ v—Q v+ 0 R
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3. The first-order state, The first order distmbution function f; and the

electric and magnetic fields 51 and Ifl determine the first order state. The
Boltzmann— Vlasov equation with collision relaxation term is

a
(a_f =— v fi (3.1)
together with Maxwell equations give for f, the result
2 ot v3(0) P vy(0) exp (—1 (m, 1))
v ) = % e [— - JEZ .
hilo, %) m0(2x0)%2 P ( 26 ) { Rv(0) — (m, 2, v,) +

(1) [ 9 (0) - exp (—itm + Lm0 | w00 [,y |
+ E””‘[ O =t L [(e’ )

exp(—s(m,n—1)9) (s; + F.",; — &+ 3:) exp (— s(m + 1, n)p)

ko (0) — (m, 1 — 1, v,) Bog(0) — (m 4+ 1, %, v,)

—(——s:;-—z;)-

exp {— tm, n 4 1)f) ]} + B [u(‘*)(O) exp{—i(m — 1, n)5)
Evug(0) — (m, # + 1, 9,) "l kug0) — (m— 1, n, )

_M + n exp(—iim, n-+1,8) - S e
(m, =) (65 + <) Ro(0) — (m, 2 + 1,v,) tls—gta—a)

exp (—t(m — 1, n)8)) (s:—— €+) . _exp(—3(m, » — 1)#)
k0(0) — (m — 1, m, v,) YT kegl0) — (m, e — 1, v,)

where the assumption

E,(x, 1) = exp [t(kx — 0f)] Y, N} Epn(#) {exp — 1(mQ + nv)f} (33)

» L3

was made.

The following notations were 'introduced 1n eq. (3 3)

Bl + 1Eh = ES) 5 9,(0) 4 19,(0) = 201 )(0) (3 4a)
(m, ) =0 +mQ -+ nv; (m, n, v,)=(m, #) +1v,; (3 4b)
. Eepy (3 4c)

nr 4inv(Q £ v)

Using the propagation equation for Ej,,, EWX) and EL), and taking into account
the first order current density, we obtain an infinite algebraic system in which
the transverse and longitudinal components of the electric field are coupled.
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4 The dispersion equation and discussion. If we follow the method of [4]
we can obtain the dlspersion relations for EX, up to &’

- .2 P
o g e R (p = ) +
s R R el (e R R )
T(piQ))]‘*‘Z(s;-F N2l [(??v)ﬂ wﬁ—i-w?,(j):; +(p;FeV)’

+ 8 fip )] =0 (+1)

with p = (m, n) and

12
)= -""% ex {_ £ (4 2)
R(26)12 2520

‘The instability can occur for left hand polanzed wave with irequency Q — ey,
and with the growth rate ot the following form

=7 {[ e —ay s)vos | (d _ %)2 J”“ — @4+ b/a)} (4.3)

The following notations were used:

a =30 — 20, . (4 4a)
haMQ—%qg+ﬂ%ﬂ (4.4b)
i=t (2 ;;(>) (4 4c)

On the other hand the threshold condition is

(e5 + &f — &7 4+ €I %0y > bd {4 5)
If the following inequalities are fulfilled
M<E I R P o (4 6)
ek g - ek Aoy - 0

0 <Ey <Eg, (7}
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where
Jbd-m (@4v) @
= — =y —Q Q 4.8
Ba, =222 82 n,H[ v = Q]+ 0 +v] (48)
with ‘

v>Q> Jz—l or Q> (4.8)

the pow er of the threshold field of the elliptic polarized pump fleld is less than
the power of the circular polarized pump field. The conditions for dipol approxi-
mation are, respectivelly, for left-hand respouse field with frequency Q — «,
and v — 0, the followmg:

12 &l — 9+ 3x — )] (49)
3 2 _ 2(1 —_ )
1--2 [(1 — o — 2] (4 10)

and for the right hand response iield

1 -2 <[(x—y)2—————y’("—”] (4.11)
1 —a 2x — 9
and
12 <[(1__y)2_u} (4 12)
1—x 1—2z+9 |
with x = Qv and ¥ = o /v (4.13)

In our discussion we have generalized the grafical conditions from {4], for
the case ¥ = 08, giving more general analitical ccrditions (4.9), (410), (12)
and (4.13)

We can conclude the following The analysis from [4], for parametric oscila
Jations of a magnetizeéd plasma 1s generalized m this paper, taking mto account
a leit-hand eliptically polarized pump electric field. The dispersion relation for
response fields contains four small parameters which depend on amplitudes of
pump fields instead of a single parameter used 1 the case of circular polarized
field It 1s found that there are cases i which the power of the elliptically polarn-
zed pump field which assures the onset of the instabibity is less than the power
for circularly polanized pump field. We bhave obtained {he analitical conditions
for spatial cicgeneity of the pump field [8]
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COMPUTER MONITORED SYSTEM FOR AUTOMATIC
TEMPERATURE CONTROL

D, §. IANCU, G. D. POPESCU*

Recesved . July 5, 1989

ABSTRACT. — This paper presents a practical achievement for program-
ming and adjusting the temperature of electric furnaces with heating cur-
tents up to 63 A. The installation proves to be very useful for obtaining
some substances whose preparation and thermal treatment need a more com-
plex thermal diagram; among these materials are the new high T, supercon-
ductors.

When we were concerned to prepare different samples of 1—2—3 super-
conductors, a serious inconvenience arose from the necessity to survey and adjust
ithe temperature of the furnace during a ]ong period of time — tens of hours or
cven days. Thus, it appeared the ne-

cessity to design a system able to auto- N P 12
matically run the thermal diagram of .AJ® @ ® Rl
the furnace. A short description of the \LSU EVM PROF ‘
resulted apparatus is presented below '“TC‘“" ] !
The block-diagram of the system is FURN G(DTAMP ©DAC <4
given in Fig. 1 A thermocouple (TC) 1s } I
used as temperature sensor in the furnace |
®, its voltage s amplified by stage @ 2@ pU ®COMP |® REF |
and compared 1n the, stage Q) with a T T W2 |
reference voltage, Ugpgr, corresponding "'“";,ig_'l'—""- T

to the needed temperature The reference
may be constant (given by stage ®) or may change in time according to a
program for thermal cycling carried out by processor 3 and transmutted to
the comparator through the digital-analogic converter @®. The switch SW1
makes possible to select the references (Urgr “Automat” or “Manual”) and
the other switch, SW2, enables the alternate reading of the voltages to be com-
pared (Ugrgr and Uxc) by a digital voltmeter @. The comparator output drives
the power unit () which connects the heater of the furnace to the power
network A On Fig 1 also appears the voltage supply umt @. To prevent the
crasure of the computer memory in the case of a voltage drop, an independent-
power supply of the .processor is provided (B)

Fig. 2 shows three of the mentionned units. The thermocouple amplifier
(@ uses integrated circuits of B4 726 X-type with temperature stabilized transis-
tors, ensuring thus a small dnft of the amplfication Care was taken about ther-
mal compensation also 1n the @ and 3) stages by using opposite diodes The helical

¢ Umversdy of ClurNapoca, Faculty of Mathamatics end Physscs, 3400, Cluy-Nepoce Romama
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potentlometer P (10 turns) serves for manual choice of the reference voltage
and lies togethe:r with the two comparator LEDs on the front panel of the appa-
ratus. The red lamp lights up when the reference voltage exceeds the one pro-
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Fig. 3

vided *by the thermocouple ampli-
frer and signals the furnace heating ;
when Usc equals the reference va-
lue the red LED goes out indicating
the interruption of the heating.
During this period,  when the fur-
nace cools out (Upe > Ugge), the
green lamp is lighting The com-
parator output drives an unijunc-
tion transistor oscillator (Fig. 3}
and the period of generated pulses
determines the phase for opening
the thyristor. The thyristor current

is the heating current of the furnace and its intensity belongs to the voltage
amplitude at the comparator output

In Fig. 4 is shown the circuit of the voltmeter used at the imputs of the
comparator. It contains three ICs and displays mullivolts on three digits, enough
for the' temperature range of the furnace

The digital-analogic converter (Fig. 5) is the intertace between the parallel
output bus of the processor (8 bits in the case of our TIM—S-type computer)

1
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and one of the comparator inputs. Eight LEDs enable us to observe on the front
panel the state of the data bus. Switching SW2 1n the “Automat’ position makes
the furnace temperature to follow the thermal diagram imposed by computer
programming. . ‘

Fig. 6 presents the voltage supply unit for almost all of the system blocks.
As mentionned above, 1 order to preserve the processor memory 1its voltage
supply (+12 V, +5 V) 1s made from a 12 V battery via the circuits shown
in Fig. 7. ' -

The calibration curves of the apparatus are plotted m Fig 8.

2x1NL001

pii T 1 T T T T 1 T
-]
22 elan
BAS 00:0° Uper
5ol . . °: P s {mV)
Ce
. ~4608
o? e
ﬂo
- BB‘
wor- st 1400
.. :e °
o UREF_‘- . .° ©® "1230
. SN of bits
a ° o
143 L ° 1 I\ 1 1 1 1 1 1
9 paca) 100 600 800 1000

Fig. 8

The empty circles stand for the number of bits, 'decimally written, correspon-
ding to the binar significance of the LED display at the parallel output ot the
processor, and the solid circles are the reference voltage measured by the volt-
meter. In both cases there is a satisfactory linearity’; the temperature on the
abscissa was measured at the middle of the furnace by a Pt-PtRh thermocouple,

In the Appendix we propose a BASIC plogram for a thermal treatment
having three plateaus. The heating and, 1espectively, cooling rates, togethe:

. .

3
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with the temperature and time intervals for the three plateaus are given by
INPUT to the computer, according to the calibration curve from Fig. 8. In
principle, n the limits of a given situation, the above described method allows
thermal cycling of any duration and any form.

Appendiz

Program for three steps thermal treatment

¢ t

OPEN #3, “a"”:LLIST
BORDER 7: PAPER @ INK 7 .
PRINT AT @,0; “Acest program furnizeazi un exemplu de diagrami termicd cu trei
paliere §1 pante variabile de incdlzre respectiv ricire. Alegind in mod corespunzitor variabilele
se pot obtine o infimitate de posibilitifs de tratament termuc. Cunoscind pufina programare, acest
program poate fi adaptat pentru orice tip de diagrami termci.”

6 PAUSE J CLS ’

8 PRINT AT 19,8, “Timp:munute” ,AT 20,8, “Temp.n If (= const. aparat)”

19 PLOT @,80

200 FOR n=@ TO 48 STEP 8' DRAW 8,0 PLOT n,80+n* NEXT n

30 PLOT 880: FOR n=@ TO 48 STEP 8: DRAW @,8: PLOT n+48,80+n. NEXT n

43 FOR n=1 TO 4° PRINT AT 5—n, 6+n; “.”. NEXT n

50 PLOT 88,162: DRAW 32,0

60 PLOT 120,162: FOR n=@ TO 32 STEP 8: DRAW 8,8: PLOT 1204n,162—n:
NEXT n

7¢ PLOT 128,162: FOR n=¢g TO 32 STEP 8: DRAW (,—8: PLOT 128-4n,162—n:
NEXT n

80 DRAW —8,0. DRAW 24,0

99 PLOT 178,122: FOR n=@ TO 32 STEP 8: DRAW 8,0: PLOT 178+4n,122—n:
NEXT n

169 PLOT 178,122: FOR n=@ TO 32 STEP 8: DRAW @,8: PLOT 1784n,122—n:
NEXT n

110 PLOT 210,98 DRAW 8,8

120 PLOT 218,98: FOR n=@ TO 24 STEP 8: DRAW 8,8 PLOT 218+41n,98—n: NEXT n
NE‘[’i‘sg PLOT 226,98: FOR n=@ TO 24 STEP 8: DRAW @,—8 PLOT 226+n,98 —n:

XT n
140 PLOT INVERSE 1,2508,74: PLOT INVERSE 1,210,990
150 PRINT AT 13,@;“k”,AT 11,2,“——>1" AT ©,12;“t1”,AT 3,19;“——>m ", AT 2,18;

”

UL WO

<«

P
160 PRINT AT 4,19,"t2",AT 6,24, “——>0",AT 7,25,q"
170 PRINT AT 8,26,"t3”,AT 13,27 ,“——>1",AT 10,30 ;"
» 180 INPUT “k(pas tump)="k INPUT “1 (pas temp)=",1. INPUT “tI{tump palier 1)="",

190 INPUT “p(pas tunp rdeire)=",p* INPUT “m(pas temp racire)==",m* INPUT “t2(timp
palier 2)=",t2

200 INPUT “q(pas timp racire)=",q* INPUT “o(pas temp racire)="",0 INPUT “t3(timp
palierd)=""t3

210 INPUT “r(pas timp racire)=",r. INPUT “f(pas temp racire)=""f

213 INPUT “teQ(temp de start )=",te@

215 INPUT “tel(temp. palierl)="" tel

216 INPUT “te2(temp palier2)=""te2

217 INPUT “te3(temp palier3)="",te3

219 PRINT AT 19,9, “,AT 20,0,”

22¢p OPEN #3,“a”

230 FOR n=1 TO 255+ POKE 6000@+nn: NEXT n

240 FOR n=te@ TO tel STEP 1: OUT 226,PEEK 600@0-fn: PRINT AT 10,12;PEEK
60000 4-n- LPRINT PEEK 60000 -+n: PRINT AT 14,14;“INCALZIRE” FLASH 1: PAUSE
3000 %k PRINT AT 19,12, ” NEXT n

1
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95¢) FOR n=1 TO t1 PRINT AT 19,12,n, “mm ”- PRINT AT 14,14,“PATIER 1 “:
PAUSE 3000. PRINT AT 10,12;” “ NEXT n

260 FOR n—tel TO te2 STEP —m OUT 226,PEEK 60@00+n PRINT AT 10,12;
PEEK 600@@-+n. LPRINT PEEK 600@@0-+n PRINT AT 14,14, “RACIRE 1" PAUSE
3000 %p PRINT AT 19,12,“ ”: NEXT n

27¢) FOR n=1TOt2. PRINT AT 10,12 1, “mm * : PRINT AT 14,14 ,“PALIER 2, PAUSE
3¢0g@ PRINT AT 19,12, »: NEXT n

280 FOR n—=te2 TO te3 STEP —o OUT 226, PEEK 600Q00-+n PRINT AT 10,12;
PEEK 6000@-4-n ' LPRINT PEEK 60@0@-+n: PRINT AT 14,14 ,“RACIRE 2” PAUSE 3000
¥q. PRINT AT 1¢,12,“  ”: NEXT n

285 FOR n=1 TO t3 PRINT AT 19,12;n, “mm.”: PRINT AT 14,14,“PALIER 3" :
PAUSE 300@: PRINT AT 19,12;* " NEXT n

290 FOR n—te3 TO @ STEP —f: OUT 226, FEEK €9@00-+n: PRINT AT 19,12, PEEK
6000@-+n- LPRINT PEEK 60000-n: PRINT AT 14,14;“RACIRE 3 ”: PAUSE 3000%r:
PRINT AT 19,12, ”: NEXT n

295 FLASH 0

296 PRINT AT 14,14,“SFIRSIT I”

300 STOP
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THE VALEKRCE STATES OF IRON ION IN CADMITIM-BORATE OXIDE
GLASSES

1. ARDELFAN#*, GH. JLONCA*, 0. COZAR" uand GEORGETA MURESAN*

Recewed - July 12, 1989

ABSTRACT. — We repait the results of magnetic measurements performed
on 2Fe,04(1 — x)[2B,0, CdO] glasses having x < 50 mol 9 In the glasses
with 2 < 3 mol 9% the iron icns manifest themselves as 1solated species, but
at higher concentrations they participate in negative superexchange interactions.
From expenmenial Curte ccostant and atcmic magnetic mcement values we
have assumed that in the glacses with 2 > 1 mol 9 the iron 1ons are present
as Fe2t and Fert valence states, whose molar fraction was calculated.

Introduetion. Several experimental results 1elating to the magnetic beha-
viour of scme oxide glasses with transition metal 1ons suggest that the valence
states ard distnntution mcde of these 1ons i the network of the oxide glasses
depend on the glass matnx struclure [1], the preparation conditions [2], and
the rature of the tremsition — metal 1ons [3] These conclusions have been rea-
ched frcm Fe,O; - B,O, - PLO glasses investigations, too [4]

In cider to obtain informaticn cn the part played by the glass matrix com-
position on the 1ron valence states, we studied the magnetic behaviour of xFe,O,
(1 — x)[2B,0O; - CdO] glasses with 0 < x < 50 mol %.

Eaperfmental. We have studied the aFe,0;(1 — x)[2B,0; - CdO] glasses with 0 < » < 50
mol % maintaining the B,0,/Cd0O ratio constant In this way imtially the glass matmix 2B203 -
- CdO0 was gprepared by mixing H,X O, and CdCQ, ard melting this admixture 1 a sintered
corundum crucible We used the techmque previously reported [5] After cooling, the host glass
was crushed and the resulting powder was mixcd with aprropnate amounts of Fe,O,, before final
melting at T = 1150°C for 1 h The molten glass was poured onlo a stamles steel plate The struc-
ture of these glasses has teen studied by X-ray diffraction analysis and did not reveal any cry-
stalline ghase up to 50 mol 9% Fe,O4

The magnetic susceptibility data wete performed using a Faraday type balance in the tem-
perature range €0 to 300 XK.

Results and discussion. The temperature dependence of the reciprocal
magnetic susceptibility of these glasses 1s presented in Figs 1 and 2 For the
glasses with x < 3 mol 9%, a Curie law 1s observed This suggest that m this con-
centration range are predcminant the 1solated iron lons and no magnetic order
is present For x > 3 mol 9%, the 1eciprocal magnetic susceptibility obers a
Curie— Weiss tehaviour with a negative paramagnetic Curie temperature — 6,
For these compositions, the high temperature susceptibility data indicate that
the i1on jons 1n the glasses experience negative exchange interactions and are
coupled antiferrcmagnetically In this case, the antifeiromagnetic order takes
place only at skort-range and the magnetic behaviour of the glasses can be descri-

* Unsersity of Clug-Natoca, Faculty of Matlhesnatics and Phystes, 3400 Cluj-Napoca, Romania
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bed by the so-called mictomagnetic [6] type order A sium lar conclusioa wis
obtained for Fe,O; - B,Oy - PbO glasses [4].

The absolute magnitude of the values of 0, increases for x > 3 m»ol %, (Fig.
3). In general the exchange integral increases ‘as the concentration of the troa
ions is increased in the glass {7] As a result the magnitude of the paramizaeiic
Curie temperature increases.

To determine accurately the values of the Curie constauts, Cy, correctioas
due to the diamagnetism of the matrix and Fe,O; were takeun 1nto account. The
composition dependence of the Curie constant 1s presented in Fig 4 For the
glasses with x > 1 mol 9, the experimental values obtained for Curie constant
and consequently for atomic magnetic moments are lower than those which cor-
respond to Fe,O; content, considering that all 1ron 10ns are 11 Fa?t valence state.
In this way, we consider that in these glasses are preseat both, Fe**, and Fe?* 10ons
The presence of the Fe?* ions was evidenced by EPR measuremzits [8] In
this case, having in view the atomlic magnetic momaat values ppay = 3.92 pp
and ppe = 490 pp [9], we have estimated the molar fraztion of thess 10as
i the glasses using relations '

) 2, — 2 2
Floozp = 283,, : Car = X1 lhpes s T Folhfen (1)
and
: [ X = 'xl + xé’ i 0o
: P
where yep =283 «/CM/X the exparimzatal atom:c mizgiztic momeaat, x; and «x,
the molar fractions of 1ron 1n Fe?* and Fe?t valeice states The results are pre-

Table 1

Curie constants:and the molar fraction of iron ions in Fedt
and Fe?t valence states.

- CM %y Xy
[mol % Fe,0,] [emu/mol]  [mol % Fe3t0,] [mol % Fe}t0;]

0.5 0.0437 05 -
1 0 0874 1 —
3 0 2482 2.5 05
5 03828 30 20
10 0.7498 5,4 4.6
20 13301 47 15
30 1 9440 5.2 24.8
40 2.5649 6.2 348
50 3.1886 68 442

sented in Table 1. From these data 1t results that the molar fraction of the Fe?*
ions in these glasses increases up to 50 mol 9,

Conelusions. By means of the magnetic susceptibility investigations of
xFe,0,5(1 — x)[2B,0; - CdO] glasses with 0 << x € 530 mol 9, we have obtained
wmformation concerning the iron ions distribution in the cadmium-borate glass
matrix which exp{lains their magnetic behaviour,
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The magnetic properties of xFe,O4(1 — x)[2B,0, - CdO] glasses are a func-
tion of Fe,O; content. ‘For the glasses w1th x > 3 mol Y Fe203, antiferromagnetic
behaviour is ev1denced Lo

From Curie cons’cant and atomic magne’nc moment values, 1t results that
in these glasses the 1ron 1ons are present as Fe* and Fe?* valence states, whose
wolar fraction was calculated
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THE ABSORPTION OF THE ULTRASOUND BY THE CARBON
TETRACHLORIDE-HEXANOL SYSTEM

I. LENART*, D. AUSLANﬁER‘ and A. CIUPE*

Recewwed  July 20, 1989

i

ABSTRACT., — The paper reports experimental work leading to information
on the natdre and the mtensity of the intermolecular interactions in CCl, and -
C Hys— OH mixtures of different concentrations, at 20°C. The values of the
ultrasonic velocity, density, attenuation constant’and dynamic viscosity enabled
the evaluation of the relaxation absorption, the volumic viscosity- and some
relaxation parameters as well as the'excess quantities The results demonstrate
the existence of interactions between the component molecules of the system

1

‘
1

Imtroduction. The process of ultrasound energy disipation in the piopaga-
tion imedium 1s a result’ of several effects, based on difierent mechanisms.

Accordiug {o the hydrodynamic theory of attenuation by absorption, the
energy disipation 1s due to the etfects of viscosity, thermal conductibility and
thermal radiation Since for most hquids we can neglect the last two terms, the
absorption 15 given by

oy 8rt

3 - Bpus K M

In order to obtamn agreement with the experimental data, we had to {ake
into account an exira absorption term, resulting from the molecular mechanisms
of relaxation, hence

aexp Uy orel _ 2n? (4

L TR )

n + m) (2)

where o, is the experimental attenuation constant, f — the ultrasonic fie-
quency, o, the wviscosity attenaution constant, o,y — the relaxation
attenuation constant, p — the density of the propagation medium, n — the
dynamic wviscosity, %, — the volumic viscosity.

Materinl and Method. The experimental determinations were made on carbon tetrachloride-
hexanol muxtures, with one polar and one apolar component mn a full range of concentrations
(including the system components) at the temperature of 20°C

The ultrasomic velocity was measured by an optical diffraction method, the attenuation
constant by a pulse inethod on the basis of repeated echoes at a fixed distance, at § MHz fre-
quency, the density and the dynamic viscosity coefficient were determined using the picnometer
and the Hoppler viscosimeter, respectively

* Unuersiy of Clup-Napoca, Faculty of Mathematics and Physics, 3100, Clyy-Napoca Romunia



THE ABSORPTION OF THE ULTRASOUND 43

~ o0 0z 04 06 08 1 002 G 6 08
x alcohol ! . x alcoho] -
Fi1g, 1. The vanation of absorption , Fig. 2 The vanation’ of the relaxa-
with the alcohol concentration. ' -+ «tion absorption with' the' alcohol con-

" . . + centration. -

Ther data obtained penmtted to evaluate the viscosity absorptlon from equation (1), the
1elaxation ‘absorption andthe volumic viscosity ‘from'equation (2).

By means of relationship: '
T -

‘_=277+'111‘:1 N (3)

pv¥ |

the vxscosxty relaxation tume of the components and of: the m1xtures at defere.nt concentrations
was computed

v

Tesults and Discussions. The vanation of the Stokes— Kirchhoff absorption
and of the experimental absorption with the -alcohol concentration 1s given in
fig 1 The term o,/f? mcreases’ hnearly with the concentration The experi-
mental attenuation is mich higher than the:viscosity one, especially for CCl,.
We note 1ts marked decrease at small concentrations, till apprommately y =02
alcohol, tendng to Tevel - clese " to;the polar component

The difference: between- the experimental attenuation: constant ud the
viscosity omne is'attributed to the relaxation absorptlon, 1ts vanatlon with the
concentration 1s .given. 1 fig-, 2 - '

As we expected,'the curves from fig ‘1 show the considerable ‘difference of this
quantity for the two components, the strong desceut in the range of small alcohol
concentrations ¢nd a- slower one for high concentrations.

The expenirental ehsorption has.a pronounced deviation from add1t1v1ty
as shown in fig. 3 The dcviation 1s negative in the wholé range of concentra-
tJons ‘with a. pronoun(cd mnimum at y = 02 alcohol

' The wviscosity coefficierts vary in opposite. directions -with the alcohol con-
centration of the mixture, as résults from the curves in fig. 4. The.lower curve,. of
the dynamic viscosity wneasured ‘directly, increases with the concentratxon more
strongly for high alcohol concentrations: The volumic viscosity computed from.
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alcohol concentration. concentration.

the absorption terms, is higher than the dynaxmc one and varies similarly with
the experimental attenuation constant

By means relatioship 3, the viscosity relaxation time was computed, which
varies with the concentration according to the graph of fig. 5.

Being higher in CCl,, 1t decreases exponentially with the increase of the
alcohol concentration in the mixture, to a minimum value lyetrg between 0.5
and 0.6 molar fractions of alcohol; 1t then lmearly increases to the value cor-
responding to hexanol

" The relaxation processes being stiictly dependent
on the interactions, the values of the relaxation absorp-
tion give information about the intensity of these inter-
actions Thus, the 'two components of the studied mix-
ture are characterized by weak intermolecular interacti-
ons in CCl, and much stronger in'CyH,;;—O T because of
the presence of the Hydrogea .boads which' limit the
possibilities of relaxation. This difference gives the hig-
her absorption and relaxation time m carbon tetra-
chloride compared with hexanol.

The negative deviations from the add1t1v1ty of the
experimental attenuation constant indicate the presence
of interactions between the molecules of the two com-
‘ OLLQZ 00 % 8 ‘ponets of the system The pronounced deviation in the
’ ‘range of small concentrations of alcohol shows -the

presence of stronger interactions between the mblecules
E,Lg &cﬁ:yvaiﬁg‘gilﬁ .of the components than the corresponding ones between
the molecules.of .carbon , tetrachloride. The increase of

time with the alcohol:con- ' )
. ~ .cemtration, -, the alcohol concentration leads to the further decrease

% alcohol
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of the deviation from additivity, bacause of the increasiny number of interac-
ting molecules ; the deviation attains a minimum followed by the predomina-
tion of the Hydrogen bonding characteristic to hexanol

Concluding, the variation of the quautities characterizing the relaxation
processes with the alcohol concentration in the studied mixture reveals the shift
of the equilibrium determined by the easemble of the following intermolecular
interactions polar-polar, polar — apolar, apolar — apolar.
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' «  ABSTRACT. — An inductive technique 1s described and used to characterize
the normal to superconducting transiiion in small volume samples. As the
sample temperature, T, 1s lowered through the transition, magnetic flux eclus-
1on from the superconductor sample modifies L m an inductor coil of an LC
ocrrcurt A plot of f versus"7T charactérizes the transitiori The method 1s used
for characterizing the 'superconductmng transition i Y, Dy, ,Ba,Cuy0,_s,
Y Ba,CuyO,_5 and Y, LBa, ;Cu,0,_g semples . 1

v

Intreduction. The trarsiion ‘temperature of superconducting matenals is
asually determuired bty measunnog the temperatule at wich the resistence of the
matenal falls to ze1q (fcur — texmiral resisterice method) In nonkomogeneous
materals different parts of the sample may tave different transition tempera-
ture. In this case tke four-termiral 1esistence meacurements are not quite ade-
gquate. ; :

To ckaracterize {le supercerductirg {rersition for scme sample gecmetries
such as pcwders, small semple crystals, ard small'fragments of thin films or
sintered pellets an irductive metrcd '1s used [1]

In 1his paper an inductive techmque s described ard used to characterize
the rcimal to superccrduchrg tiapsit-cu {or small volvme samples as Yoelyoe
ES;CU:(:;__S, Yl}:ax‘CU;C';__s ard Y05E825CU:’O'-8

Eaperintental. The sample 18 mcunied cn a ccrrar s1preit which 1s placed m {ke mductor

cotl of an LC crcwit that oscillates at a resonant frequency f= 1/2r  4TC (Fig 1) As tempera-
ture T 1s locwercd ard the semple leccwres suercar cucling, its diemegnetism decreascs L and
hance increases f A plot of f versus 1 charactanizes {be svpercerducting transition

The copper support 1s atteched 1o a ccid firger witkin ke senmple chemter of ile clyostat-
The sample temperature 1s measured using a calitzated dicde thaamcmeler attached to the copper
- support and controled with a temperaiure mmnstriment coniroller {2] The sample 1s cooled by
imersicn of the finger m erther hiqud nitregen cr hqud air

The inductor coil 1s a pail of the mwcdnid imtegrated cealleter cacurt TAA—€6 [3)]

The sample ¥V, Dy, ,Ba,Cu,0, 5 was rre¢jared Ly ile follewirg meihcd eppropriate amounts
of Dy,0;, ¥,0; CuO and BeCO; pcwders were thorcughly mised and heated mn' a flowing oxygen
atmosphere at (¢30—€80)C fcr 24 hcurs ‘1he resulling mixivie was regrcund, pelletized and hea-
ted at (€4C—¢€0)°C fcr 24 Fciis in aygen atmwesphere ‘1he semrples were then slowly cooled
together with fwirccc X-163s mezsurcn ants <h(,w 1l e riesence of single 1hase matenal having
orthorenlic arystel sutcluae [4)

o
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Y, DY, (Ba,Cu,0,_5

The samples ¥,Ba,Cu,0,_3 and ¥, ;Ba, ,Cu,0,_5 were obtained by calcination of t'iz corre-
s;;ndmg amount of ¥,0;, BaCO,; and CuO mixtures to 850°C for 8 hours, in air. After calcina-
tions the samples were crushed agamn and recalcinated at the same temperature for 8§ hoars ¢
order to obtain a Ingler homozensity TFinilly, the sindles ware pressel into pollz.s 11l siaterc
zed for 16 hours, in oxygen flow at 930°C and then cooled down to 300°C with a cooling watce
of 3°C/minute and with a temperature shoulder of 1 hour at 500°C.

Results and diseussion. In Figure 2, an f versus T curve 1s shown for a sa ny'e
of Y6Dyo4Ba,Ct1;0;_5 of 3 mm diameter cilyndrical form As can be <rcm,
from Figure 2, the superconducting transition is narrow (middle point at 93 K)
indicating a sumple orthorombic phase in good agreement with the X-rays measure-
ments [4]

In contrast to Y,6Dyp4Ba,CuzO;_s, for ¥,Ba,Cuy07_5 and Yo5B1 sCugOr_g
samples, a broad superconducting transition 1s observed (Fig 3 and 4, respecti-
vely) mdicating a multiphase system 1n this materials also identificd by ESR
method [5] The ESR signal of these samples is due to the Cu** jons from super-
conducting phases of ¥,BaCuO; and CaCuO, type [6]

In case of single phase material Y,¢Dy,4Ba,Cu07 5 the sinteriiy tempera-
ture 1s higher than 1n case of multiphase systemsY,;Ba,Cu;0;_3and ¥, 531, C305_s.
The maguitude of the effect in ncreasing or decreasing of th2 f ve sus tem-
perature 1s due to the difference 1in the magnetic properties of th: sa arles (with
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and- without Dy) and also to the size of the samples which influences the coil
filling factor (space factor)

It may be concluded that the inductive method described is useful to characte-
rize the superconducting transition (7, transition width) for small and different
shapes of samples.
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ABSTRACT. — Changes of the structural and magnetical properties of glasses
from Bi1, ,Gd,Sr,Ca,Cu;O, system, 1n function of » and of heat treatment
parameters, were investigated by electron paramagnetic resonance and magnetic
susceptibility measurements Increase of the Gd,0, content and of the heat
treatment time ‘at 840°C determines significant modifications n the shape and
parameters of the EPR spectra, which denotes a piorounced ‘change of the
microenvironments around the paramagnetic:ions Cu*t and Gds+,

Introduetion. The discovery of the superconducting Bi—Sr—Ca—Cu—C
system, mmtialy at relatively low temperature [1] and later also above mitrogen
temperature [2, 3], umpulsed the research on this class of ceramic maternals,
Interest arises both from the identification of superconductive phases with criti-
cal temperature 7, > 100 X and from the lower cost of this system Samples
were obtamned by the classical method ot calcination and sintering of oxides
mixture corresponding to desired composition The vitroceramic technique was
also applied early to obtain samples by partial crystallization of glasses In the
case .of bismuth system glasses were prepared by the melt quenching method
[4—6] '

The advantages of the rew techmique are (1) due to melting of the mix-
tures, hcmogeneity of the samples 1s higher than that of the samples obtamed
by sintering, (2) calcination processes are completely or partially eliminated ;
(3) samples obtained by this technique aie much denser than ceramic samples
of the same ccmposition, (4) the microstiucture of the ciystallized matenals
is highly controllable, (5) 1t 1s possible 1o obtain samples with various shape
and size, inclusively iikbers of 1adirs ard length adequate for applications m
electrotechnics

As addition of rare eaiths 1o these ceramic materials determines an icrease
of critical temperatuie from 80 K to 160 K [7—9], we studied the Bi,_, Gd,Sr.Ca,
Cu,0, system The structural mcdifications induced by heat treatment m glas-
ses belonging to this system were 1nvestigatcd by electron paramagnetic reso-
nance (EPR) and magnetic susceptibility measurements The addition ot Gd,O,
may rise ciitical temperature and facilitate obtammment of complete vitreous
samples, Lecause 1t favours {o obtamn vitrecus materials even in the absence
of the classical glass formers 710, 11]

Experimental. Samples were prepared from B1,0;, Gd,05 SrCO,, CaCO; and CuO muxtures
corresponding to the compositions Bi,_,Gd,Sr,Ca,Cu;0,, where » = 0, 001, 002, 003, 005, 007,
01,015,02, 025 and 0 3. Melts were maintamed at 1200°C for 15—20 minutes and were quickly

* Unwersity of Clup-Napoca, Faculty of Mathematics and Physics, 3100 Cluj-Napoca, Romania
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cooled by casting into large stainless crucibles, and pressed in order to obtain flat samples with
a thickness between 1 and 2 mm. In the sensxtivity limuts of the X-ray diffraction these samples
do not present any crystaline phase. )

The partial crystallization of the samples was realized by heat treatments carried out at
840°C for times up to 20 hours. The presence or absence of the superconductive phases with 7, >
~ 80 K was tested by means of an inductive method [12] which follows the temperature depen-
dence of the mmductance of a coil contaiming the investigated sample as core.

V

2200 2600

Fi1g 1. EPR spectra of Bi, ,Gd,Sr;Ca,Cu,0, glasses
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The EPR spectra were recorded with a standard JEOIL spectrometer, :n X band, at the room
temperature, on powder samples. The magnetic susceptibility measurements were carried out by
means of a standard Faraday balance and an applied freld of 7,5 kGs.

Results, The glass sample without Gd,O, exhibits a relatively weak EPR
signal with unresolved hyperfine stinctwe (Fig. 1), typical ot the Cu®* 1o0ms
disposed 1n sites of axial symmetry [13—15], with a large distnibution of the
spin Hamuitonian parameters The addition of Gd,04
leads to the appearance of an EPR signal specific to
the GA3%* ions 1n vitreous matrices [16-—20] The lines .
with g > 2 0 are less visible and with increasmg Gd,0, The Cu** fraction (f) from

content the line with gy = 20 predommates (Fig 1) the tOtﬁtmbi‘;Pﬁfr o

Table 1

The magnetic susceptibility measuiements indicate B1;_;Gd,S1,Ca,Cuy0,
a paramagnetic behaviour of the samples (Fig 2) and glasses
allow to estimate the ratio between the Cu®* 1ons and
the total copper ions number (Table 1) The contribu- ® £(%)
non of the Cu?* 1ons to the EPR spectra may be ob-
served 1 Fig 1. ggé 23 gg
The mndnctive measurementis do not evidence any 0.075 833
supercorductive phase with 7, > 80 K i the glass 010 917
samples ‘ 015 22 57
The partial crystallization of the samples determi- g;_g 30 g§
res mmportant changes mn the shape and parameters of 030 36 67

the EPR spectra, which denotes a pronounced change
of the microenvironments around the paramagnetic 1ons
Cu-* and Gd** The EPR signal mtensity for the sample without Gd,O, gra-
dually decreases with heat treatment time (Fig. 3) and practically disappcars
after heat {reatments longer than 10 hours

The shape ct the ET'R spectia from the samples contaming Gd,0y modities
with the inciease of the crystallization degree of the samples One remarks a
shaie dimunution for the signals with g ~ 60, and a broading of the line with
Zeis ~ 20 respectively This fact 1s sllustrated m figure 4 by the ratio between
the mtensity of the Iire with gy ~ 60 ard that of the line with gy ~ 20 and
by the lme width in {unction of the heat treatment time, for the sample
with x =01 The share of the superconducting phase with 7, = 80 K ident1-
fied in the vitroceramic samples resulted after a heat treatment applied at 840°C
tor 10 hours proved to be maximum for the sample with 01 < x <02

Discussion and conelusiens. The unresolved hyperfine structure of the Cu®*
EPR spectra 1s a consequence Loth ol the strong dipole interactions and of the
high disorder degree existing 1in the samples obtained from quickly undercooled
melts The hugh disorder degree and the homogeneous distribution of the para-
magnetic 1ons 1 the vitreous matrx are proved toth by Gd3*T EPR spectra
typical of the amorphous systems and by the magnetic susceptibility. measure-
ments The pronounced decrease of the signal intemsity with heat treatment
time 1s, an evidence for the diminution of the localized Cu?* 1ons number and,
on the other hand 1t reflects the achievement of‘the structural and magnetical
ordermg specific to these superconductive materials In this meaning, 1t 1s known
the tact that the Cu®* EPR signal recorded from ceramic samples o ¥ —Ba—
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Cu—O and jSi—Sr—Ca—Cu—O systems is assigned to the Cu?* ions from
the nonsuperconductive phases [21—25] and the resonance signal diminution
denotes the decrease of the share of these phases

Having in view the assignment of the resonance hines with ge; > 2 O from
the EPR spectra of the Gd** 1ons in glasses [19, 207, one may assert that in
the samples belonging to the investigated system only a small part of the Gd3+
ions are:disposed in sites of low symmetry and that the most ones are disposed
1n sites of cubic symmetry with minor axial components By the.partial crystalh-
zation of glasses.it takes place a relaxation of the sites of low symmetry. This
relaxation -is: 1llustrated by the share diminution of the lines with g << 20.
At the same time, the microenvironment ‘'of the Gd3* ions disposed in sites of
cubic symmetry is easily-distored, what involves a broadening of the distribution
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range of the values corresponding to the axial symumetry cristalline field para-
meters This leads to the broadening of the line with gy ~ 20 The ncreasing
magnetic interaction between the Gd®* 1ons from the partially crystallized ma-
r1x also contributes to the broadening of the line with ge ~ 20

Unlike other vitroceramics [26] 1n this case does not take place a sufficient
tarfornuzation of the Gd®* microenvironment, at least in the range of the 20
Lours ot heat treatment applied at 840°C, so that it does not obtain EPR spectra
speciiic to the Gd3* 1on from polycrystalline matenals [27]

The correlation between the effect of the heat treatment tume and tempera-
ture on the shape and parameters of the Gd*+ EPR spectra from Bi,_,Gd,51,Ca,
Cu,0, vitioceramics allows to establish new relations between the local order

degree and the supeiconducting characteristics of these vitioceramics mate-
xials
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84B,0,—15Li,0—1810, GLASS SYSTEM
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ABSTRACY. — The electrical property measurements have been performed
on a silver contamng glass system Two expertmental methods have been
used. The temperature dependence of both electrical resistance (R) and dielec-
tric constant, as well as the modification of R with the applied electrical
field have heen discussed.

'

1 Introduction. The interest in the study of silver — containing glasses
results from the possibility of their utilization 1 dosimetry In a previous woik
[1], the paramagnetic silver cenlers m gamma-irradiated glass systems have
been reported In the present paper we concentrate on the temperature depen-
dence of the both electrical resistance and dielectric constant of 84B,0;—15L1,0—
18i0, doped with 109% (wt) Ag.O

2 Experimental procedure. The glass was prepared by fusing reagent grade substances B(OH),
I11,CO,, 810, AgO 1in corrundum cructbles The malt of oxides was maintained for an hour at
1000°C, then supercooled at room temperature in cylindrical form Iu order to obtain a tablet
sample, the glass was heated in a flame and flattened until a flat elipsoid has arisen During
first electrical measurements' indium amilgam coutacts have been used, but they proved to be
inadequate because their electrical resistance has been rising with time With a soldering gum,
an indium stratum was laid on every side of the samples and good contacts have been obtamned
An ORION type terachmmeter with 50 V, 100 V, 200 V, 500 V, and 1000 V output voltages,
was used to measure the electrical resistance '

Then the sample was polished on the two sides obtamnng a parallel plate of 1.19 mm thi-
ckness By means of vacuum evaporation oa the same two sides of the sample have been per-
formed circular silver electrodes with diameters lower than that of the sample. We measured the
«lectrical resistance (R) using a capacitor discharge method

cn S,
Ut

with the usual significance of the notations The same U(t) = 94,5 V and U(y) = 775 V vol-
tages were measured with 'a Dolezalek electrometer 1n idiostatic connection The measurements
-were carried out usmg a capacitor with negligible losses and such a capacitance (C),’ that the
length of discharge time, #, — ¢, was 10 seconds, at least.

. The sample holder and heater was described in the paper [2], in such a device, the sample
with circular silver electrodes has been fixed between two platinum sheets The temperature was
measured with a Pt—PtRh thermocouple using the compensation method. The heating conditions
have been chosen so that during measurement, the temperature modification was impreceptable.
A double switch allowed the sample coanection erther to the charged capacttor termunals (in order
to find R), or to an RLC bridge output (11 order to measure the capacitance of the sample elec-
+trodes capacitor — Cg)

‘

* Uwverssty of Cluz-Napoca, Faculty of AMathematics and Physics, 3400 Cluj-Napoca, Romania
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1R 3 Experimental  results.
281 L . Figure 1 shows the dependeitce
. of the electrical resistance omn
apphed voltages,m a In R — \/ U
scale, at, various temperatures
at lower temperatures this de-
‘pendence 1s described by the
experunental relationship

R = R, ef+BU'? (1)

2y~

22+

where A4 and B coefficient va-

lues depend on the temperature

(T) at 288X, 4 = 2552 and

B=562-1O —2 V-2, at 342K,
A=2275 and, B =752 X

x 10-2 V-12 Tle samie (1) de—

peridence 1s r1ight for the electric

Yoy b kY tield E=U/d, where d=15mm

uz(ve 1s the sample tlckness For T =

Fig 1 Change of the electrical resistance with the = 288 K, all, the experimental

applied voltage. points lie on the straight line;

at 342 X, the pomt with U =

= 1000 V 1s below line and at hrgher temperatures the relationship (1) 1s no
more available .

The temperature dependence of electrical resistance, correspondimg to the
two experimental methods, are shown in Fig 2. .In every case, a straight lne

201

kL nd

%
0

- 3 . | .
might be drawn m a In R vs 1TC— plot and the electrical resistance, .

w

R = R,e", , (2)

shows an exponential decay when the temperature is rising

The dielectric constant was calculated with formula e = C,/C,, where C, 1s
the capacitance of the sample electrcdes capacitor minus the capacrtance of
the conductors, and C; 1s the computed capacitance of the capacitor consistiig
of silver electrodes with vacuum instead of glass Fig 3 shows the dielectric
constant variation with the temperature. It 1s observed in the 358 K — 405 K
temperaiure range, ¢ does rot depend on the temperature At higher tempera-
tures (T > 410K) the temperature dependence s(T) may be descnbed by the
experimental relat1onsh1p '

e=¢,+ bT ’ 3)
where ¢, = — 1316 and 6 =012 KL '

4 Discussions. The dependence of electrical resistance on the applied vol-
tage 1s due to Poole effect [3] mn dielectrics the generation of new free carriers
leads to the meodification of electrical conductivity (o) with the electric freld
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resistance of the samples a) with mdium contact dielectric, constant., o

and terachmmeter measurements, b) with silver
electrodes and electrometer measurements
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magmtude (E) according to empirical formula ¢ = A ¢*® In the paper [4] it
is shown that such a law 1s true for BaO—B,0; glass system In turn, the BaO—
—3B,0; — 59% (wt) In,O, glass shows a Frenkel dependence of electrical resisti-

vity (p) vs electric freld mntensity [3], g = poe” evE | which m'a Inp.— JE plot,
represents a negative slope straight lime (B > 0) At the lower temapertures,
the experimental data m Fig 1, follow such a Taw, but with a positive slope
(B < 0) In contrast with Poole and Frenkel effects, we found an electrical resis-
tanece ot the studied, glass system .which rises with apphed electric field increase.
Such a behaviour can be explained taking into account the glass polarization.
The electric field between the teraohmmeter -termiuals causes the appearance
of a polarization charge which is the greater:so as the output voltage rises. Hence,
mmside the glass the electric-field felt by. current carriers diminishes and, in con-
sequence, the sample appareat resistivily rises At higher témperaturea, as 1t
is seen 11 figare 1, the above explanation does not hold true because as the tem-
perature rises, the polarization charge 1s dimimishing. The similar polar1zat1on
phenomena have been observed 1n materials with"electronic condiiction’ [6] such
as T10, whose conductivity lowers when, the electri: field 15, switch on, = |
Our experimental data in figure 2a were obtained with : teraohmmeter at
1630 V output voltage, different series of experimental points arranged in the
sho-t lines with more and more slight slopes, correspond to the various measure-



58 V CRISTEA et al

ment ranges of the instrument. In order to test these results, we used the second
method and silver contacts on the sample To our surprise, the experimenta
points also appear as a series of short lines (Fig 2b) Besides, appropriate R
values have been found with the two experimental methods. Computing the
activation energies according to the expression (2), we have obtained W, =
=088 eV and W, = 104 eV, respectively As far as the conduction kind con-
cerns, taking into account the glass components, we suppose that the electrica
conduction in this glass may be ionic. Nevertheless, owing to the sample pre
paration, we must mention that the conduction mechanism is sometimes chan
ging [7] during flame processing of the glass

In the case of the dielectrics, usually, the literature [8] indicates a lowering
electrical permitivity when the temperature is rising But, sometimes the per
mitivity of the dielectrics increases at higher temperatures It was rcported [9
a strong increasing permitivity of the Na,0—BaO—Nb,0;—02810, glass sys
tem, especially at the temperatures higher than 200°C The greater values o
the dielectric constant are conditioned by a more pronounccd polarization o:
the glass. When the temperature is increasing, the polarization diminishes but
as 1t seen in the Fig 3, the dielectric constant (g) of the silver contaming gias:
becomes greater We could give a possible explanation to the experimenta
results (fig. 3), takmg into account the dielectric losses It is known [10] thaf
the imaginary part (") of the dielectric constant is proportional to the electrica
conductivity (), e” = o/e 0, where ¢, is the vacuum electrical permitivity anc
o is the frequency of the operation voltage. Smce the electrical conductivity
increases with temperature, the greater values of &’ are expected at higher tem:
peratures and constant frequencies, but, ¢ dependence on the tcmperature it
not an exponential one, so that our explanation has just a qualitative aspect
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CIRCULAR MOTIONS AROUND A PULSATING STAR

IOACHIM GIURGIU*

Recesved August 28, 1959

ABSTRACI. — The case of a body moving in an imtially circular orbit around
a pulsating star, under the only influence of gravitation and radiation pressure,
1s studied Some relations between the pulsation period and the orbital omne
are considered. The deformations undergone by the orbit 1n some peculiar
cases are estimated.

1. Disturbing Aececleration. et us consider a spherical body of mass m
and radius #’, with uniform albedo, orbiting a central body of mass M » m Let
this orbit be circular of radius ¢ Iet also the attracting body be a star whose
luminosity changes mn time, L = L(f), and let this change be periodic. We con-
sider that the only forces acting on the body  are the gravitation and the radia-
tion pressure The radiation force per unit mass which acts on the orbiting body
has the expression

F,= A4 L(t)/{(4r mcr?), (1)

where 7 1s the radius vector of the body m, A 1s the effective cross- sect1ona1
area of the same body and ¢ 1s the speed of light.

We shall write the luminosity L(#) of the central source in the following
form -

L{) = Lo(1 + f(), @
where L, 1s the mean luminosity.

Let us consider that the central source 1s a pulsating star In this case. °

the varymg part of the luminosity 1s periodic (as we already assumed), let us
wnite this part in, the form

f(t) = ay sin(nyt), | 3)

where a, < 1 is the relative amplitude of the pulsation, while 7, 1s the pulsation
frequency. We have assumed that f(0) = 0 and tlus fact eliminates the cos(1,f)
term.

With these considerations, the disturbing acceleration acquires the expres-
sion :
F, = K(1 4 a, sin(nt))/[r?, 4)

* Indusirsal Ssecondary School, 3379 Baia de Aries, Romanta
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where we have introduced the notation:
' K = A LyJ(4mme) o 5

Let S, T, W be respectively' the radidl, transversal and binormal compo
nents of the disturbing acceleration Since the disturbing force 1s a central ore
we can write [3]-

S K(1 4 apsin (ny))[r2, T=0, W=0 \ (6

2 Variation of the Eecentrieity, We supposed’ that the orb1t of the bod:
m is circular. So, the notion of periastron losses its meaning and that of tru
anomaly v, too ; however, the notions of node and argument of latitude # reman
valid if we consider a reference plane differing from the plane in which the orb1
lies We may therefore assimilate v with #, without restricting the generality
In this case we may write : .
%= n't . o (7

L I

where # is the mean motion, given }Jy:
n=2r|T = [.1.1/2a_5/"”;)‘ (8)

in which p. 1s the gravitational parameter of the attracting bedy and T will hence
forward denote the orbital period of the body m (according to our consideratiois
T is a nodal period). It 15 also clear from (7) that we considered the moment
at which the body m passes through the ascending node as the origimn of time
(t = 0)

We shall study what deformatlons undergoes the 1n1t1a11y circular orbit
under the disturbing influence of the radiation pressure, after a revolution o
the body m (or after a period T) For this purpose, consider the Newton—FEule:
equations for the osculating orbital elements. The equation corresponding tc
the eccentricity e has the form: Co

deldu = Z ™1 a2S sin u, ' ()

‘
P ' 1 [} ’

where we took into account the above considerations. For’integration purposes
one usually considers Z = 1 (see, e-g [1])

The variation of the eccentr1c1ty over a period is given by:

R . o Yer oty Laloaoo . N . .
A B (defauyan, SRR (1]

or:

. T. -
Ae S (dejdt)at : - (1r
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We shall use this last equation Taking into account the formulae (6)—(9),
the mtegrand of the equation (11) has the form.
deldt = K p~"2a=32(1 4 a,sin (nt)) sin (nt) (12)
T
Now, we take mto account the fact that S sin(nt)dt = 0, with this and

0
with (12), the variation of the eccentricily over a period will acquire the expres-
sion

T

Ae = Kau~"ay " S sin (nd) sm (), (13)

0

where the index ,,0” signifies the value of the respective quantity at the initial
moment of the considered period.

Performing the above integral, we obtain
Ae = (Ku)a, sm(2rn [1n)[((1,/n )2 — 1), (14)
or, in terms of periods ‘
Ao = (Kfu)ap sm@rTo/ TN Lo/ TyR — 1), (15)

where T, denotes the pulsation period

3. Deformations of the Orbit. Taking into account the fact that the initial
orbit is circular, we must consider only the case Ae » 0 For this purpose, we
analysed the sign of the expression (15) for Ae One sees that Ae > 0 when:

Te|T, = [12, 32} v I, (16)
where we denoted
L=Uk+1k +3/2). (17)

The equality Ae =.0 (1 ¢ the eccentricity does not change) occurs for all extre-
mities of the above intervals

Observe that Ty = T, (r, = # ) leads to an indeterminacy in the equation

(15) or (14). In this case we way apply I'Hospital’s rule or integrate directly
the equation (13) for # = n,, obtaining

| Ae = =(K]p)ay. , RRE)

Now we consider the case Ae < 0 (which cannot be taken into account).
This situation occurs when

I3

To/f,, <0 12) uln - - . (19)
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where we denoted

L=\ k4112 k41 (20)

If we plot Ae (in K/p. )a, units) versus the ratio T'4/T,, we obtain that a

significant variation /_\e (“normalized”’) takes place only for small values of the

To/T, ratio As to the real values of this variation, they will be estimated in
the next section.

4 Numerical Estimates. Considering the equation (13), we can easily deduce
that the maximum vanation ot the eccentricity, after one period, will be.

(Adhumax = 3172 (Kp)a,, (21)

which occurs for Ty/T, = 0961 We take also mto account the fact that
[10]

Klu=6- 10‘Spr’(LO/LO)/(M/]Vi[O), | (22)
or. '
Klp =25 -1075%0"m)(Lo/Lo)/(M]My), (23)

formulae 1n which p (the density of the orbiting body) 1s expressed in g/cm?3, #*
1s expressed m cm and m i grammes So, the formula (21) becomes:

(Ae)max = 8 - 1074(r"[m)a,(Lo/Lo) (M [Mo), (24)

obviously, with the condition T'o/T, = 0 961.

We shall firstly consider an RR ILyrae pulsating star; such stars are ade-
quate since their masses and luminosities are generally known [6] Before applying
the formula (24), we shall see whether such a case may occur. For this purpose,
we estimate the radius of the initial orbit -

o 2 (0.9 u(T,/(2r)))He, (25)

Taking roughly into account the followmg parameters for such a star [2, 9,
11] T, =06 days, M = 1,5 10®g, one obtams @, =2 - 10" cm. But the
radius of the star reaches more than 3 - 101 cm ; therefore the formula (24) cannot
be applied 1 the case of an RR Lyrae star.

Remaining to such stars, let us consider a particle orbiting around an RR
Lyrae variable with a perlod such that To/Ty 15 of the order 10% Takmg into
account the fact.that (see [9])-

(Lo/Lo)/(M[Mo) = 0.5 - 10, ; (26)
and considering the #%/m ratio of the order of unity, we obtain from the formula
(15) that Ae < 109, namely, after one revolution, the particle practically returns
to its circular orbit. ,

Let us consider now a long-periodic pulsating star, in order to may apply
the formula (24). Suppose that the orbiting body 1s a fictitious artificial satellite
with the physical and geometrical features of PAGEOS 1 [5] For such a balloon



CIRCULAR MOTION ARGUND A PULSATING STAR ' 63

satellite, we obtain that 7'?/m =~ 42. Let us also consider that this satellite orbits
at such a distance that 7T'(/T, = 0961. In, this case, (24) yields:- .

Ae = (1/30)a,(Lo/Lo)/(M[Mo). 27)

ThlS means that, it the considered Jong-periodic pulsating star is such that a,(L,/
o) (M[Mg) 2 30 the initially circular orbit of the body m is unstable ; 1t beco-
mes unbound after merely one revolution.

5. Comments, We see that, in order to obtain significant changes of the
eccentricity after one gevolution, the star must have a long emough pulsation
period ; also, the orbiting body must have a'great area-to-mass ratio. Generally,
the perturbations turn out to be very small, but cases in which the eccentricity
can undergo a sensible increase are also possxble Moreover, there are also cases
when the eccentricity growth can make the orbit unbound.

However, a question remains:what happens with orbiting bodies having
revolution periods which fulfil the condition (19)? Although decreases of the
initial eccentricity after one revolution cannot be admitted (namely negative
values for the eccentricity), such orbits are nevertheless equally probable as
those for which the condition (16) 1s fulfilled. This question will be treated
elsewhere

A last remark the problem of the behaviour of the 1111’c1ally circular orbits
around pulsating stars can also be treated by using the changing gravitational
parameter theory (see [4, 7, 8]). Nevertheless, the methods and results exposed
in the quoted works are valid for the orbit evolution along very large time inter-
vals, while the present results concern a time interval of one revolution only.
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ON THE TWO-BODY PROBLEM WITH CYCLICALLY CHANGING
GRAVITATIONAL. PARAMETER

[
VASILE MIOC*

Recewed : September 4, 1989 . s . ;

ABSTRACT. — The orbttal motion 1n the frame of the two-body problem

with changing g,rawtatlonal parameter 1s studied Estimates for some oscula-

ting orbital elements in the case of a monotonic variation of the gravitational

parameter are presented' These estimates are used to the study of the orbital

motion under .the influence of a cyclic variation' (constant amplitude, but

changing frequency) of gravitational param°ter considering an imtially elliptic

orbit. Conditions for the stability 'of'the motion (neither fall, nor escape)

during an ‘arbitrary number’ of cycles of the gravitational paramater are given
1 Introduetion. The two-body problem with variable mass was studied
by many authors (e g [4, 3, 7, 171), from different points of view and by various
methods The physical frame of this problem 1s the following one  a point mass
1 orbits at a distance #.another point mass M, under the influence:of the gravi-
tational attraction of this last one Of course, the motion 1s plane and featured

by the equation (eg. [16]) ‘
Cddrld — C¥rd = — G(M + m)[r?, (1)

where C is the constant angular momentum, while G is the gravitational con-
stant If the masses are constant, we are in the frame of the standard two-body
problem, which 1s well known and studied The two-body problem with variab le
mass assumes ‘that the sum of the masses changes 1n-time (usually due to the
time-dependence of M). ITn this case the motion remains plane and 1s described
by the same equation (1), but the numerator of the right-hand member 1s func-
tion of 'time ’ EERE : o

This problem is a peculiar case of a more general one the two-body pro-
blem with variable grav1tat10nal parameter The features of th1s problem, for-
mulated m [9], are’ given below .
. 2, Variable Gravitational Parameter. Cons1der the same dynarmc system
as in the classical two-body problem, but this time the pomt mass # is also sub-
jected. to,a perturbing force (of unspecified nature) which is central (its support
containing the attractive centre M), acts continuously and obeys an inverse
square law. The relative motion of # will st1ll de plane , the equation which descri-
bes this motion will be:

&Er|dtE — C2frd = — G(M + m)Jr2 + K, (2)

where K[r? is the perturbing acceleration ‘undergone by # as an effect of the
above mentioned perturbing force.

* Centrs for Asironomy and Space Sciences, 3400 Cluy-Napoca, Romama
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With the general hypothesis that the quantities M, m, K and even G are
time-dependent

M= M@E), m=m@), K=K, G=G(), 3
the equation of motion acquites the form- ‘
Arldt — C3rd = — pfr?, 4)
where we denoted
b= ) =GM +m) — K (5)

The equation (4) has the same form as the equation of motion in the classical
two-body problem (it @ were coustant, the respective equation describes the
standard Kepler problem) For this reason, although the nature of the pertur-
bing force 1s not specified, we called u of the form (5) variable gravitational para-
meter

The variation of y in this general meamng can be due to different factors
or combinations of lactors We give here some examples:the variation of M
1s the most nsed condition (see above): the variation of both masses was con-
sidered mn [11, the variation of G is assumed 1n {6, 20], the problem with time-
dependent M and/or G 1s studied i [19], lastly, the variation of K (due in the
quoted papers to the luminosity change of the central body) was considered in
[10, 14, 18]

Different aspects of the orb1ta1 motion with changing gravitational para-
meter were studied m [2, 3, 8—15], etiher for a specified law of variation, or
for the case when only the type of variation (momnotonic, periodic, stochastlc
mixed) is precised Every peculiar or more general case can be applied to the
study of a concrete astronomical problem or situation (for details see [2]).

3 Monotonic Variation of the Gravitational Parameter. In the next two
sections we shall assume that the gravitational parameter changes monotonically
m time (increases or decreases continuously) The study of the motion in these
conditions can be performed by using various methods. For instance, one can
use the general method described in, [9], based on the stroboscopic averaging
method The theory ot the adiabatic mvariants can also be applied, as in [19].
We also mention the method used mn [5], or those used in [8] and [4] for the
study of the evolution of the osculating orbit.

The essential condition which must be fulfilled along the time interval [#1s
t,] on which the motion is studied is.

- dufdt 20, Ve[t LlcR, (6)
for monotonically increasing gravitational parameter, or:
duldt <0, Yie [f, 6,1 < R, (7)

for monotonically decreasing gravitationai parameter.

4. Basic Equations. The starting equation for this study is the equation
(4) of the trajectory, in which w = p(f) 15 1 our case a continuous, monotonic

5 — Physica 21989



66 .V MIOC

function of time. Since the point mass s moves under the influence of a centra
resulting force, its motion observes the theorem of angular momentum :

7 dujdt = ' - (8
where # is the argument of latitude, taken here as polar argument in the systen

of polar coordinates (r, u)

Another basic equation we use is the mtegral of energy wrnitten 1n the samu
polar coordinates (r, #)-

(dr)dt): + 2(du]dt): = 2ulr + h ©

In the standard two-body problem, i (the purely gravitational parameter) 1s
constant, and % as well (h'denotes the constant of energy) In the present case
both p and h are time-dependent The quantity % = A(f) was called in [4] the
quasi-integral of energy

If we remove du/dt between (8) and (9), the integral of energy can be written
as a prime integral of the trajectoty equation (4) under the form

(dr]dt) + C2r* — 2ujr = (10)

Differentiating this equation with respect to time and taking into account

the equation of motion (4), we obtain the law describing the time-variation
of &: g ‘

‘ dhjdt = — (2)r)du/dt, an
or, immediately, the dependence of % on the gravitational parameter
@iy = —2Jr. (12)

.- . Starting from these formulae, ve -determined 1n (31 the osculating orbit
of the point mass m at an arbitrary instant For the present study,; we shall use
only few orbital elements, namely the eccentricity

e=(1+ Cipaye, Co (1)
and the distance of the pencentre ‘

g = Zmm = (C¥u)/(1 + 6) . (14)

If the oscula‘cmg orbit is. elhp’ac the apocentre does exist, too, and 1ts distance
is given by the formula °

Q= 7'mrx'j (C2/P~)/(1 —e. (15)
In this case, we obviously have /

' <r<Q—" . (16)

A fact must be emphas1zed. since the real orbit is a perturbed one, the
elements ¢, ¢ and @ refer to 'the osculating orbit corresponding to a given
"instant 2. /s

5. Basic Inequalities fer the Initially Elliptie Motion. In [4] there were
given double-sided estnnates for some osculating orbilal elements i the case

/

/
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»f the monotonically changing gravitational parameter (whose time-dependence
s due to the time-dependence of M) For this purpose, the following double
inequality was used

— 2p(1 + ¢)JC* < dhjdp < — 2u(1 — ¢)/C?, (17)

which can easily be deduced from (12), (14), (15) and (16). Of course, the first
inequality 1s valid for every type of erbit, while the second one is deduced with
the assumption that the osculating orbit is elliptic.

Let us mark by the index “0” the values corresponding to the initial instant.
Let also suppose that the initial motion is performed on an elliptic-type orbit
(ea < 1 or hy < 0). The estimates given in [4] are obtained in two main situa-
tions - : '

(A) &> pe, with the subcases-

(A1) " < poll + e),
>

(A2):u ‘ to(l + 20) ; (18)
(B) u < W, with the subcases: '
OB pll —e) )
v (BZ) g3 pp(l — 6p) 5 ek
B2 ol = )2 20)
(B2):p < ELO(} — eg) 27 .

P

Obviously, the cases (A) correspond to the motion with increasing-gravitational
patameter, while the cases (B) feature the motion with decreasing gravitational
parameter

The above n'Lellthlled double-51ded estimates, determined by starting from
(17), are the following ones:

1= ()1 —¢)) 5 65 {é‘f”/“)(l el — i;; (21)
Cze — ol = e < g < [T = Cliest F el (D 22)
Qo = Coflpell — 6) 50 \{g//f‘” ~ ball e, s (23)
o — 2 — @/@ s ks {}‘ - /ig*‘\“ ol o &21; 24
)iy — 13 5 (i (go/@)(x“iea, )
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C20 = el — <),

do = Cizo (1 + e < 9 < [ o (26
Qo = C2/(ue(l — €5)) < O < [OC:/(ZP- — ol +} &), EE:;, (27
o= 2o =iz > 3[BTl (8

Remark 1 1If, for mstance, we consider ¢, — 1 (near parabolic initial orbit)
in the left-hand sides of the estimates (22) and (23), we obtamn

CH(2e) < q < Cfu < Q < o0, (29)

These limits were fourd by us m [3, 13]. Other such results obtamed bv us in
the quoted papers (concerning, for instance, the orbital energy) can also be found
again on the basis of the series of estimates (21)—(28)

6. Cyelic Variation of the Gravitational Parameter. Let us now consider
a special type of variation of the gravitational parameter Suppose that p reaches
successive maxima and minima, and, in addition, all maxima are equal to a fixed
value pmex, While all minima are equal to another tixed value pmy In other words,
plotting . versus time, one obtains a curve whose maxima are all lying on a paral-
lel to the time axis (Wh1ch is the axis p = 0) at a’distance pmax from this one, and
whose minima are all situated-on _another parallel to the time-axis at a distance
Pmin from this one On this curve, the _variation of y between two neighbouring
extremal pomts 18 monotomc
"We shall call ¢yclic vartation this kind of Vanatlon of the grav1ta’c1onal para-
meter. Let us justify this denomination, for this purpose, cousider a parallel
to the time-axis, situated at a distance gy, € [Umm, Pmax] from this one Denote
by uo, pf,‘“, y.f,“, . the intersections of this parallel with the.1—th, (1 + 1)-th,
(i + 2)-th, ... branches of the same type (ascendent or descendent) of the curve,
reépectlvely. Also denote by #2, t?.H s t?+2, the moments of time corresponding
respectively to the mentioned intersections. In other words
w() = po= plin) = pot = pli) = W= =p,, (30)
namely t‘ s ,+1, t,H, represent the moments when ) re/aciles the value rzr on
branches of the same type'of the curve During ‘every interval [1Y, £.1), [for
ff+2) etc, u reaches in a cettain order all possible valftes between Ponsn A0A Yamas
each such a value 1s reached twice (ob\ ously, except the values pmax and pm,
, which are each reached ouce) That is why we called cyclic the vanation of p

An interval [t,, ,+1) will be/ ‘called by us'pgcycle (associated to the value w)
However, in the following /ve shall consider that the end of a cycle cowncides
" with the beginning of the ‘next cycle (1.e we shall consider the cycles as closed
intervals). /
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An essential fact must. be emphasized Hora,giveney ?r?#o%i*‘h%.b%o‘z?yf}@
are not of the same length; also, for a given w = u,, the u,-cycles are different
each other. Moreover,~1ff pg # wy, We have generally, with our notations:

APSTAN e e o 7 R Gy

. Emoe = 0 pd i gl ol i 2 (31)
rien et ar et gt g orl s 0l apigatrpiag orld g ) hqs ({85 sl e et
Hatilely tHe tydle’ dehnidd B oo ficbesetva ahniin @@r)”d g:(égghn(gi)'ér[é’xfcﬁes
{the i-th and the (1 4+ 1)-th ones) has a vanable length, dccording ‘to the valie
©f, u chosen for the beginmng of the c¢ycle.

With these considerations, we see that the cyclic variation of the gravita-
tional parameter 1s more general;than a:peripdic-variation ,(with. only primary
maxima and minima) Indeed, a cyclic variation (in the above defined meaning)
{1 which all cycles have the*same:length'is-a periodic variation. This peculiar
case of cyclic variation of p (periodic var1at{1on) we{ts st[udied m [%, 15, 1[8].
~OTG s QIR LY T 0 S s TS HEYEER N T A IRIOT, B JIuifth

7 Boliition of 'the Titially Elliptic Orbit over Ome Cyele. It is’ cle ’gﬁﬁéw
. . . . . . . . Y
that the orbital motion in the case of a cyclic variation of the rawtatlonal para-

“inétér cafi-be studied cycle b dyele! Considet Bibh’dicyile %)‘fﬁéﬁ@tn“ﬁll_i: ty =t
and a partition of this cycle ot =

e \ Fvay =Y == o0 > v o — Y __ B W 7Ty

M . , VA qto >< 4 < tb‘S tl,[“l JFORRE LA (32)
such that: WL AT vl 2 o Dotaggs D) eolsiges LT

Sk LN oy - v S ~ -~ " . K.

) C L lg) = ey Blla) = dme B(Fs) = st () (33)

Y Haniler {1l WHIGH' this 5018; detdritined By (32) 4dd ;53 Mo Thyénl $Hdws
that the initial instant corresponds to an ascending" branici vf the * dive pt).
. fin other words, during gl}is cycle, u increases, zeaches its maximym (at #,), then
decreases, reaches its mmimum (at %), ther incréases agan dpto its wmtial value
{8t the moment, #,). If the cycle i§ chosenssuch thats . -, g
E OO B
p‘(tﬂ) = o “(ta) = Hmin, H(tb) = Hmax, H(tl) = tos (34
o o= Dl =Y = ey s s T e — el )
namely p evolves conversely (decrease — increase — decrease), only the inter-
mediate results (at ¢, and #,) will differ from thépreviousiease s hevresultsiat
tpe end of) trbe cycle are the same, as we shall see. .
“&Fi - Coming back-to the' eyele defitidd by (32) (a‘ﬁd“(3r3)‘f .we shall“étirdy the motion
applying successtvely the estimates (21) — (28) to each of the three intervals:
S{0572,0, R T A T, Y, T WE Hidy Proclied- ih this \i}dy‘éﬁfc;j ddtitig each siich
an 1nferval the varation of the gravitational parameter 48 mfondtoric® A¥'to ‘the
‘go‘tatxons, each considere\d parameter will be r_nra\r‘ked by the same index as the
{tor responding-1nstant (¢ g e(ly) =", and 0 om) o — LhLvl )
_Let the imtial orbit be elliptic §en <1 (Fgr the e?centfrlpit',y,,the estimates
(2 174 15¢ ‘Yﬁttéﬁ' ek S L AR R S ECL P 2d FS A it
hans! in 31079 Dutodiedos 3] 10 fHastenn rusottinyte »dr 18 § bas v o4~
{ortortnrrrsty ails £ /é’az(xf'/’mg bonrgottug =, 11 \

U ogregor top slosae dons ¥ . N
t g / ¢
frototth b Jv:(Hmh"nﬁx) 'Phﬁﬁ[))ﬁ_u LS CarS AT &"q]zl'f"!‘??i@ waﬂ)ﬁn ,mhmus:?;ss)
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+ Applying (25) 'to (85), we find after calcutafions:
("LO/(‘Ln‘un)(l + gO) - 2(P-mx/llmm) + 1< ey <
2(Wmax/tmn) — (o/ttmun ) (1 — &) — 1 (36%

_Finally, by (21) and (36), we obtain the estimates for the osculating eccentricity
*"at the end of the cycle

eg — 24 < ey < ey + 24, 37y
* where, for simplcity, we denoted by A the ratio
\ ' A = ( - P-mm)/l-’-o,' , (38)‘

namnely a relatwe amplitude of the cychc vanatlon of the gravxtatlonal para-
meter

Tor the distance of the pencentre -the estimates (22) acqmre in this case
* the form:

! -

C?J(2umax — po(l — €¢) < 9a < go = C¥/(c(1 + ¢0)) (39}
The estimates (26) applied to (39) give after calculations
\ CH(2pmax = ol — ) < gu S @ < C¥(po(1 + 60 — 24)). (40}

_ 'The distance of the pericentre at the end of the cycle can be estimated fiom (40}
to which one applies (22)

C¥(o(l + €0 + 24) < g1 < g5 < Cfluell ¢ —24)) (41

Finally, we estimate the distance of the apocentre By (23) we have in
our case-

C*(2pmax — po(l + ¢¢)) < Qa < Qo = C¥/ (1ol — €)) (42)
From (27) and (42) we find
C?(2tmax — ol + ¢0)) < Qu < Qs < C¥(pg(l — ¢ — 24)), . (43}

. while applying (23) to (43) one ontains the estimates for the apocentric distance
at the end of the cycle

C*luo(l — ¢ + 24)) < 0y < Qa < C¥lpo(l — ¢ — 24)) (44)

Remark 2 The above results constitute estimates for the osculatmg ele-
ments ¢, ¢ and Q at the significant mstants of the considered cycle of length
T, If such a cycle (of length T,) 1s performed conversely by the gravitational
parameter, namely observing (34), only the intermediate estimates are different.
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For instance, using the same procedure, -the estimates for the eccentricity at
%, and f, are respectively - N

1 — (sofpmn) (1 — 60) < €a < (ofttma)(L + o) — 1, . (45)
2t ftma) — (thoftmas) (L — €9) — 1 < & <
< (ofpmas) (1 4 €0) — 2(ttrmun [ptmax) + 1. (46)

As to the eccentricity at the end of thexcycle defined by (32) and (34), from (25}
and (46) one obtains the same estimate (37) as 1n the case of the cycle defined
by (32) and (33).

Remark 3 Consider a cycle defined by

bo < B, <'ty, (47)
such that:

(o) = tmm = Yo B{la) = Pmax, R(E) = Wo (48)

mnamely a peculiar case of the cycle (32) — (33) In this case, the estimates (37)
or the eccentricity at the end of the cycle become

to — 2tmaclto — 1) < 01 < ¢ + pmacli) — 1 (49)

This result was obtamne d 1n [4], where a cycle defined by the relationships (47) —
— (48) was considered

Remark 4 Consider the cycle defined by (32) — (33) and the estimates
{87) for the final eccientricity. The left-hand side inequality of the estimate (37)
passes mto the triv al inequality ¢, > O for

A > enf2 (30)
If the condition *
A << eyf2 (51)

is fulfilled, the final eccentricity cannot become zero (the osculating orbit cor-
tesponding to the instant £, cannot be circular) In order to have ¢, <1, the
following condition

A < (1 — e)/2 | (52)

must be fulfilled It 1s interesting that the conditions (51) and (52) coincide for
¢, =005, 1n other words, an orbit with this initial eccentricity remains purely:
elliptic at the end of the cycle (1t cannot become neither circular, nor parabolic
or hyperbolic) In the peculiar case of the cycle defined by (47) — (48), the
amplitude A4 1s replaced in (50) — (52) by pmax/ito — 1, the formulae obtained
1n this way coincide with the similar conditions given in [4] -
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2 I8 Evelution ' of " the ' Initially* fl'fllil’)iié “Qrbit “Duiring’ Loty _Tiri_]ké"“‘iﬁi:erq"a]"s.
The estimates {or the orbital parameters ¢, ¢ and Q correspénditig to the Gscuta-
ting orbit at the end of one cycle are given by (371)’ (41) and (44), respectively.
Tkt us now see lwhat happeéns aftet/a”time interval iheludidg 7 cycles (obviously,
of different lengths). For this purpose, we shall denote by y, 7 = 1, #, the value
of the element y € [g, 77, 'Q} at the énd -of the sth-eycle - Since at the beginning
- of each cycle the gravitational parameter has the same value p,, we obtain the
‘estimates for y, applying:(87);=(41) and -(44)/to yi ©One easily obtains, for 1n-
stance, the estimates for the eccentricity e,.
168y mott o FE; b (L8 o Dorsh Ll dEr o s Loy te roe e sus s 07 AL
Baral 5170 03 e vess orber A4S e reg A AL Lty /“L;‘g\r seo Pk (38)
8 s LE
The estimates for ¢, and Q, are th%’?ﬁd; ISa ‘?;al)‘?%O‘}? %bmoa LoAmansl
Generalizing, we repeat the procedure # — 1 times m order to obtaus
estimates for the elements y, So, ;chg. estimates for the eccentricity after # cyclie

are:

eo — 214 < e, < ¢q + 2ud (54

A b= (0 et = W T ey = ()
From (41) one obtains the estimates Tor the distance of the pericentre after #
cycless. . -og Lfdx Lazs e ol (88 — CO u LsL LnZ 10 3287 T8I G 5 TS e
C¥(poll + oo+ 2mA)) < guE CH(g(L 2 i ZRAN = - - (55)

‘f*‘iﬂally, the estimates‘for=the distarice. of thé dpotentre %t_ ‘the end of the n-th

cycle are determined from (44) 1 the forrrﬁ . .
=k e dznaizae ez gl Dodnddh sfovo sowdae [ a1 bemsido esa Huesy sl ¥

CH(poll — o + 2nd)) < Qp < C-jlug(l — ¢ Lombigyoo 25 (BH56)
catnrpaes W Lng €8 — 88 o Ponnsh slsl widr tobrerol Lodviie:i
Gt Remark, 5-As, m-the case of Remark, 4, Tonc-gotices, that  for. 4::eo/(2n)
the leit-hand side mequality (54) passes into.the trivial nequality eq 0::The
eccentricity e cannot reach the value zero (ciicular orbit) as long as the com-
dition : IR
A < eof(2n) g, s (OA)

s fulfilled, and cannot reach or exceed tlie unit (untound orbit) if the inequa-
lity :

. - T 4 ’ P
S0 1dio o zonsivoea 20l 0Ty )4"~J (1 ru'::-'7 TR AR I Lt SR Lokl é
E — o) (2n .
+ ot b L osvsd o2 isbie al "isf‘f,g..- 7 o) :(:::)u JeRIES 203 ot Ll A_fm«(g-)>
" COIT L e
holds. The conditions (57) and (58) cowncide for ¢, = 05, as in thé cdse ol the

conditions (S1) and (52). ¢ = s

9 Stability Conditions. There are two limit situations for an initially elliptic
otbit kdfiety 18- EdnbitfuotiSly- pertiiriied ; the TAdiHS fx'fe'c'tar—’bé'co‘ﬂmé-zéfrof (the point
tiass. o llgTon Thiéattractivesbiody 2] 6rEhe) STbit' Becohids wiibdtind’ (pardbolic
or chiysplrbolre, 258°1)2 A5t 1oty 248 ot 'suehi g -hihit sitiiation! 0dtlirsy we' say “fhat
thé orBit 1s:stabre! We 1Eﬁall"’é}’iém‘ih’efthg‘?é‘c’ébﬂiﬁﬂ donditiofis fbt) e "inittally
&lliptielorbibs i theddasé whens thie “Fravatational’ pafatieter changes “cyClidalty
{(in the meaning *of (th&é>t\Wo "PreviotS séftion) +#° v Sb 2o TiE Al
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5

et of ctbroges s gdio einpliuoen oily 1o w l\> 101007 euthnt o1l entoroh v
Lo 13% s‘gly,. the.fAll, sitnation;, One easily, notices {mmg 16) (55) ;and

(56) that the r dius' vector cannot become zero (in other w01; ¢ cann

-onIM ). 0 dourse, thid sltudtion: ehangds if+Wwe cOnsidér’ M"é’s t? “&“bg

fiohzedoitand ] fiftitht dimrdnslomws» o1l 1r shuinr vw el ounlinmlsh o7 1l mum

e 1 } %) i hf[ 1 oAl ) a)l 1 101 nmhhu);
) Dot I RS o i e g e o, <l
20) - o ({1 Sgy e R 1))t (59)

(USjngotﬂ)iaueStiMatem(,55);,;mhericondition((59) tbecamesititr vy aloul o 1ot
o il ot boe jult h!qf}((,‘ﬂ;f(;p&k)f.uf(l UDJe fyyp2Aysrson s 110 AW 60)

winn veqnlo of eolavzo to rodumn uilf tiory ).IO} (et v 1otlenl sdi rlomen) o

witeteiithe/mdeesdary 1conditiond €2/ (g Ry 7ot o /wsnf{ﬂﬁnedf fog Hh! 1&1&31“1@3:1
omb1t ifovernused! {14y antD ‘chfeuth*mal“nuvzq‘u(aht'yl L Roteotg sy 2o Tl me
i mherinelgiality 60) Showistnat! 4tltdast hs' 10HY ds ”t‘ﬁe‘ﬁﬁm'ber)a’z' of &clks

fulflls this condition, the orbit remains stable from the point of view of the f’aﬁl
(’m,ldo&sniyot(s{sau\idnuM.‘; se sunnuwh ool tnidd treoeen Tnor o ynties

‘“!“’Léf“tk‘%bhsidﬁf”n’é H&tllll h t{ﬁ{;ﬁé 8”””%1‘3:1 ¢ “ésjﬁ“é“ 155}
iinte Wdéotint fhé!a&ieqﬁén ﬂf Wod o If&ﬁgéff A Jeiiip 1 F;;R‘)’q

saun ol es ynol 25 fesol Tr, qu)u mn 1 3ol iy 5l /rmmu P

O (E0) [)m (10) 10 (£0) bus 408) (11u@f)rf(2)A)>rh hllnl olaro bueqnly to ('61{) ’

o) to rtdidete ol otseny doddw eu()mhxm) i1 )x.-/rl(' Sueor i) 1o erend ol

‘Tnuathesowosdsy ut 1ddstoagdotigtas thel niiribdd 7o b ¢ ?’é’lb’s Fiifilé £HYehditish
- (61); thelbrbirt itetihlnd istablerf? i ¥he pbint ob Wik ot hire esbapld (18 beIain

eccentricity does not reach the unit). ounteth orttnosiog Tteory hos o sy

Examining the stability conditions (60) and (61), we notice that two situa-
tions can occur. If the condition
PRI N -
C?luy < 2R (62)
i O It snraldortt e i ol 0 i
Nfulﬁl'le(li then (Gf) 'Ifsllsll)éléné'éciijlgxlice' of (65‘) d(fgnl\'fgns 1’,57, &,‘ f ,,gﬂ};é)sxfég )\con—
d1t1on

BEel) ooq A [ul) to shietsan'l sV prutur fOC

(#nel) 1o & o .(,1. RIRIVAE L S n&\Cz/}L 03 2R wiwee Lol 4 wmigaiaad) (63)

J(ATer) BBl e AN aoved s dal D1
is fulfilled, then (60) 1s a consequencersaf:1(61)s Tax the. casesin which C3ug= 2R,
the conditions (60)ramd (61)1are equivalent. dynrH 4 [ nodolzzvd L5 8

<4 b\l Reyrgy ke 6 Rfﬂgld&r that the’ prébdbﬂi’éy"gm"géé Ré 4 xn?ram uﬁ)f "5{1
Ieache(s8 Jts minimum value. Let us find the nonesca e Condition ot th'“’ 3 taélt

Stad' tH Gt “yc1e"‘U‘ i

n
S K 3 S TR A ST R VT B AR TIRTES | ml\n A ER T

(goel) ev .1 g

-'n‘l RETACT XN WY L SR [J-me)/h[ \mm; W m?lu& )(\u?\—— 51 n 2 ui )1 l< % 4 l ; n (B IA (645)
Byel L dnrg

—fn?mm ;f‘h 19?\ E%k}ng\xl p(xtonapc 11\11} n&;!\ ﬁﬁ&\?\btﬁlxnsj ,1'}6 alireqqyl e§tab J,Slhfid con-

dition (Bel) t,0F rurig

A Reamyk 7 ThE Nondstape dondition - DE0EHE Leid of the- ‘n-%(q cryclg‘dﬁn ‘afsb
be formulated in another way, namely imposing the conditidn 7, < 'do, Where

'

ng (33?“ this' condftlb\i’l éé(f“}r ”‘ch?{ forrp.! ,

.
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#y denotes the radius vector of # on the osculatmg orbit correspondmg to this
mstant Using (16) and (56), this cond1t1on 1s equ1valent to (61)

Remark 8 Smce when g = fmm the escape plobablhtv reaches 1ts maxi-
mum, let us determune, as we made 1n the case of Remark 6, the nonescape
condition for the respective moment inside the #-th cycle, but using this time
the condition 7 << oo Using (16) and (43), this condition becomes

C2(o(1 — eams — 24)) < o0, (65)

from which, taking into account (54), we obtain once agamn the condition (61)

Remark 9 We notice from (60) that the greater C?/u, and the smaller ¢,
are (namely the higher g, 1s), the greater the number of cycles to elapse until
a possible fall on the attractive body will be The same-formula shows that the
smaller 4 1s, the greater # will be Also notice from (61) that the smaller ¢, and
A are, the greater the number of cycles to elapse until a possible escape will
be. .

Resuming, we may assert that, for a dynamic system (M, m) whose gravi-
tational parameter undergoes a cyclic variation (in our meaning constant ampli-
tude, but variable frequency), the mtially elliptic relative orbit of the attracted
point mass remains stable (neither fall, nor escape) at least as long as the num-
ber of elapsed cycles fulfil the conditions (60) and (62) or (61) and (63) On
the basis of this result, physical conditions which ensure the stability of the
orbit during a long tume interval are slow variation of the gravitational para-
meter (long cycles), small amplitude of this variation, 1mtial orbit of small eccentri-
city and great pericentric distance

REFERENCES

1. G N.Dubo S h1n, “Celestial Mechanics. Basic Problems and WIethods", Gos Izd F1z,—Mat.
Iat, Moscow (1963) (Russ). ’
2.1 Giurgiu, Thests, Unwversity of Cluj-Napoca (1988)
I Giurgiu, V Mioc, Studia Unw. Babes— Bolya:, Physica, 33, No 2 94 (1988).
I, G Glikman, Astron. Zh, 53, 185 (1976).
L.G. Glikman, Astron. Zh, 55; 873 (1978).
R.A Liyttleton, J P Finch, Astrophys J. 221, 412 (1978)
IV Meshchersky, “Works i the, Mechanics of Bodies of Variable Mass’’, Gostehizdat.
' Moscow, Lemngrad (1949) (Russ)
8. V. M1oc, Babes— Bolyar Unw , Fao Mat Phys Res Sem, Preprmt 10, 63 (1988)
9. V. M1oc, & P4l I Glurgxu, Babes— Bolyar Unw , Fac. Math. Phys. Res. Sem , Pre-
print 1, 79 (1988)
10. V. Mi1oc, A P41, I Giurgiu, Babes—Bolyas Unw., Fac Math. Phys. Res. Sem., Pre-
print 4, 41 (1988) )
11, V. Mioc, A P41, I Gi'urg:u, Babes— Bolyar Unw., Fac. Math. Phys. Res. Sem , Pre-
print 10, 3 (1988)
12, V. Mioc, A. P41, I Giurgiu, Babes—Bolyas Unw , Fac. Math. Phys. Res. Sem , Pre-
print 10, 21 (1988).

'~1.a=sn.~=s»=‘



i3

14

15

16

17
18

19
20

ON A TWO-BODY PROBLEM 75

.V Mioc, A. P41, Y. Giurgiun, Babes—Bolya: Unw , Fac Math Phys Res Sem , Pre-
print 10, 91 (1988). . C o R

v Mioe, A P4l 1. Glurglu, Stuﬁza Unw  Babes— Bolyai, Physica, 33, No 2, 85
(1988) ’

.V Mioc, & P4l, I Giurgiu, Studia Unw. Babes— Bolyar, Mathematica, 33, No 4, 67
(1988) Co- e

F.R Moulton, “An Introduction to Celestial Mechanics’’, 13-th ed , Macmillan, New York
(1959)

.VV Radzievsky, B E Gelfgat, Astron. Zi, 34, 581 (1957)
W.C Saslaw, Astrophys. J., 226, 240 (1978).

M P Savedoff S Vila, Astron J, €9, 242 (1964)
. C M Will, Astrophys. J, 169, 141 (1971).

1 [ *



TUDIA - YAI, PHYSICA, Y‘('{_IV 2, 1989
SC‘T TA UNIV BABES$S-—BOIL s i e 1 FAGE e+ s

So¥L e wst U TTYS ¥ A SO S VSYS SRRIPT S L SR I VIS 7 S S B SR B M Aosartr v oat

EXTENSION OF A RESULT CONCERNING THE DYRAMICS ror

e . L ke AT LY Jun i~ oot VoM
FY 7B SN B U WTVR S S GRS W AU E‘}&PANDING SHLLLg 01,
T ! I TEEPR S VP S VAR CTUL S QPRI L SR TT S RIS T RN /I T U2 IR BD SR IV N B AN I D A
o " VASILE MIOC* 19801

a1 £ gaVe wollonoet by d3 3D Cearnne sl futrenlsd or sottouborial of  go ol SN ol
{(la()! )

(TAUL, %R 3R AN woeld e dtloly 1OH rleersesnha St 77 7T NI
(BRUT, U!‘ {“‘ (Ml aelenss ) of B
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accretion on 1ts surface and the a'ftractxo{l roi, thg, centyal 1\ody 18, ‘§1:,1;d1ed; path e o o
the assumption that the mass of inner matter 13 not negligible as agamnst the
initial mass of the shell. The stop of the expansion and the subsequent con-
traction of the shell are pointed out. Formulae which feature both the expan-

sion and the contraction, generalizing the results given m [5], are established.

Recerved Oclober 10, 1989

1 Introduetion., There are many astronomical phenomena which can entail
the formation of expanding shells of matter Such shells appear, for instance,
as a consequence of nova and supernova explosions. The matter flowing out of
certain stars, as the Wolf —Rayet omnes, can also form expanding shells around
the respective star. The activity of galactic nuclet and quasars constitutes a
possible source of expanding shells, too.

A concise survey of the researches performed on the dynamics of expanding
shells was given by Minin [5] So, Oort [9] gave an exact solution of the pro-
blem, considering only the shell expansion drag due to the environment (resisting
medium), and used the results to the case of late stages of novae. Mustel [7, 8}
considered that the shell mass growth is due to two factors the matter captured
by the shell (on its extertor surface) from the environment and the matter ejec-
ted from the central body which reaches the interior surface of the shell. On
the basis of this hypothesis, he studied numerically the shell expansion drag.
Exact analytical solutions of the same problem weie given by Mun [4] and
Gorbatsky and Mumun [3] The only influence of the matter ejected from stars
on the expansion of their surrounding shells was studied by Gorbatsky and applied
to the case of early stages of novae [1, 2]

Recently, Minin [5] studied analytically the shell expansion drag due to
two factors the shell mass increase due to the matter captured from the envi-

ronment, and the gravitational attraction of the central body In this paper we
shall give an extension to Minin's results

2. Hypotheses, Consider a spherically symmetrical thin shell @ts thirkness
being negligible as against 1ts radius 7), of mass m, expanding with the velocity
v into a homogeneous medium of density ¢ At the imitial instant £ =/, the
shell and its motion are featured by the following values

*(te) = 70, m(to) = my, o) = v, (1

® Cenire for Astrosomy and Space Sciences, 3400 Clwy- Napoca, Romama
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i 'fWéfaéffm”tw sphce positions withh rédpdet fo HHETShEIT Tiet'd be the>dis-
ek ’Béfweexf el gbyedt iff spade“and the “attidctive tentretatouid which the
shell is expanding. We shall hereafter use for the respective object the adjectivés
wnper if d <r and owuter if d > r ‘They medium 1s divided with respect to the
shell into inner medium and outer medium. The matter of which this medium
conslstsnis acdordingly dividedsinto dnnenimgttesrand: outels mattes. ,Ofcourse,
the cedtral bddy >igrmot (teonsidered as helonging:.to rthe intlef! matter s »i-u
;v In order to study:theimetion of,the shell, Mmm ({51 took mto account the
iollowing hypotheses
L) JThé sgasodytiamic- effettsi-ard . neglected o silr el -5 ent iy

(if) The gravitational attraction of the central body is considesed: .1
oy (i) The mass of thg shell mcreases durmg the expausmn as a consequence
of the capture of outer “maftét on ‘the €xtérior surfice of the shell.

(tv) The inner matter is not capiured by;the shell during the expapsion
(it cannot reach the interjor S}lrface of the shel 1)/‘ P |

(v) The mass of inner maicter is neghg1ble as agzimsf ‘the imitial ¥eddd bof the
shell gn e Db -y
.« Let us denote by m' the mass of nner matter 'l‘he condition (v) is wrirten
‘)y Minmn [5] under the form* ~ 7!/ , a

T LRI TR N «_f LEPRIS T e -

IR 17‘1 L 45'7:’3—*);8 < ik AN oL v sh oy 9
"o a

==

* ! “Ihese conditions need-some specifications. Taking into account the hypo—
theses (1v) and (v), we see that only at, the imstant {, the inner medipm,and
‘the outer medium have the same dens1ty p, as the condmon (2) shows. ‘For
't = 1,, as long as-{he shell expansion lasts (r increases), only the density of the
outer medium keep-; 1ts constant value p The density of the mner me;dmm }’
dlmmlshes as 7 increases, accordmg to the law bon

- o' = (ralfe &)
'Consider # = O\Iasllbeing thé' instant when' thé 'shelliis ¢jected fromr ‘the cen-
‘tral body. Between this instant and the instant {;, some matter continued to
flow out of the central body, but with a speed much lower than the expansion
speed of the shell. Also consider that at an mstant ¢ = (0, /) thé matter flow
ends, the matte,r flowved out of, the Central ]body durmg the time jnterval (0, ¢
has the mass ' 4nd wé assume that m’ = (471:/3) ors” In this way, we give an
‘explanation to both the comdition (1v) and the: existence of a comnstant mass of
inner matter
. " As to ‘the condrtlon W), Mmm [5] ‘show¢ tat] ever neglectmcr ‘tHe gasodyna—
1mc effects the results approumatef the reahty <? ith'a “suffictent: acctiracy. !
For our study we shall take into accquq’t only the hypotheses (1) — (iy).
Rejecting the condition (v), we shall consider that m’ has tlie expressmn givén

Yy (2), but this mass 1s no longer negligible as against m, We obtain in this way
an extenston of Mmin's tesults exposed n [a]

3 Expansion Speed. The equation of mot10n of the shell can be vsnt‘cen
by using the wéll-known' theorem of 1mpulse '~ . o

‘d(miv)jdt ="— GMm[r3 vy ool L)
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where G 1s the gravitational constant, M 1s the mass of the central body, while
the other notations were already precised. Since the shell motion is.radial, we

have: . ) ;

' S = drfds,
Now we can introduce in the equation of motion the independent variable 7
instead of £ Taking into account (5), equation (4) acqures the form.:

(m)2)d(v?)dr -+ V2 dm]dr = — GMm]r® . (6)
The law describing the variation of-the shell mass with the shell radius has
the form e _

C D m=m A (Anf3)er® — (4w/3) e, ‘ (7)
where we took'into account the hypotheses (1) and (iv)

Introducing, analogously to [5], 'the’ notations

af{r) = (4=/3) pr"/mr, (8)

)

' . !

- a, = a(r,) = (4n/3)priime, . )
the dependence of the shell mass on 1ts radius will be expressed by the formula:
== an(r) = mo(l — a, - .a(+)) S - (10)

Wlth this, the cquation of motion (6) betomes
a(w®)|dr + 6'([&()')/(7(1 — ay + a(P))? = - OGM/; . . (11)
wifh the initial c'o11d1t16n . R . ' ' ’ ‘
w(r,) = o8 (2
Iategrating the equation (11) with the mutial condition (12), we obtain
v = F(I(! — aq + al)), (13)

where , we denoted ., . , . .
L P =1 — QGMP)(—(1 = et + (1 — Bag o 9a3S)r)r, +
S + (1 = ajalr) + a{)}3) (14)
The formula (13) features the vajiation of the shell expansion speed as func-
tion ot the shell 1adius If we consider the hypothesis (v), hence the restriction

(2) hoids, we have a, < 1 In this situation, considering a, = 0, the equation
of motion (i3) acquites the form

v =L)<t alr), . (15)
while the formule (14) 1educes to '
P = 5= @GMJ)(rre — 1+ al) + @0)S) (16

‘The solution (15) — (16) was found by Mimn [5]
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Coming back to our mose general formulae (13) and (14), we observe that
the expansion speed decreases montonically as the shell radius mcreases. Sub-
sequently, there exists a critical value # ot the shell radius for which the follo-
wing equality

vE = QGM|r)(—(1 — a,)? + (1 — 3a, + 9ak/5)r.fr, + (1 — ay)a(r,) +

+ @*(r.)/5) (17)

holds In other words, when the shell radius reaches the value » fulfilling the
condition (17), the expansion of the shell ends

In order to estimate the critical radius # , we shall consider (as i [5]) that
the followmng condition 1s fulfiled

02 > 2GM]r,, | (18)

which means that the shell has an 1mmtial velocity much higher than the corre-
sponding parabolic velocity With the restriction (18) and taking into account
(8), the relationship (17) yields

78 = 45 miv3[(327° G M p?) (19)

The same estimate for 7, was found 1in [5]

4. Contraetion Speed. We saw that at an imstant /, when the radius of
the shell reaches the value 7, the shell expansion motion 1s stopped XLet us
see what happens later, for £ > #, The particles of the shell will begmn to move

i the opposite direction, towards the central body, hence a contraction of the
shell starts

In order to feature analytically the shell contraction, we shall use the same
equation of motion (4) As to the mass variation, we shall use the law

m = m(r) = m, +m' — (4=[3)o'r3, (20}
where we denoted
my = m(r)) = m (1l — ay + a,) (21)
and
a, = a(r,) = (4w=/3)eri[m, (22)

With (21), and taking mto account the expressions of m’ (given by the first
part of (2)) und o' (given by (3)), we obtain that the mass of the contracting
shell depends on the shell radius according to the law

m = mlr) = mo(l + a, — (alr2)r) (23)
Observe that m continucs {o mcrease, since the radius # of the shell 1s now de-
creasing . .

Taking mto account the fact that the contraction motion.of the shell is
also radial (condition expressed by equation (5)), we can use the-equation of
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T oo ET IR RS ARess Variation, 5.0beying, thetayy (B the sapation
~dne Lesrnu i ambm )(L S en llnotaotaomt cuenotaoh Dioge torrnsgay il

-ollal ol z(d(*v-r)/drl—mﬁ(-(ao/ﬂ 2] O e, <o(d g3 Ssophrt. 2dagarpets /[JUJY(24

Jhinnps
with the initial condition : IR TRV E N
] woe B ep e (@Gne et ) e - 1) S )O0EOL) e
FGunly = bt ' " (25)

(V1) Integrating the equation (24) Wvith"thé initial condition (25), we obtain :
ol b emlintlisl v oonly 7 ok r‘-;L{IE m)/f(rllbfi.wll_'ulr(c[&;h‘c) ())'/ ehtow dio ol ”'é(’)"

B h ebn) I‘)rfl/ JI“ lo ﬁm»nm(/) )[Hd N0 dnmn!)u(riu
where the minus sign emp ipsizes the fagh thahidbe motigmds.divedted dtowards
t’hgjcléghré'l[ T)'O)d )tﬂ&ﬂ) F1(1' ’ \en% b)h It et porhthuos uvniwoltol o

(m)’ Fi(r) = @GM|r)((1 + a)¥( L) = gl + a)(efr. — alr)fa) +

o110 ot ot wdund mm""/qg(m';/“u ?FK?’)/%)/Q)-II Hote o} tods s o {27)

Thecofsrmalat 26‘)"fe§.t{if%s b viaeidniok ot thb G fI’ coitt o fonf “sm “éiﬁ I‘ﬁ% U:jo:
of the shell radius Examining the formulae 26 atid @7@) we §ée tha{ tHe deik !
I%Pator m the right-hand membes.at: 3% 6) diigreasey; as v decreascs, tendmg to
thdvalue 1 + a, when 7 tends fo zero, w h1le F(#) tends to infinity when 7 tenda
to zero It follows that the velocity Wﬂl;tcndrfh@, nndamitys fon v w810t and thnsresulls

is in agreement with the collmon the?ry IH other w Tdﬁufi 9 (}o‘% 1 @q‘g}g},‘l)mo’tlo’l
) I / -y I } 3 .
Eu a‘?ﬁ' léf?}f;([oé}fd ‘c(h“?msfk[&# }mmn (7 1[111 ﬁn ) rﬁel}tlﬂ 1DOAK ot Hadde il

f)/mR JE’\P@%’%M}R d‘%d)xﬂontmquﬂml‘mmlSmtés \The estinmtie of e thme thtates "

OF | eFPARSISH ( A, qoutﬁamlow)ofl the rshellis of) m greatrunterest “Blet-itgodehbta
tfhese two mterval by etinde lluns

bhro nl
singe offd oen Hede Ho nogd )r,nn-)TH_»_{e o3 Ht/Hs sthlnng onrishl o o

Cand ot oo il s aogntit 7 2Sn St o o/ (F) sottont o uo'n(%%)
for the expansion txme scale, and ,

(08) o(E\mE) wio o we (Ywe oW

T, =1l —1 Loransh aw n%?)

for the contraction time scale (where / represents the imnstant when the con-
trdrting shell lalls on thée central &4) L

Taking imnto account the fact that both motions are radial, we can obtRft
T, axrl T, by integrating the Lq(uqtlLOH So the expansion time scale 1s

&g by

o re S
Yont ot sd s m) Cwto cnatgorgeo odb ninrosus otar gedet b NOEN! 'f,‘r\/

uthisttnos ol 1o cen mT_u[_L)\ ! rm‘)l([u 9 ’Sj «f A1 71e) Y- obher () to té’d)r
m

.f o1 fs
nnl ol qmb.o TN a )l!v st shuxpb YahA

(g & \ BN
(E5) Using the cond1t1on((1(8)\ a;nd the expr)essmns( 815) for the expansion velocity
and £19) Sonthe funesion. difr, Minin, ] estunated ithe ot deroft nyghitede B

. Obtaining CHICRUTS

et Ille ot to norjom nutth}J_wngJd ((ﬂ-)rl rw} oilb tunoost m‘wx erdn l(:;ﬂ(
fo ot ot} e o o (@) oGy 8 Baees g nontihaos) Iurbo Wik,
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where I denotes the antegral... .o, to.-rs s, oilr of wih o pazins (B

R S IR ORPE LW DI IR T (A1 LIS U R LI BE S M S B S SET I SRR N S R IRP O
I={(l—x)~1rx-15dx = 2.30. 132)
(o »b-’y‘“\!f-\i———f(‘)/:~‘\

Analogously, the time scale for the shell contraction is obtained by perfor-
lﬂ}qg.lt}EFg’%‘EFgLﬁ} st ooddl @) s Dobrrowp vl L) & ool s ony e
coun it EED it RE) 0 ze®hor AY) o foscr g Y 120 oy VTITEID ety o,

T.= — | (1 + a — (asfa)a(r)/Fx()dr. 1 (33)

~nl ed 0T Doy fiseoonoa B LITel rh antling) has Dan e pry o4 ooy

o yonatab Sauiy 05l fry o sesin {ade oD DLt ST Seumn el s g by o
-'21 6. Coneludirig Remarks, Recapitulating ‘the dbove results, wi can formulate
some conclusions "= 770 .o L35.8IINy - Dunnied odp ot ol ool o onle
- "DiThevfhotion Of & sHell Shrrotititing 2 bentydl body, understhie only influence
of o fabtofs Tthelattrattion BEhthe tedtral/Body tdnd the  dccration fof thatter
from’the environnyént -on!the surfadds!of thdishell, jgoes oh wedording to' thd Fol-
Jbivmg"‘écéﬁ‘éﬁd” e Pt L5150, 0 r{f uy prhmsh Guo 0t ol 0L D forw Bl

- ' -AP thevinstafit £i= 05the shell ' 6jectéd froi ‘the’ centtal?Body and begins
it$ éxpansién Ttsétior indef the Infludhcs 6P the twd -Above- mentioned: Fac-
tors’ i stlidfed " $taPtiNG frohd “an’ drntrary>1homehnt )- of ‘the -expansidn’ ' Dufing
thé inferPal (07 # 1 with ¢! thel centrdl bod ¥ cofitinues itol eject matter, but
this ejéctionis -much-siéwer thdn the shtell ejéctiot, such -that this inher-matter
cannot reach the interior surface of the shell during the expansion. Due to both
‘the gravitational attraction of the central body and the accretion of the environ-
mental matter on the exterior surface of the shéll, the expansion motion 1s dece-
lerated, such that at an mstant /, the shell expanston 1s stopped After this 1as-
{ant, the shell b"é’g[ms £& contract ;"‘the''motioh of“contractiohirs’dcteterated du®
to both th& attraction of the'central body-and the hcecretion of “thnér matter’ ¢ n
the iteribr surface of the shell*’ Thisttiction: lastd ‘till the antaiit/ when ‘he
shell falls on the central body WREL B TN et it -
.. - Usmg the hypotheses (1) — (v), Minin“f57 &naléd “i‘ﬁ“};‘ri‘s"ﬂpe‘f‘&@? fu‘g
Ekpansion of ‘thé 'sh&ll "I is obvidus ‘thaf, takiig intd adcoint the ‘hjl‘p'gwf <
(v), concretized into the restriction (2), 1‘7}{16 contraction motion cap he %atls't;acq ruly
modelled by a free fall and 1ts, study;, becomes’ finuitergsting” Indeed, or; such
a case, the velocity 1s given by, the foympula, ‘

S

W RS, SR AT SRRV V A SO A B T
v = — (EGM[r)(L — 7[r))'%, (34)
the minus sign indicating the direction of the motion, while th: all time can
be obtamed trom the integral
0
T, = \ — (2GM[r)=12 (1 — #[r) 2 dr. (35)

r
4

Onc ecasity observes that ow 1esults constitute an extensior or he results
obtaiced 1 [5] Indeed, as we showed, 1f we put a, =2 0, onr to- un .- (13) and

6 — Ths=cn 2/1989
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(14) corresponding to the expansion reduce respectively to Minin’s formulae
(15) and (16), while the time scale for expansion (30) acquires the expression :

r
c

Te=\((1 + a()[F(r))dr, (36}

To

used by Minin [5] (with F(r) provided by (16)) Also, if we put a, =~ 0 mn our
formulae correspondmng to the contraction, (26) reduces to (34), while (33) reduces
10 (35).

As to the expansion end and contiaction start, a necessary condition empha-
sized by Minin must be fulfilled The shell mass growth at great distances from
the cential body must be so fast that the diminution of the attractive force exer—
ted by this body with the distance 1s comparatively slower

A last specification must be made here Nerther Minmn’s study, nor our study.
did take mto consideration the1epuisive torce due to the radiation of the central
body If we take into account the effects of the radiation pressure on the particles
constituling the shell (eflects depending on the characteristics of both the cen—
tral tedy and the particles), the results could be qualitatively (or at least quanti-
tatively) modified In certamn conditions (see [6]), the expansion can mdefini-
tely continue, or the process of expansion/contraction can go on according to
very different scenarios The study of the shell motion 1 such cases could have
a particular importance for the analysis of various cosmogonical problems
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PERIODIC ORBIT SURVIVAL PROBABILITY AFTER A SUPERNOVA.
EXPLOSION INTO A BINARY SYSTEM !

1, o
VASILE MIOC* and GHEORGHE DORIN CHIS*

Recerved  November 2, 1989 . . , N -
B A

ABSTRACI. — The survival probability of a bmary star following a rapid

mass loss (due to a supernova exploston) 1s studied and a survival criterion

1s stated Previous results in this problem are corrected and completed. The -
evolution of the orbit after a possible supernova-like mass loss 1s investigated

for four concrete long-periodic binary systems

' )

1. Hypotheses. A supernova-type explosion-undergone 'by one of the com-
ponents «0of a binary system entails a raptd and-.consistent.mass loss from the
system  Subsequently, the initial orbit of this one 1s altered. Moreover, uider
certain conditions, the relative orbit can become unbound and the two stars
do no longer form a binary system

The problem of the survival of a double star orbit after a rapld m1ss 10ss
was discussed m [7], which constitutes the basic paper for our research. The
following restrictive conditions were supposed .to be fulfilled ;

(1) The mass ejection 1s spherically symmetncal .

(11) The 1mtial speed of the ejected mqtter 15 high as against thi or blt_,
welocities of the components

(11) The mass loss duration 1s short as against a tenth of the orb tal period.

If the hypothesis (1) 1s tulfilled, we are 1n the case of the Kep.er problen
with secularly time-dependent gravitational parameter (eg [2, §]) Tnz vory
high value ot the ejection speed comparatively to the orbital velocitie, (con-
dition constdered 1 [3—3]), mvolved by the hypothesis (u), makzs n2ziiible
the gravitational interaction between the components of the systen anli the
ejected matter The last hypothesis easures a negligible chanz: of tae position

and velocity during the rapid mass loss (see eg [8])

2 Basic Formulae. Consider the relative motion 1n thz [ram: of a binary

system The well-known prime 1ategral of energy‘is writ:21 nadar the form:
V2= GMQ2r — 1/a), : o (1)
where V = veloeity, G = gravitational constant, M = M, + M, = total mass

of the system (M,, M, being the masses of the componeats), » = ra lws vector,
a = semimajer axis The initial orbit 1s assume=d to be cllipii:.

°® Centre for Astronomy anl Spase Sciences 34)) Cly-Nidia, Romumg, |
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Let one of the component stars be affected by a rapid mass loss due to
of Yipérhovh) éxplostonT Taking 1ikks /4bCofit S/ higPothesed;] the irdtégrali #f
¢nergy Jor the nemrelamve{grbxtlwlly bes vl wOls0LI97T
5 =GM’ (27— I/a)) (2)
*P1HY /mou TR0 b T YO1W ad10 Y
where A’ is the new (diminished) total mass of the system and 4’ is the new semi-
major axis.
Consider now another well-known formula used to the two:body” problem'
B et £ vmtaol oi 1872 wa;z’—la(l ~=igveosE)is 1 s2T — IEHTZAL (3)
60,3320 JsebevLz B bos brthuts 21 cnuecigys s Usvages & 07 suby e2o 2zam

where ¢ = eeetitticityrand  Eres wecentties anomaly:“Fromo(F)? (2)and (3) one
deduces wiigIed v g 2200 aekmr 2B onTNELE sBecr o 1Hs o 97 7 R0 nogtalovy

em=tes  oveme ctbolrag-yan! sr3ysres woel 10t
= ma(l — e cos E)/(2m — 1 — ¢ cos E), (4%
o which! we stised dthecnotation. cf7di po= M Mo 1anne £ FasndingyH |
2¢'7 Yret="h; eh' thernvalues of (the: constqnt of senergy (befere and:after :explosion;
respectively s We havess o0 500 58 o vate ooz ade - JSIA-Ds § oS PILTEA T
airte cwsoofr boe Logodnrn GM/(I,‘“ oo Readil GM*Ha", 51 el aiitetilach 2.87(5)

dInIeTE 0 TiS L3 3 mITel Yimenl oo oD
and, by, (4): _ T . -
FERy CVPIQRT B 1238 ITe Thie S0 Ll 20 AT oz 20T L6 mmudons i
Sl st ompo B =:.JZ(2IT7LJ d ore QQSJE.)/'(I‘*‘ 3C°SE) N TR LT T A (°)
edcé T therel
As to the centrlcxt'j of the rela'mre 61bit* before*and” aftm‘ etplosmn SWe
can write: Sorrisrnre TTRLUTsfg- ol LOITL2,L F2Ear ozl L
PETEREE & B S hAst, - 3 2.1

o 28 ARG R, '“""(1+IL’C’/(GM SRR )

where G:is the: comstant- angulas. momentum. Byr\(G) and (7) -we-have;

bt g ——lr © (1550 )2 —1 e éos E)/(m~(1 — 05 E)) v i - ®
g S o L COSE OSIUALIG el L Rl VIR e T

- - 3 Survival f(irm'mm. Let us mtroduce 1he ,,follo“mg abbrewatmg nota-
hons._ R ] Bleup I il wi - ~

(=N [ S, T S ST (RS
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(fwith which (4), (6) and (8) acquire._respettively-the forms -
erim s Vo L= g a~'-=\K.,[f(m~e)- R S T 4 1))
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Since the initial orbit Wwas assumed' to be elhptic (namely ‘one of: ﬂxé equi—
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v i?ﬂY conditions. @ >0, £ <0, ¢ <1 is fulfilled), we observe easily that

1( 507K <0 K, S0
Ay G} 10 R %

~_.Ji_the_ne1at1m_axb1t. aiLer_exploﬁLQx;_em ins ellmtlc the. bmarv ‘systes sur-
vives '{akmtg mtp account (13) TC-[F(}_S), the! survwa[l crlten?n is
! ¥ AT

6 6 o0 o > i I !
e 0l
v 00 0 0 f;gm ) >0, ! i

YRS

il
E[(‘EIG)

b

o 0 u i C kbR : 2o
For f =0 the new orbit ;‘bﬁ(‘:omesg;parabo]lic1 and h‘_ifperboli([; for f<< 0 ?ni.

U I N O = 3 £42

4. »Survival Prebability, Denote by ?(m e) the, survwal probalblhty,(and
examme thé’ formula (12)ME (2mit= 1)/e 3571, we always have f>0 (P =),
hence ’;he orl bit reina Ss alwéys bofm"d Ontibe othéx‘ hand, if {2m — 1)]e <P201,°
we always have hgx;,ce the orb1t begomes always unbound? If,et

1S NOwW con51der .wtha case; “in whmh (2971;7: Ve &d—1, 1] | o T
Observe, ijggn ;12 tha,t_\;)there ?e_}gist t\\q Cntlcai,x -alues, pf the eccqntrlcﬁﬁa'ﬁo—
maly :¢ L A 3N bl VFT, 189 EL { T
" L |34 PF"‘ — 357 N [ARY] L Ly
Lo e yvE. =% cos ™ me — lj]c =127 (oo +(17)
R 2N YBE ole 20T BN 1z [ ® W€t i3

for "&hlch*y =07 'l‘hesé two-valuestdivide itlie orbfh dnto attcarc centered oi the
peridstroni’ (whete % 0) @ud an @rc centefed on'*the apiétron (Where fG4'0).
Flre-survival—probability—is—therefore—the-ratio e

B R o ,P(me)zT,/T _,,(,2,7(18)
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Now takmg mto :saccoimt Keplers éqkuatlon”igr thls case ! ",i\_" T

S R N RETI w(lg—1,) _4Ee 14> € S Eg L en oL ST (20)
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. . , , Table 2
\
e m 09 08 07 06 05 0.4 03 02 01 005
1

005 1 1 1 1 0516 0 0 0 0 0
010 1 1 1 1 532 0 0 0 0 0
015 1 1 1 1 548 0 0 0 0 0
020 1 1 1 1 564 0 0 0 0 0
025 1 1 1 843 580 253 0 o 0
030 1 1 1 803 595 339 0 0 0 0
035 1 1 1’ 785 611 398 0 0 . 0 0 "
0 40 1 1. 1 777 627~ 444 0 0 1] 0 ,
045 1 -1 914 775 . '643 . .482 217 0 0o, O
050 1 1 .891 777 659 515 300 0 0 0 ,
055 1 1 879 782 675 .545 361 0 0 i) -
060 1 1 875 788 691 572 410 0 0 0
065 1 954 874 .796 707 . 597 452 205 0 0
070 1 943 876 806 723 621 489 .287 0 0o’
0.75 1 938 881 816 ,739 644 523 348 0 (]
080 1 938 , 887 827 755 666 554 398 0 0
085 982 941 ' 895 839 771 687 583 .442 201 ©
090 980 946 903 851 786 708 610 481 .283 0
095 ' 982 952 .913 863 802 728 636 516 344 .201
.099 .985 .958 921 .873 815 744 . 656 543 386 268

Using Table 1 and the formula (21), we calculated the survival probabilities
for (m, e} € I?, where I = (0, 1) The results are listed in Table 2

Some remarks about Table 2 must be made This table uses smaller stepa
than the cortesponding table given m [7] Another difference consists of some
values of the probability P(m ¢) So, i [7] one gives P06, 04) = 0766,
P06,06)=0777, P(005,095) =0 200, Our Table 2 gives the correct values -
0.777, 0788 and 0201, respectively Also we did not consider the line e =1
(since we supposed that the initial orbit 1s elliptic) and the column m = 1 (it
1s clear that P(1, ¢) = 1, whatever ¢ <1, 1s). If we consider a line ¢ == 0 (-
tially circular orbit), we shall obtamn P(m, 0) = 1 for m *> 05 and P(m, 0) == 0
for m << 05 A last remark 1if we consider a.column m = 001 (namely a very
drastic mass loss), we shall have P(001, ¢) = 0 for every ¢ << 098 Oualy fo
moie eccentric (near parabolic) orbits the survival probability becomes nonzero
(but very small, ¢g P(001, 099) = 0090)

5 Sarvival Probability and Orbit Behaviour for some Conerete Binaries.,
In order to apply the above exposed results to concrete cases, we dwelt upon
four long-periodic spectroscopic binary systems, chosen in the catalogue [1].
The orbital characteristics of these binaries are given in Table 3

Suppose that each of the four systems undergoes a hypothetical supernova-
like mass loss, such that M’ > 08 M The survival probabilities for such events
are given m Table 4

L.et us now see what happens with each orbit after such an eventual explo-
ston Using the formulae (4) and (8), we calculated the deformations undergone
by the four orbits The results lor m = 09 are listed 1n Table 5, while Table 6§



PERIODIC QRBIT SURVIVAL PROBABILITY 87
Table 3
No Star e a(10® km) T (years)
1 58 e Per 065 1414 287
2 Gamma Gem 090 0 268 126
3 Beta LM 066 0481 399
4 51 Ksi Sco 075 1129 447
Table 4
No m 098 096 094 092 090 088 086 084 082 080
1 1 1 1 1 1 1 1 1 0 980 0 954
2 1 1 0993 0986 0 980 0974 0 967 0 960 0 953 0 946
3 1 1 1 1 1 1 1 1 0973 0951
4 1 1 1 1 1 1 0977 0 962 0 950 0938

correspouds to m = 0 8 These ‘cables give for each system the values E, 1, E, o (if
they exist), the v alues Tmun, Cmm Correspondmg to E = 180° (apastron), and

the values Ed L

E, , for which ¢’ = ¢ Table 5 also includes, only for P =1,

the values amax, emax correspondimg to £ = 0° (penastron) The values of £, and
E, are expressed in degrees, while those ot 4’ m 10° km

Table 5
Star Ec, 1 Ec, 2 Imax ®max Inm €min Ez, 1 Ee, 2
1 — — 2 969 0833 -1 448 0611 94 64 265 36
2 2727 33273 — — 0270 0889 93 35 266 65
3 - — 1051 0 844 0.492 0622 94 57 265.43
4 — — 5 080 0 944 1 147 0722 94 02 265 98
Table 6

Star Ec, 1 Ec, 2 %min ®min Ec, 1 Ec, 2

1 22 62 337 38 1 493 0563 99 84 260 16

2 48,19 31181 0272 0875 97 09 262 91

3 24 62 335 38 0 507 0575 99 69 260 31

4 36 87 323 13 1171 0 688 98 52 261 48
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ST Table 7
Star P(0‘2' e) ‘753,'1 1 ‘mEc\.Z)l * > a;xxu I'E;m EE 1 Es 2
T =H 6 s 5 20 |
1 0.205 157.38 202 62 9.332 0.750 — -
PR “etl, o 2 Rt L S NS R
2 0.481 131 81 [229 19 .0339 0 570’01 G 137.79 222,21
A o G nry <
3 0.224 155 38 204 62 _2.662 0 700 . — —
= 1. v o2 ted o F ¢
:4 0 348 143.13 216 87 2 634 0 250 152.73 207 27
Voot

—Lastly,-we-took-into-account-a—very-drastie-mass-loss-by-supernova—explo=
sion, m.= 0.2:7T'able 7 lists the ,numerical results for.the four binary-systems.
'Ilhe_columns—of—the-table——ar@—the—same—as-t—hese—ef—’.l‘#&b}&fi—(aﬂd—t—he—umts—
too), :and a supplementary column, P(02, ¢) was added i !

E;xammmg,,TablesNA,, 7, ene,can point out.some characteristics.of the post-
explosmn motion. Firstly, we see that the four cons1dered systems, have great
chancés” to surv1ve (as bmanes) an explosion withm S 0 8 Even for a great
mass “I6ss thé*Ssurvivel’ is relatively probable

If such a couple survives a mass loss with m == 0.9 or m = 0 8, the new
relative orbpt will, be, 1arge1 4han .the imtial one I B 150 E <¢ Et 2;, the. new
orbit’ wﬂl be 1es$ ec| gx;tnc ghan the I11,11_‘c1a] one, and more eccentnc an the oppqslte
cide. A to“Table 7 one sees tha‘f For == 7chr1t1cal V‘alues "of_E for wh1c11 =¢
db exist Bﬁly $0F tite stars 24nd 4° fgrgat 1nitidl édcen‘cmdl‘ctes) For ‘the birfaries
b-and 3, cthenitews otbitiweils e imoTfe=ectentryct. than cthe initial..onk, - whatever

E is (Of course, betwegn':the:critical yvaltes o and . Fepo)ir 1oesv ray s1n »
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the quantum level In supersymmetric QCD 1s diferent, from’ the non- fenorma-
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Gx (xy, . an) = (%) . A (XA ) DD (N —M=1) DDy (x)> (2)

i when |¥, — x,| <A™, G¥ 1s computed at short distances through a uni-
instanton calculation

i when |%,— %,|— o0, usmng clustering, we have Gy = (Ax (%)) . (A
O (xar=n) > (DY @y (2¥=MH1) 5 (DMDy(xy) )

2 The method of SU(2)-Embedding. The question 1s that the instanton
contribution at the short distances can be partially or totally amhilated by
contributions at large distances Hence we must study the mass dependence
of the Green’s function But 1n the pure Yang-Mills theories we have not explh-
cit mass dependence, thus we mtroduce two matter superfields S, T and obtamn
the intermediate theory When m— o0 the matter supertields stand out [rom
the spectrum and we reobteined the pure Yang-Mills theory [5]

Besides the SUSY breaking, we can have an internal symmetry breaking,
in our case G,— SU(3) We choose S, T in the fundamental representation of
G, (1t 1s real and S = T), {7} = {1} + {8} + {3} The nonsinglet SU(3) com-
ponents {3}, {3} of the massless superfield S become the longitudinal compo-
nents of the massive vectorial bosons {3}, {3}, on S = G,/SU(3) Bosons are
m the adjomt representation {14} = {8} 4 {3} + {3}

Then the Gy-model with matter 1s reduced to the SU(3)-model with matter
i the massive particles — the vectorial bosons {3}, {3} with the mass my,.
i1 the massless particles — the matter singlet {1} s, — the vectorial bosons
{8} When my € A only the massless particles 1scertam the dynamics of the
SU( )-model

3 The Gy,-model. We want to compute (A2>g. for the pure G,-model.
Instead to compute (AA)g. for the G,-model with matter {rom

Gl (%y, x5, %5, %,) = (AR{x)) 20(%,) AA(x5) D, (v;)> 3)
(we have a smgular behaviour mn m = 0), we will {ind the connection betwecen
{AWgom and (AXDsui (AADeam 15 a function of m and (A Dsyp

31 The reduced model We compute (ArDsyp for the SU(3)-model with
matter (SU(3)-smglet s) from

G3(xy, %3 %) = (R)\(x1)7\1(x2)13(x3)> (4)
Through the 1nstanton calculation
d*ad 3 ) 3 3 3
Gi(x,, %, x3) = Cub exp (—8n?/gt S © (p2)®
s T ) = Gt ep (S8R )= ) R Sy S e 3aw

Sp(xq) (1_4[ Sdmnko(k))(g dxK, ) S (d4x@0f<) exp [ _ Sfi4x(n2¥z 1 OKSE 4+

Rr=1

KSK|| = A S (0 0 (1) a9 ) 05 () (5
A= K=K =0 P Y

where A’ = y exp(—8=n?¥/8,g*), for SU(8) with matter 8, =8, P — the panty;
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¥ — the gluon propagator, S — the quark propagator; C # 0.

%o — gluino 1 the immstanton field
‘ . Dy, =0 . (6)
sq — scalar (singlet zero mode) in the instanton field .
D5y = —1/ 20, ' ' (7

The instanton solution is:

Ay =2 f(x)%, 0y,

where f(x) = ((x — a)? —l—l %)t '
From [4] we have

2 hoho(%) = (4/n2)p?f3(x) « 9)

dublet

2 Maorho(x) = (72[mt)e®(f (x) f(y)*(x —y)*

triplet

For sg50(x) we have similar result as for Agh, apart from a factor of 1/6 For
{5) keeping 1n mind (9)

C% = (24/7:8)A'8 S(Z4ad ) [ x 2, 1 ‘[(“1 — )t (% — %) (%3 — %)
T ) XA i

From (Al) (19

1

3
Gi=(24 1113 20 MI 31— Zas) | dtad(6¥) (67" x *

3 v
Tt (x,—x, 2a]o/k) [a® + ¢* + Z(ox}) — 2a2(a,x,)] 1 (11)

=1 ]#k

From (A2), (A3)

1

G = (773/379)A’8 S li[ Eff,v)I:‘[I o [;}; (%, — x2)? a,ak] X
X [Z(ex}) — (Zeyx,)?] = (1542/37%)A’8 (12)
From (12) and the Konishi identity
—m{S Sy + (6/32=2) <MD sp =0 (13)
we have )
ONSsve = Ksomhboge™, k=0, 1, 2 - | (14)

I{SU(g) £ 0 and ABSL,(';) = mA’8
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8.2. The symiletry breikmig-Giis ST @), ’We find £lfe Snmection bettéen Az,

and Asye). blord rolpnian Hulom omuoly — A

@ I the point p = v (we deuoté o2 o2 %s $) the coupling constants g, =

= Zsym Then Plat retneterr ody nr (abow oiov lgae, sl -

é@’ym‘“’:gﬁbm (v)+(9/87%) In (/o) =ggl of, (9/87) In{ufv) = g&}(u) — (2/87%) In(u/v)

el aovtoloe noinaton: adl (13)
In addition -

\mw)\“ -

Sve = (9/8Y) In (u/Asp®) gt (1) = 11_/8~ ) n (4 Ay oy 50 [46)
From 15), (16)"

Asv@ = (A/‘U)“f8 Y (17}
) 1 C("" S I Jnes g &__&
[6) g A?gy(s) = (3 112/6)1/3 I{ S)A(, EAIAY (18)!
From (14), (18)-— /UM s R P

1ofe -

IR T <2\)‘>SU(3) N l)(anzjﬁ lf3 A Sng“(‘,-‘ Aorer 0L e grnn L (i j 370% (&9)
Defmmg (€5 Lenor vn nacgesd (6)

& - \Y 4y — I 3 Trk » D £

o ) Mgy = !‘Q,Aﬁ,’ﬂ " k ““0 1,2 3 e g e B0 el (20)

I SN i

1

PR S

(@)

(me}'“s'ee that
{ T
Kc‘ \fis(s {1/.; UL (21)

‘

4 and 3 are half of the Second ‘Casifr xelgrem dlie C(G,); respectivellC,(SU(3)).

33 The supersywmwtry breaking o relate domam m— 0 to m—» o (the
pure Gy model) we use the non- anomalous mass Ward ldentlty .

e
, . ‘.\.:\.'./,,. ' Ll.k. RV O R xL_ Y |

= —(12)E0m 20) = LA O (22)

e e .
e L2y G
.

where y 1s the UW -charge

Knowing the dimensions of: Green’s function in ,(3) G} ~ Ad( )1 = A and

from theé ;Kohnishi 1dent1t§' we have 2R D6am ~J A“/‘ g Thu‘a v =g

iy

[ <7‘K>ng IILsz nll“ Al%“ “j_“h Co (23)
for diterent vacua labelled by mde%lll[—; O,I,l,I 2, 3/“; TN T
((f,‘“y\ FiXIDg { ( g ‘)) /o ,‘; "
A = mexp ( Sn /Bmo)
PV [
where B, — the first coefficient in the Gell-Mann f{unction B, = 11 n pre-

(- ¢énce of matter and f, = -2 in absence of mattér, for'the group G,, we obtam:

Aom oo AU = A},’. P ¢ o0 (24)
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When m— 00, (AX)gum = {2A)¢y and.
Lpderes, T 1 Ky Al eFET b= 0abad s d o (25)

We show that Kg, # 0;’:‘“1’(1; )vgi,hlg(xe,,q,ﬁ}1p§{§y1nmetr3r dinamical breaking
in the pure G,-model

4 Conclusions In case of the G, grup was possible to calcylate explicitly

. . . ARCNIRIEN py
K, because we had a single invariant 5°S%, a =1, .. 7 For other exceptional
groups, duspattiularny; elagreat vinterest simsthe.Great Wnificatnamzlheory E
b, : 4 o b ]
and Eg,sawve hawvedfew idvariantseandrhence we -dotmotuknew howlto write a
formula-tite u'sng):lhb suabooagob-omit o 19¢ boliquon ol badroedssr son ot nowdeibes
hew nolduognos i bovlos 1 esttripquen wmenlq Asinsdol basinor ot enonr
s ge itonnmlis b o poruuect i) o dothruquae Intton 10t Isbotn slgqore &
sppon honpasdus o) o boen o enopudintah steush rastuest sd I crism
APPENDI[‘\ raeenl Waoyg batalor adr 3o nedstiuqg

We denote a, = fYv), b, = 3%, — x,)% 1,1, k = 1, 2, 3. Using the Feymman mtegral
-te-th lbunth senlo) nmesla s oot esseol nortsthat )rlgl' i %ln;ﬂilgrl

ot
yaelsd maog bas ourtnioqees) aolitgoly oonoplint bris wytony mouals olsy
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TRANSPORT IN TOKAMAK PLASMAS

T. A. BEU* and M. VASIU*

“Recerved 'Sapkmbu 29, 1989

ABSTRACT. — In high temperature-low density tokamak plasmas, radiation
coolmg by impurity atoms can be an important energy loss mechamsm, since
radiation 1s not reabsorbed. The coupled set of time-dependent diffusion equa-
tions for 1omized tokamak plasma impurities 1s solved in conjunction with
a sumple model for neutral impurities, on the assumption of a cylindrical sym-
metry The resultant density distributions are used in the subsequent com-
putation of the related power losses.

1. Introduection. The radiation losses from a plasma column directly dissi-
pate electron energy and influence electron temperature and power balance
in tokamak discharges [1—38]. They are also associated with instabilities through
an influence on the radial profile of electron temperature [4—35]

Plasmas are contaminated by impurity atoms released from the wall of
the reaction chamber and the limiters by high energy plasma particles which
leak across the magnetic field configuration 7The radiation power is greatly
enhanced by the presence of impurity atoms, especially high—Z impurities,
because of their high cooling rate [6—8] Current nuclear fusion research i1s
directed towards reduction in the high—Z contamination of the plasma In
recent years, high power ICRF heating experiments up to MW level have been
carried out to realize high temperature plasmas This heating technique has
the advantage of efficiently heating the ions However, 1t has been reported
that RF heating causes a relatively large impurity contamination compaied
to other heating techniques [9] Successful heating depends entirely on the
effective reduction in the impurity contamination

A good understanding of the mechamism of impurity production and dy-
namics is absolutely necessary to find a method to reduce mmpurity conta-
mination Several investigations on these problems have been described in the
literatures [10, 11, 12].

In this paper, the stationary density distributions of impurities, such as
carbon, oxygen and iron, in various states of ionization are calculated nume-
rically using a simple MHD—model. Classical and anomalous diffustons across
the magnetic field and ionization-recombination processes are taken into account.
Power losses due to ionization, recombination, bremsstrahlung and excitation
are also computed using the numerically obtained density distributions of im-
purities. The numerical results are 1mn good agreement with ST, TFR and JIPP
T'—IIU experiments. The main difference between this approach and its ear-
lier versions [13, 14] concerns the coupling of the various tmpurity species

* Unsiersity of Clup-Napoca, Faculty of Mathematis and Physics, 3400 Cluj-Napoca, Romania
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and leads to a more realistic description of the physical processes that take
place m a tokamak discharge .

2 Method of solution. The 1deal magnetically confined fusion plasma
would consist only of hydrogen isotopes, helium ions and the neutralizing
electrons, well separated from the material walls of the reaction chamber by
suitably shaped magnetic fields In practice, high-energy plasma particles leak
across the magnetic field, strike the walls and the limiters The impurity atoms
thus liberated diffuse into the plasma, where they are ionized and excited,

Considering a cylindrical MHD-—model, with » the radial coordinate, the
neutral impurities are assumed to be flowing into the plasma at thermal ve-
locity v,, and their density, #,(r), decreases rapidly through ionization as im-
purities penetrate the plasma Using the coordinates indicated m Fig. 1, where
7, 18 the poloidal radius, we have

21_: /2 N [
1o(r) = [no{ry) /4] S de S d\PCOSH’J[—(l/vo)S ay(p")1e(p")dp' ] (1)
. 0 —x{2 0

Here #,(r,) 1s the density of the neutrals at the plasma boundary, «; is the
ionization rate of the neutrals and %, 1s the electron density The thermal
velocity is defined as v, = (267 /m,)"?, where T, is the temperature ot the
neutrals and s, is the corresponding atomic mass

v

a D gO ,

Fig 1+ A polar coordinate system used in the calculation of the density distribution
of the neutral impurities.
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late the energy losses due to impurities, as the 1omization loss p,, mcluding
the radiative recombination loss p,, the bremsstrahlung loss p, and the ex-
citation loss p., They are approximately given by

b=~k Z;, nenr—yo (Pr + (3/2)Te) + £
Pr= k IE ((3/2)nc”ISITe)

by =13 x 10798ZqneT'"
Pe =173 x 1073 Tc_llznc;nl ;leexp (—P§§/Ie)

where P; 1s the ionization energy and Pjj 1s the excitation potential Coeffi-
cients ¢;; are tabulated in [10] For comparison with these energy losses we
have calculated the power input by Joule heating P, = 7%, where j 1s the
toroidal current density given from the total plasma current I, assuming
7~ 1/n, and % 1s the Spitzer resistivity [20] % = #eve/nee¥fy, ncluding m fr
the effects of trapped particles and the effective 1onic charge of the plasma Zeg

3. Comparison with experiments. The impunty behaviour in typical ex-
periments 1s as follows . impurities arrive at stationary state and also the total
amount of impurities becomes fairly constant soon after the rising current
phase of the discharge, though impurities are continuously produced during the
whole discharge These results imply that the diffusion of impuritiesis not classical,
since classical diffusion results in the rapid increase of impurity concentration
during the discharge It 1s because the confinement time of fully-stripped im-
punty 1ons 1s several hundreds of ms, while their ionization time is of the
order of several ms '

In curient tokamak experiments, electrons diffuse pseudo-classically or even
more anomalously, since the electrons are trapped in waves caused by insta-
bilities 1n the plasma, and drag the hydrogen ions and the impurity ions with
them This suggests that the diffusion of impurity ions 1s not classical. In
our calculation a ‘'set of anomality factors with yp = 10 and yw = 1 is most
useful to explain all the information on the impurities, ie. impurity ion dis-
tributions, 1mpurity fraction related to the total number of electrons, plasma
one-turn voltage V, = 2xR,1,/{(ds/n), and total detectable radiative power
pmd = ]5: + ﬁb + ﬁ' + kn: Z'n'.IBI'pI

Calculations have been made in comparison with the experiments in the
hydrogen plasma of the ST device and the hydrogen-deuterium plasma of the
JIPP T—IIU device. As ST calculations have been reported elsewhere [13, 147,
we will concern ourselves in this paper with the JIPP T-—IIU results

The JIPP T—IIU tokamak [21] has a major radius: Rz = 091 m and
a minor radius 7, = 023 m. The hydrogen-to-ton density ratio #y/(ny -+ np)
is 10% and the toroidal magnetic field By, = 3T Our stationary calculation
has been carried out for a total plasma current I, = 272 kA, a mean electron
temperature T, = 560 eV, a mean plasma ion temperature T, = 220 eV, and
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a mean electron density #, =337 X 10 m™3 (these data correspond to the
Ohmic heating phase of a typical JIPP T—IIU discharge). As confirmed by
measurements, the most important impurities present in the plasma are carbon,
oxygen and iron {or which we considered the relative concetrations mny/n. ~
~1 X 1072 ngjn. ~ 6 X 1073, #pefn. ~8 X 1074 In Fig. 2a we have depicted
sour input profiles tor the electron- and plasma ion temperature, while in Fig 2b,
besides the input profile ‘for the electron density, one may find our output
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F1g 2a Input profiles for the electron- and plasma 1on temperatures
Fig 2b Input profile for electron density and output profiles for

plasma 1on density and effective charge

Fig. 2c Density profiles for the various iomwzation states of carbon
Fig 2d Power losses due to 1omization, recombination, bremsstrahlung

and excitation for carbon, and joule input power
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profiles for i densq)y g}}gi plasma)[effeemve_Joqxc chalxge Asrone may ob-
se{ve K\ga) efxot, AN {at fth e;pasma{qeﬂtre 15L,a,‘qout A . while 1 [21], ysing
a4, b e“r,nomeﬂb 3 ,IFS%I}}E},te[CL}(J),,p&“} 2. Hig, gﬁ ufepr@entn;he density
guipit f Droftien fon n e —Vaﬂcm ippization stat es, of carbon and. the power,losses
%ejﬁﬁ , he presgx},ce ot tﬁe* ment;oxgeéd amount, of eaann i the reathontghanqbej\
uh domparigo: \\J/e jl 1.th ,t(wqxle 11}@15 ower - 1 . Oug,, palgnlzytlons

yigld s valug, of 105 0" the ‘,fr)a?w;m% the mralxcm%%d; M torthe anput
potver, whilé in 21]x this ratio has been’ reported to be about % The value
of the plasma one-turn voltage ohtaine ng_ou_t,_model,was 1.33 V, slightly
under the value of 16V estnna%ed in ;[21] —

4. Concluding remarks. Qur” n,umelical model 157in good agreement with
measured macroscopic quanﬁ‘aes in the qxperlments/ but further — investigations
are necessary to discuss its appropriateness in detail. The, discrepancies may
be duc to thé fact that”the used atomic data ‘may be affected by errors up
to 30% and the calculated data reported m [21] have been obtained using
a semi-quantitative, zmbdel
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: lGds+ AND Cuwt*+ EPR OF HICH TEMPERATURE
! SUPERCONDUCTOR Y,_,Gd,Ba,Cu,0,

Al NICULA#, A. V. POP™, L. V. GITRGIU** and Al DARABONTY -

|
Recerved  Oclober 18,1989
ABSTRACT. — EPR measurements of the Gd3* and Cult were perfcimed -
i the Y, _ Gd,Ba,Cu,0, g svstem The line-shape analysis for superconducting
GdBayCu,0,_5 was found 1o be Lorentzian, mndicating the presence of the

exchange narrowing We evidenced the possible presence of Cu?* resonance
1 nomsuperconducting phase superimposced over the characteristic Gd3* luie
at room temperature
. .

Intreduetion. The discovery of high T, superconductivity [1] has been follo-
wed by intensive theorctical and experimental study of this class of compounds.
The pairing mechamsin and the role of magnetic fluctuation of the Cu—O com-
plex still unclear This has mctivated us to investigate the magnetic proper-
ties of these compoundsin genetal The magnetic behaviour of high T,-super-
conductors can be studied with Electrcn Paramagnetic Resonance which pro-
vides information on the interaction of magnetic ions among themselves and
between them and the crystal lattice This information is conveyed mainly
by two parameters the g-factor and the linewidth H,, of the 1esonance [2].
The experimental results cbtained by EPR measurements from the supercon-
ductor ceramics are different Disagreements arise from the different quality
of these samples and especially from the thermal history The absence of the
EPR signals m the single phase YBa,CuyO, is generally explained by the
assumption that the Cu** ions are antiferromagnetically paired via oxigens,
to insure S=O for the neighbouwing ccpper ions In YBa,Cu,0;_ 5 system e
EPR signal is typical for Cu?* rescnance center with S=1/2, disposed in sites
of (pseudo) tetragonal symmetry with anisotropic g-values g, =221, g; =2.05
characteristic of Cu?* in impurily phases [3]. The Gd** in superconducting
GdBa,Cu,0, does have a strerng EPR signal at the field position correspond-
ing to nearly g = 1.97 [4]

In this paper, we wish to1epoit the EPR measurements in ¥, _,Gd, Ba,Cu,0,_5
fuuction of thermal history of samples, concentration x of Gd and temperature.

Experimental procedure. The samples V; _ Gd,;Ba,Cuy0,_, were prepared by the solid phase

reaclion method by 1eacung the mixtures of Y,0;, Gdy,0;, CuO and Ba,O,, where the concentration
of the substitution of nommagnetic yttriom with gadolmmm 1s » = 1, §, 10, 45, 25 and 1009%,.
The oxides were mixed with absolut alchool in an agate mortar, pressed into pellets and firing
slowly in air until 850°C The samples were sinterized at 850°C for 10 hours in atr, and cooled
slowly 1n air atmosphere down to 200°C with arate of 1°/minute Samples with » = 1009, were

* Unive.ssty of Cluj-Napoca, Facdty of Matematres and Physies, 3400 Cluy-Napoca, Romana
¥ ITIM Cly-Napoca, 3400 Cluy-Napoca 5, PO Box 700, Romama
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crushed again and recalcinated at the same temperature for 10 hours The presence of a super-
conducting phase with T, > 77 X in the preparated samples was established by testing the Meiss-
ner— Ochesenfeld effect of an 1nhomogeneous magnetic field on the samples cooled under liqud
nitrogen temperature

The Electron Paramagnetic Resonance measuremets were carried out by means of a RADIO-
PAN spectrometer SE—x/2543 at room and liquid mitrogen temperature in X band.

Resuits and diseussion. The observed EPR line-shape from sample by
%= 1%, 5%, 10% and 259, Gd 1s presented in Fig 1. and for x = 1009,
in Fig 2a.

The EPR spectrum indicated at room temperature the overlappmg over
the characteristic Gd3* line of a signal with g = 2 06, typical for Cu?* re-
sonance center in green phase YzBaCuOs, Gd,BaCuO; or BaCuO,

The signal with strong imtensity typical for Gd3+ ions and the Cu?* over-
lapping signal disappeares at liquid mnitrogen temperture. Similar results
down to 7, were reported by H Kikuchi et al [4] for superconducting system
GdBa,Cuy,0s—5. In Fig 2b we plotted the line shape for sample by x = 1009%
at room temperature. In case of Lorentzian shape

g(H) = L. ! for absorption curve, and
nAH, 1+(H-—H0)2 J
‘ AH,
de(H) _ H—H,
dH I(H) = =AH} P 2(H, — )[1 i ( AH; ) ]

for derivative curve The quantity [(H — H,)/I(H)]"® = %[1 4 ( H—H, ﬂ
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(where I(H) 1s the height of the absorption derivative 'at the field H and H,
is the resonance field), 1s a straight line when plotted veisus {H — H,)?

In Fig 3 the dependence [(H — H,)/I(H)]¥? versus (H — H,)* within
experimental error evidenced a Lorentzian shape at the center ot the line
According to the Anderson model for magnetic resonance [6], an exchange
narrowed line shape should be ILorentzian in the center

The EPR linewidth AH, for Gd** signal and AH, for Cu®* signal veisus
%, as shown in Fig. 3a, b

This almost liniar dependence is no texpected 1 magnetic systems where the
exchange interactions aie dominant [5] 7The linewidth dependence AH, with
the concentration of Gd®* ioms indicated the importance of dipolar coupling
The moment of the dipolar width is determined principally by the strength
of the dipolar interaction and its relative magnitude when compared with ex-
change coupling. The possible coupling of Gd 1ons to magnetic moment of
Cu?? 1n nonsuperconducting phases evidenced by evolution of lineshape function
of x, is so weak bellow T, that the presence of magnetic 1ons Gd3* 1s 1nettective
for supressing superconductivity

Conelusions. We evidenced the possible precence ot Cu?* 1esonance in non-
superconducting phase superimposed over the characteristic Gd3+ line in
Y,_.Gd,Ba,Cuy0;_5 superconducting ceramics at room temperature for x =
=1, 5, 10, 15, 259 The Lorentzian shape at the center ot the Gd3+ line for
x = 100% evidenced the exchange interactions, and the linewidth dependence
AH, with the concentration x indicates the importance of dipolar coupling.
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