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STUDIA. UNIV. BABEŞ-BOLYAI, PHYSICÄ, XXXVI, 1, 1091

A RAMAN STIMULATED BACKSCATTERING F E E  ANALYSIS I.

SFEUANŢA COEDEA*

ABSTRACT. The Free E lectron Easer {FEL) is a feasible rad ia tion  source over 
a  broad spectrum  from  m illim eter to  optical wavelength A sim plified analysis 
based upon a linear theory  is presented in  the firs t p a rt of th is  work, for th e  
R am an regime F E L  process The two parts  of the  paper_ discuss a ty p e  of a 
F E L  which is based on the stim ulated R am an backscattenng  of a m agnetostatic , 
pum p wave from  a cold, dense, relativ istic  electron beam  T he results of a 
non-linear theory  of the R am an F E L  will be discussed in  th e  second p a r t  of 
th is  work

1 Introduction. The conventional lasers are troubled by lack of energy 
storage, highly selective level excitation and low efficiency Several far infra­
red lasers have achieved an output power of 1 MW, as an exemple being the 
CH3F-system which radiates at 496t, Raman-like The conventional lasers pre­
sent a narrow, stable line-width and excitation of just one (or a few) cavity 
modes Compared with the classic lasers the FELs are not 'only tunable radia­
tion sources but could be used as amplifiers In a FEL, the bandwidth for 
positive gam is very large and, many cavity modes are excited. The FEL 
systems are very sensitive to the fluctuation m the electron beam energy.

The linear and non-lmear theories have been developed for two regimes 
of the FEL operation [1] — [12] for a monoenergetic-electron beam in the 
Compton regime, where the space charge effects are neglected, and in the Ra­
man regime, where the space charge effects are considerable.

The inclusion of these effects m the FEL simulation have been made m one- 
dymensional analysis [13] — [14] The usual general linear theory will be not 
presented here but a simplified discussion of the Raman regime FEL inter­
action will be done.

2. The analysis of the Raman regime FEL operation. The FEL dis­
persion relation obtained from a linear theory of the relativistic electron beam 
and a static hellically polarized wiggler field interaction [15] is of the gene­
ral form :

k -  — - F
1/2

k + K  -  — f -----^ - 1  -  —F

ыЦсг
• ß L Ä  (1-1)

2 Y о

where <л\ =  4т: ne2jysm, F  =  ab/ <rA, is the filling factor associated with the radi­
ation field (ffj, and aR being the cross-sections-areas of the electron and radia­
tion beams), y0 =  уг [1 -f- (ejAajm0c2)2W2, with ţz =  (1 — vla/c2) - 112 being the
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4 S CÖLDEA

relativistic factor of the electron beam and v4M-the wiggler field, m the case 
when |Ümf>> \AS \, A r being-the 'radiation filed

In the Raman regime, the beam-plasma freq u en t is sufficiently ’ high 
that the coupling between the electromagnetic iVave and the two beam waves 
can be considered independently The two beam vawes correspond to the 
negative and positive energy modes which could be described by a special dis­
persion relation for ,their interaction The effect of the positive energy beam 
mode on the coupling is weak and in this case {k — [со — v:0 -+-
+  “ &/(YíVto)/wzo} is replaced by +  2co6/(YzwzoVyo) m the dispersion relation.

' [Ä _  p  _  F . /cj - jh -  [со +  vaka +  Mo =

=  —  O'2 Л / 2 С 0 *

where «2 =  F  & • ß7o • К

The maximum Raman growth rate occurs when k = k, l e.

( 1.2)

( 13 )

(со2 -  F
and has the folowmg form .

^/Y o)1/2/c =  M

Г =  1пш = ßaF 1!2

This is possible only if :

ЫЬ Уг^м У ;2

4-\/"1оc )

where -‘cut - F -4 2
£̂0 ßcnt
(2co,C2MoYÍ/2 • y!k )‘/2/vco/

(1 4)

( 1 5 )

(16 )

Tor the Compton regime (high-gam) FEE interaction the condition is the 
reverse of the equation (15) (

К  > ßOTi , ( 1 7 )
The Raman regime could be distinguished fiom the Compton regime by defy- 
ning a critical beam-plasma density

«b,m( =  F ( - ^ ) 2 (18)

If coj p  u>b,mt the FEE is in a  Raman regime, if со,, <4 the FEE
operates m high-gam Compton regime

If a stimulated backscattermg Raman proces (SRB) is considered (a 
parametric ^stability) in a magnetostatic pump "field and a cold, dense, rela­
tivistic electron beam system, a detailed anatysis of such a FEE interaction 
can be made The Stimulated Raman FEE is a system, m which an electron 
plasma (longitudinal) wave mode and an electromagnetic scattered mode feed 
on the energy of the pump with frequency co0. This type of FEE uses such
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a convective instability which can amplify an electromagnetic signal Such a 
device can operate in three ways

(a) as an amplifier for noise (the superradiant model) ,
(b) as an amplifier for a coherent signal, and
(c) as an oscillator

We will develop a simplified analysis for the case of a SRB — FEL ampli­
fier for a coherent signal

The result of the simplified linear dispersion relation of the FEE inter­
action is the solution for the real part of this equation giving the backscattering 
frequency or the stimulated backscattered mode wavelength.

(1 -  PJ
■ co0 (19a)

and

h = W .  ' (19b)
with w0 =  2тгp^c/1 =  2txïi/1 and =  vz0/c
In  the small signal approximation and wéak pump regime the backscattered 
wave will grow exponentially along the rippled region of the magnetostatic 
field (wiggler or undulator field) The simplified growth rate obtained from eq. 
(1 2) — (1 4) is of the form .

Г = cox (1 10)

where &>x — ^ / m c  is related to the pump amplitude B±.
As a matter of fact, there is another collective mode of the electron beam- 

the cyclotron instability which is a transverse mode, with the frequency gi­
ven by . .

Mo — Qchs
(1 -  p.) ( 111)

where Qc = eBl0/mc
In the situations where there is an mhomogeneity of the pump ampli­

tude, transverse to the Bz0 field there develops a space charge oscillation at 
the frequency Í2C, which is driven by the ponderomotive force of the pump 
field and the scattered Raman wave. I t  is possible to show how the gam of the 
space charge mode varies with the beat frequency between the pump and signal 
waves When this beat is at the frequency ыь the gam is very large, having a 
stimulated Raman emission (a Stokes mode) When the beat is at —ыь we 
have a stimulated Raman absorbtion (an antiStokes mode) There is some 
gam due to the finite-length—two-wave beat m off-three-\waves resonance case 
However, the net gam for the FEE laser system off-three-waves resonance 
is negative [16] The three-waves resonance has a finite bandwidth characteris­
tic to the parametric processes Aws ~ Imu, Usually the efficiency of a FEE 
device is bounded by a pump depletion phenomenon, but the non-lmear satura­
tion mechanism m the FEE s will influence this efficiency (when the beam
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fluctuation amplitude Syj ~ n, which "is the beam density) 
case the efficiency will be .

«да
-"oY;

~ 5 %

In the considered

(1.12)

There is a distinction between the efficiency of the laser and of the amplifier : 
if one limits the efficiency to energy conversion for a single, this mode is given by i

The laser has less efficiency than the amplifier, but the laser oscillators have 
other interesting properties, like the frequency stability

3 Conclusions. Other theories have uncovered some interesting effects : 
it was found that the span of the unstable wavenumber is very broad for high 
amplitude pump and high relativistic factors y., high density electron beam 
'[17] Theoretically, one might expect high gam Raman FEE amplifiers But 
when two-dimensional effects are considered in a numerical discussion [18] 
another difficulty occurs the stimulated Raman forwardscattermg appears 
at a sufficiently high pump amplitude and long wiggler, as a low frequency 
absolute instability, which can grow to high amplitude and destroy the back- 
scattering process

Some comments upon the effects of the finite beam energy spread on the 
gam, could be made Excitation of the collective beam mode occurs only ii 
the scattered wavelength exceeds the Debye length of the beam (X,. >  \ D) 
and this fact requires a condition on the parallel beam energy spread.

I Ar* j ^  t 1 Î b_
l  Гг JII 2 Tx * и„

If this condition is not true, the gam is reduced an order of magnitude •

(2 1)

Г =  Im  oi 4>b _ “ jl __ _ 1_ 
«is (A0 +  As)I 2 v]A

(2 2)

where vth is the spread of electrons’ energies vlh =  c — y, 2 The relation
I Гг 111

(2 2) is the stimulated ‘ Compton gam result
The influence of the beam energy spread on two- and three-wave' lasers 

consists m a decreasing of the gam if (Ду./уг) 1 /N, where N  is the number 
of ripple periods of the wiggler, the thermal effect will not change the gam too 
much This fact suggests that an optimum system may be a short section of 
a wiggler with high gain

With regard to the beam energy spread there is the possibility of a hot- 
cathode source or the preparation of a cold beam using appropiate diode geo­
metry

If the SRB - FEE operates with an exponential gam the two-wave 
gam also becomes large only if the beam is dense, the pump field is strong, and 
the length of the wiggler is well chosen. The analysis of high, two-wave gain
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case must include the beam thermal spread The theory suggests that FEE 
efficiency could be high and some more experimental work must be done The 
simulation method applied to the FEE process in 2JD-and 3Z)-realistic beam 
geometries could help to understand this complex mechanism of a FEE-ope­
ration
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1 ' ,, - 
THERMISTANCE SEMIREFRACTAIRE EN MICROSERIE П Е 

: -, LABORATOIRE - • - ' '

‘ C. CODREANU*, T. NICOLAU**, S. CODREANTJ***

Résumé. — Sui deux microséries dé ' laboratoire on a été étudié e t établi - . 
le régime therm ique du viellissement artificiel qui .a "conduit à .u n e  them is- 
tance fiable e t stable, avec le coefficient therm ique de la résistence d’environ
2%/°C jusqu’à 160°C

1 Introduction Si î pour des températures pas trop élevées (100°C) il existe 
une grande ’ diversité des thermistances commercialisées, dans le domaine des 
températures plus elevées, l’offre est beaucoup plus faible. En effet, en . ce cas 
la réalisation d’une haute fiabilité et stabilité des paramétres physiques et fonc- 
tionaux.des thermistances éxige une technologie de pointe. -

Nous avons réalisé une" thermistance-perle,-’ protégée- en -verre, dont la sub­
stance active est Line céramique CoO—Мп0^А120 3'— EaBe, cuite à 1 600°C, en 
faisceau BÂSER, suivant une technologie brevetée fl], dont-;les caractéristiques, 
thermique R[T) èt statique courant-tension 1 (U-), sont présentées sur les figu­
res (Il resn (2) 1

E  i g  1 La caractéristique therm ique 
typ ique lu  R  =  f(T) de , 1a therm istance ;

______J_____________ '  . -
*  Jnstit Polytechnique Cluj-Napoca 

** Inst National de Metrologie Bucureşti 
*** Université Babeş-Bolyai, 3400 Cluj-Napoca, К
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10 I C CODREANU et al

Les principaux paramétres sont résistance nominale R 25 =  102 — 103 kohm, 
éoéfficient thermique de la resistance ap =  (3,5 — 5,0)%/°C, énergie d’activa­
tion thermique ДЕ =  (1,1 —1,6) eV, constante électronique B — (5000—7 000) 
K, [2]

Le fait le plus important c’est que ap se mentient aux valeurs assez éle­
vées même pour des températures supérieures à 100°C, ce qui permettrait l’uti­
lisation de ce modèle de thermistance dans ce domaine de température

2 Expénm ent et discussions D ans ce bu t nous avons réalisé deux micro series de 100 therm  îs- 
cances chacune, qui ont été soumises à un régime de viellissem ent artificiel, en observant l’évolution 
de la dispersion de la valeur de la  résistance nominale, comme critère de la stabilité  des param ètres 
et des propriétés physiques des therm istances

Le tra item ent therm ique de viellissem ent à été réalisé sous deux variantes, A e t B , à. savoir :
— première phase choc therm ique à 400°C, 150h (vaf A ) et à 330°C, 1000 h (var B), '
— deuxième phase cycles de rechauffements-refroidissements entre (25— 330) °C (var A  ) e t 

entre (25—250) °C (var B), la durée de chaque période „chaude” é tan t de 1000 h
Toutes les opérations ont été effectuées dans des conditions métrologiques standar dl 
In itialem ent les therm istances ont été rangées dans des groupes de d ix  exemplaires, dont les 

valeurs de f?25, après le choc therm ique, sont données sur le tab l 1, pour les deux variantes A e t lt.

J?25(m,n) et I?26(max)
Tabl 1

var 17,7 50,8 148,6 196,7 228,0 243,7 269,5 297,0 334,8 454,8
A 47,2 139 186,5 222,6 242,0 268,0 295,6 334,0 422,2 1036

var 30,1 65,2 75,8 80,7 85,1 88,7 91,8 97,2 102,8 131,2
в 63,0 74,6 79,5 84,5 88,7 91,7 97,2 102,8 128 Д 165,1

Ainsi comme on observe, la  varian te  B  conduit a une reduction de la dispersion de T?26, de 
1018 kohm (var A) jusqu 'à 135 kohm  (var B) -

U lteireurem ent, de chaque (groupe nous avons sélectionné 3—4 therm istances, dont la  disper­
sion de la 1?25 est très faible, tab l 2

Tabl 2
ifs-(mln) et i?2s (m ax), apres le choc

V

var 38,2 182,9 199,5 212,6 138,2 238,0 268,0 292,8 331,0
А 38,3 187,5 202,2 212,9 147,7 242,9 - 272,9 295,5 334,0

var 60,2 65,2 78,8 81,2 86,7 88,7 91,8 98,9 104,4
В 63,0 66,1 79,1 82,5 87,3 89,5 • 93,7 100,6 107,9

qui ont été soumises à la deuxièm e phase du viellissement, en suivant la variation  relative A R jR  pour 
chaque therm istance, en fonction de tem ps Comme ti tre  d ’exemple, nous présentons les résultats 
typiques seulement pour une seule groupe de chaque varian te  A , B , sur les F ig  3 resp 4

3 Conclusions. En analysant toutes les groupes il en resuite qu’on 
obtient la stabilisation des propriétés physiques après 4—5 cycles rech -refr-, 
après quoi on observe une tendence de croissance de la dispersion relative de la 
résistance nominale

l’Inst National de Metrologie Buc



THERMISTANCE SEMIREFRACTAIRE 11

i g .  3 La variation relative Д R /R , au cours du F i g -  4. L a variation relative Д R /R , au cours
ik_ viellissem ent forcé (premier groupe) du viellissem ent forcé (deuxième groupe)

La dispersion finale de la R n stabilisée, correspondrait à une erreur de 
(0,5— 3)°C, pour la variante A et de seulement ±0,1 °C, pour la variante B 
au cas où la thermistance serait utilisée comme thermomètre/ ce qui représente 
une véritable performance

Avec un ap assez grand, une caractéristique statique U(I) avec effet de 
relais et une très bonne fiabilité et stabilité des paramètres, ce type de ther­
mistance est très recommandable dans des differents schémas de mésure et con­
trôle de température jusqu'à T =  160CC.
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■ ULTRASOUND ABSORPTION IN ETHANOL +  P-XYLENE SYSTEM
.  m ,  -  - - u  . ’ t

1 ILEANA LETART*, AURKUA CIUPE*, I). AUSLÄNDER* ' 1 ‘

ABSTRACT. The na tu re  and in tensity  of m term olecular in teractions in  m ix tu - 
- res formed of a polar component — ethanol — and a non polar one — />-xylene 

— were studied by th e  ultrasonic m ethod The da ta  on th e  propagation  velo- 
' c ity  of th e  ultrasound  and the  density, previously presented, as well as th e  results 
' of th e  m easurem ent of u ltrasound absorption and of dynam ical viscosity have 

perm itted  to  calculate the  relaxation  absorption, the  volumic viscosity and the 
;viscosity relaxation tim es - The ultrasonic perturbations of th e  molecular equi­
lib rium  cause structu ra l and therm al relaxation  absorption, and also the désac­
tiv a tio n  of th e  molecules, tíéing in  excited sta te  of v ibration The varia tion  

, of these m agnitudes w ith -the increase of ethanol concentration m  m ixtures, was 
correlated w ith the modifications Of th e  interactions between th e  molecules of 
th e  components' ‘ ’ . , '  -

1, Intro (IiictioiL The s;tudy of the molecular-acoustic, .properties of thş - 
ethanol Ц- p-xylene‘syşţeni.uras dealt with'm a previous work II],b y  determi­
ning tije concentration dependence of thè ultrasound propagation velocity, adia7 
batic compressibility and of the free mtermolecular r distance and,ravailable 
yolume, respectively > ,, , - -

, Following the researches \2\, [3] on,the system formed of, a polar, compo­
nent, with associated molecules, and of. a- nonpolar one,, we aim a t , correlating 
the mtermolecular- interactions y with, , the, relaxation., processes by .ultrasound . 
absorption measurements.- ,,ry • , t - ,'i

.2. Theory.- Recording to,-the viscoelastic' theory, by .admitting .the .additi­
vity, of attenuation constants..and neglecting the non-significant, ones,in. fluids, 
the ulţrâsound ab’şorpţion is expressed" b y . ’ " - л ' ■ , у '

!-'l . i~

•• ( 1)

where à„ e is the'attenuation-constant bÿ absorption ôf the ’viscoelastic theory, 
/ a n d  c'the frequency ‘-ahcl-the ultrasound propagation velocity, p the density,
TQ and t\v the dynamical viscosity and, the 'volumic-.viscosity of the liquid, res­
pectively. ’ _ - , ■

The" calculable term " ’ ‘ ' \ )! ‘ .O" i-i 11 : -i mini. -, : to -
' ' - /  Q-f- . ‘ - - ‘> Jl1......- ‘ П

- "" /*-■ 3 pc3 71

_  2n* (4 ) r t
! i - ’ p  ■ • рй  1,3 h  +  T ir)  1 ■

represents the viscosity'absorption,* and' the term-

I» > «

[2 )

SI
my* pc3 -  ‘

University Bobeş-Bolyai,- ‘DepátíShent lof PhySics f .  'kSmàfata

.  f

к I

ut

a



Î4 I  LENART et al

which is not calculable due to the volumic viscosity, represents the contribu­
tion to the absorption of the relaxation processes correlated with the properties 
of the compressibility modulum If one admits that the totality of, relaxation 
processes is described in terms of viscosity relaxation, we shall have

aa ' _ ĉxp

and thus, from the relation (1) it results
pc3 1
2-2 1l p

(4)

(5)
By correlating the relaxation niechanisms with the properties of the com­

pressibility modulum the relaxation time is obtained :

TV =  ßs(2^ +  'Or) ' (6)
ßs being the adiabatic compressibility coefficient

3. Experimental. All the measurements were carried out m the components 
of the system as well as in a senes of concentrations, under constant tempeia- 
ture conditions, at 20° ±  0,05CC temperature. The dynamical viscosity was 
measured by means of a Höppler viscosimeter, and the attenuation constant 
of ultrasouns — by the impulse method on the basis of the repeated echoes a t  
a fixed distance, at 8 MHz frequency.

4 Results. By using the experimental data of the previous measurements 
of the density and of the ultrasonic velocity, together with the above mentio­
ned ones, we calculated the values of viscosity absorption at different ethanol 
concentrations on the basis of the formula (2) :

Fig. 1 shows the absorption variation obtained by calculation, and the- 
variation of experimental absorption with the increase of alcohol concentration.

The viscosity absorption increases from p-xylene to alcohol along a curvt „ 
the slope of which progressively increases, especially in the field of high 
alcohol concentrations.

The experimental absorption, having much higher values than m the case 
of the calculated one, is characterized by a pronounced maximum at =  0-1- 

The relaxation absorption expressed by the relation (3), calculated from r
a . ec \ a
p  ~ ~ p -------~jc~ is presented m Table I One can observe the value of

the relaxation absorption in p-xylene, which is about twice higher than th a t 
corresponding to the ethanol.

The specific relaxation absorption of ethanol :
J Д A  a

" yi > where Доtf(fj — ®̂w(syst) a (̂p-ivicnc) 4 

varies with the concentration along the curve of Fig. 2.
Since at concentrations superior to the fraction =  0.54, afi;(syt t ) <  ««/(p-xyiene)» 
in this range tjie specific relaxation absorption will have negative values.

The values of some absorption parameters are shown in Table I
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against* the  mole fraction of alcohol

F i g  2 The variation of specific absorption of 
( 1 ^ arel \

ethanol I ----- ---------- I against th e  mole frac-
p  I

tion  of alcohol.

Table I .

C0nc У-Manói avi scafl
Г1 103 
(Ns/m3)

w  ю»
(Nsjm 2)

rţy

I
a'a  - 10u
P
(shn  l)

0 8,73 0,659 6,09 9,241 5,94 '
0,100 13,81 0,661 . 10,22 15,460 10,51
0,345 8,52 0,733 6,79 '9,270 7,44
0,585 5,56 0,850 4,81 5,661 ' 5,61
0,760 3,98 ' 1,013 3,58 . 3,538 4,41
0,894 3,15 1,205 3,01 2,497 3,93
0,950 2,70 1,318 2,57 1,950 3,47
1,000 2,14 1,492' 1,96 1,317 3,07

The curve of Fig 3 illustrates the variation of the relaxation time with 
the ethanol concentration, the values being calculated from the relation (6). 
After an mcrease up to a maximum placed at about ^  =  03 , the relaxation 
time linearly decreases till у_.л =  0 6, at higher concentrations displaying a ten­
dency toward a. concentration independence^

5 Diseussions. The relaxation absorptions result from 'the mechanisms of 
'energetical exchanges accompanying the re-equilibrating of the system pertur­
bed by the wave through periodical variations of pressure and temperature.
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' F i g  3 The variation of relaxation tim e 
against the mole fraction, .of alcohol

The equilibria are determined , by the 
intermolecular interactions corresponding 
to the properties of the molecules oi the 
propagation medium

The components of the studied system 
are characterized by different molecular 
structures the p-xylene molecules, with, 
zero dipole-moment are characterized by a 
molecular mass and sizes superior to that 
of the other component, having a plane 
configuration, they lorm relatively com­
pact arrangements Van der Waàls disper­
sion forces are acting between thes'e mole­
cules at the level of methyl radicals. 
Taking into account their polar character, 
besides interactions of the hydrocarbonate 
radicals by Van der Waals forces, the
ethanol molecules form „by means of 

hydrogen bounds, dimer, respectively tnmer associations [4], [5], [6] ,
In the mixture, all the intermolecular forces, which are specific to the com­

ponents, undergo modifications due to the interactions between the molecules 
of different species After the disappearance of hydrogen bounds between the 

' alcohol molecules and of the interaction of p-xylene molecules by dispersion 
forces, the dispersion and induction iorces between p-xylene and ethanol mole­
cules are settled, together with the increase of ethanol concentration, owing 
to the strong polarizability of the benzene ring , by the continuing increase of 
ethanol concentration, the hydrogen bounds are re-established, forming alcohol 
molecular associations

, The ultrasonic perturbations of molecular equilibria, accompanied by volume 
and entalpy variations bringing about the structural'and thermic relaxation 
absorption, 7 are correlated with the compressibility of the system, formed of the 
sum of a structural term and of a vibrational one

The studied system is characterized by three principal mechanisms of rela-. 
xation absorption 1 The structural absorption resulting from the perturba­
tion of molecular association disassociation èquilibria, 2 Thermic relaxation 
caused by the energy exchanges between the exţernâl and internal degrees of 
freedom ; 3 The deactivating of the molecules being m an excited vibration 
state by non-elastic collisions between ’'the molecules of the components, this 
mechanism contributes to the decrease of’absorption

The first process, characteristic to ethanol, is the result of the phase diffe­
rence of energy exchanges between the system and the wave, imposed bjr the 
ultrasound frequency

In the very diluted mixtures, the pronounced diminution of the interac­
tions contributes to the favouring of the mechanism 2, manifested by the pro­
nounced increase of relaxation absorption The increase1 of alcohol concentration 
limits the intensity of thermic relaxation through the setting of polar-nonpolar 
interactions, simultaneously with the setting of the effect 3 Fmallj^, the con-
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tinuous increase of alcohol concentration has as result the prevalence, of the- 
mechanism 1 v '
, The relaxation time calculated from the formula (6) renders a general value 
of the times corresponding to all 'relaxation processes 

For a single relaxation process

“rel

7*‘
A

■where A is the relaxation amplitude, and /  and f 0 are the - ultrasound frequency» 
and the relaxation. frequency respectively, for the given experimental condi­
tions .'-j- -> Ő, therefore r‘‘ --> A

Jo '  / “

Taking into consideration all the relaxation processes : /

one can obtain the corresponding times, having values superior to that resulting; 
from the relation (6) '
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THE ULTRASONIC STUDY ,0F N-PROPILIC ALCOHOL +  O-XYLENE 
AND N-BUTYLIC ALCOHOL +  O-XYLENE SYSTEMS -

АШ1Е1Л.Л спич:,* ILEANA LENAKT*, I). AUSLÄNDER,* L. M IRCEA*

ABSTRACT. — Ultrasonic velocity and attenuation  constant by absorption, 
dynamic viscosity and density measurements have been carried ou t in  n-pro- 
panol +  or'toxylene and n-butanol +  ortoxylene m ixtures The results concer­
n ing the calculated values for the adiabatic compressibility, the in ternal pressure, 
the disponible volume, the volunnc viscosity, the classical and the structu ral 
absorption, the relaxation frequency as well as th a t of some excess quantities 
give structural inform ation about the studied mixtures

The experimental results allowed the evaluation of m term olecular in te r­
actions and their change w ith concentration m function of the polar configura­
tion of com ponents' molecule and the length of carbonic chain

Theoretical considerations. The previous research [1], [2], [3], [4] of a. 
series of'binary mixtures of organic liquids emphasized the reflection of struc­
tural properties at molecular level by means of ultrasonic propagation constants- 
The present stud}' shows the results of the research carried out in n-propanol +  
o-xylene respectively n-butanol +  o-yxlene ’ mixtures

The ultrasonic velocity and adiabatic compressibility being defined by :

II (П
\

II 1 I
■ъ

-1 ^ (2>

results

p, =  Л ■pc*
(3)

p ,  ^  and 7  being the density, the pressure and the 
From the Van der Waals internai pressure

volume.

fi =  — =  —  p2 =  я„ ■ p2 r ' F* м 1 * у (4)

where ау — д/М2 factor [5] characterizes the measure of attractive [forces bet­
ween molecules included in 1JM fraction of mass unity, M  being the molar 
weight

From the relation (1) .

*  = - x - (ЩK M \ 8 V J t

University Jtebeş-Bolyai, Department o f Phystcs, 3400 Clu'j-hapoea, Rcnnama
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Ъу making some simplifying operations for á limited temprature range we obţain :

A
pc-

2Z
(5)

y being the ratio of molar heats at constant pressure an.d constant volume res­
pectively.

From (4) and (5) results.

2xp '
(6).

The disponible volume is calculated based on the relation [6]

' - , -  -  F I . ' ■ (7>
\

where . cœ =  1600 m/s represents .the ultrasonic ‘ limit velocity in an omologue 
series of organic liquids for M  -> oo. .

The ultrasonic absorption m liquids is given by the expression :
а 2л2 / 4  . t  _ ’■

7* ~  " р ? ( ,з71 ,7)F (8)

where : a is the attenuation constant, , f  — the ultrasonic frequency, rt — the 
dynamic viscosity and t)V — the volumic viscosity., -

The two terms in (8) represent the classical absorption, respectively the 
xelaxational one •

a exp  _  a visc ! arel
‘ P  \ I P  ~~fr

(9)

which permits the calculation of volumic viscosity :

_  pc3, I  a exp ' a vtsc 1 
~  2л2 l p  I p  J

The relaxation frequency is given by :

fv  = 2tcŞs(2t] +-TiV)

( 10)

. ( 11’)

Experimental. D eterm inations were carried ou t a t  constant and controlled tem perature  of 
20±0,05°C

Dor th e  density and dynam ic'viscosity measurem ents nn m ixtures and in  th e  pure compounds 
capillary picnometer respectively H oppler viscosymeter were used

, U ltrasonic velocity was measured by the  optical m ethod of diffraction a t / =  4 M H z  frequency.
F o rt m easuring aţtenuâtion  constant through absorption the. m ethod of repeated^ echos at 

fixed p a th  o f '8  M H z impulses w as used. ‘ ' ' '

Results. The values of ultrasonic velocity in the two studied systems are 
included in Table 1.

Using the data in Table I  and the values of experimentally determined" 
•densities, based on formula (3) it was calculated the concentration dependence 
of adiabatic compressibility, presented, in Fig. 1 , . _ , l •
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- / , Table 1

n - p r o p a n o l  +  о -x y le n e n - b u ta n o l  +  o -x y le n e l

C ' ' , c
у (W  О  ■■ (m • s -1)

\
0 i36i;5  r

Л • *
0 1361,5

0,079 1344,4 ‘ 0,065 1338,6
0,288 '  '  1321,4 " 0,25 > 1318,9
0,519 1259,9 0,470 1304,5 /
0,708 1277,3 0 ,6 6 6 1297,5
0 ,8 6 6 ' 1260,8 0,842 1285,8
0,935 1251,7 , 0,923 1283,1
1 1257,0 ’ 1 - 1279,4

4 and the variation of the disponible 'volume (7) with concentration, presented . 
m Fig 2 '

The ay factor, calculated from experimental data by means of formula (6Y‘‘ 
varies with concentration along the curves from Fig. 3

From velocity, ‘density and viscosity data, classical absorption was calcula­
ted, und from the results of absorption measurements, based on expressions (9) 
and (10) relaxationai absorption respectively volumic viscosity were obtained 

"the results .being presented uTFigs 4 and 5, respectively in Ţabţe 2, -
Viscosity relaxation frequency, calculated from formula (11) varies with' 

alcohol concentration, m the system along the curves from Fig ,6

, F i g '  1 V ariation of, ,adiabatic compressibility (ßs) S' l g-, 2 .Vannta-01} of disponible volypie (Tţâ) .agara it 
^g a in s t mole fraction of alcohol (xe;c) in  n-propa- mole fraction of aícohbl (x„;c) In n-propanol-f-o-x^lene 
nol p o-xylene and n-butanol -j- o-xylene m ixtures and n -b u tan o t -p Ь-xylene m a tu re s
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!P i g. 3 V ariation of ay factor against mole traction 
of alcohol (x^  ) in  n-propanol -f  o-xylene and n-bu- 

tano l +  o-xylene m ixtures

ï? i g  5 V enation  of aKl / / s against mole fraction 
toî alcohol } in  n-propano +  o-xylene and 

n-butanol d- o-xylene m ixtures.

V î g 4 V ariation of о с ^ / /г and \ 1$сИг against 
mole fraction of alcohol ( x ^ )  ш  n-propanol -fo-xyle- 

ne and n-butanol -- o-xylene m ixtures

X ait
P  î g 6 . V ariation of v rcl against mole fraction of a l­
cohol (7^ )  in  n-propanol +  o-xylene and  n-butanol 

o-xylene m ixtures
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Table 2

n-propanol o-xylene n-butanol 4 - o-xylene

cone r>y 10* cone r,v  • 10»
(хя(с) (N  s-m  г) (Xafc) (N  s m~*)

0,0 7,14 0,0 7,04
0,079 9,76 0,065 10,93
0,288 1 6,82 0,249 7,29
0,519 5,30 0,470 6,08
0,708 '  4,30 0,666 5,53
0,866 3,49 0,842 5,23
0,935 3,24 0,923 5,01
1,0 3,11 1,0 5,72

• Discussion. The investigated systems are formed from components with 
different molecular structures : o-xylene molecules, having a dipole moment 
different from zero, interact by Van der Waals forces at metyl radical level, 
they are characterized by plane configurations, what confer them a compact 
arrangement

Alcohol molecules form dimer and trimer associations by means of hydro­
gen bonds, with a higher occurence frequency in propanol Between hidrocar-' 
bonate radicals of alcohols Van der Waals forces also act, their intensity increa­
sing with the number of carbon atoms m molecule

These equilibria undergo changes in o-xylene +  alcohol systems owing to 
the interactions . between the component molecules Thus, the establishment 
of some Van der Waals forces between the component molecules have the 
effect of breakmg of hydrogen bonds between the alcohol molecules. This meca­
nism is favourized m the case of o-xylene +  n-butanol system owing to the 
higher intensities of Van der Waals forces between the CH3 groups as well as to 
the lower degree of association by hydrogen bonds '

In the range of low concentrations, the screening of alcohol molecules by 
those of o-xylene hmder the remaking of hydrogen bonds, concomitently, with 
the diminution of Van der Waals forces between o-xylene molecules, the confi­
guration moves towards a less compact structure This process continues, at 
concentration increase, with the tendency of eliminating o-xylene — Orxylene 
interactions and of progressive settling of hydrogen bonds between alcohol mole­
cules

The dependence of ultrasonic magnitudes on mtermolecular interactions 
is generally, neither direct nor exclusive, the specific caracteristice originating 
from their base as well as from some eventual concessions concerning the rigour, 
become manifest through the reflection of some different aspects of the equili­
brium of the mtermolecular forces, respectively of their secondary effects.

Thus, a direct dependence characterizes ultrasonic velocity, adiabatic com­
pressibility and ,,ay” factor Structural consequences of the interactions are 

' given by the disponible volume, the dynamic viscosity and the viscosity absorp-
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l ’ ' ■
tion Complex secondary mechánisms, Having an energetic character, are reflec­

t e d  by the relaxational absorption, the- volumic viscosity and the relaxation, 
frequency ■ 1

The ultrasomc velocity and the compressibility of systems, functions ,4of 
media elasticity, depend on the intermoleculár forces, as well as on the space 
configuration of molecules The variation of compressibility with alcohol con­
centration and the différenciation of these 'values in the two -systems corres­
ponds to the specified evolution of interactions.

I 'The maximum of compressibility at high concentration of propanol probably 
comes from • '

a) ' the disappearence1 of, xylene — xylene Van der Waals forces,
b) the restriction of n-prapanol molecular associations by alcohol — xylene

Van der Waals forces, > ' -
c) a* looser molecular configuration

'The'",,«./''factor represents a measure of attractive forces m a Van, der 
Waals liquid, the calculation of the expression imposing some approximations.- 
Its  variation', with concentration relieves the presence, at low concentrations, 
of orto-xylene — alcohol Van' der. Waals interactions and of those of o-xylene 
— o-xylene interactions in excess, and at high concentrations, o-xyjene — alco­
hol Van “der Waals interactions' ‘and fnolecular associations of alcohol in excess.

A minimum value of the attractive forces is situated approximately at 
, the concentration corresponding to the maximum compiessibility m the o-xylene 

-|- n-propanol system ’ ’ '
The disponible volume results from the use of limit velpcity of constant 

value, obtained by the extrapolation made,' based on an empirical model. 
Its  variation-with the concentration reflects as compressibility does, the evo­
lution of ,the system, under the, influence of interaction change, towards a ' 
loose structure An analogue process is illustrated by the negative deviation, 
from hnearty of dynamic viscosity owing to the increase of the free volume 
in the mixtures . . . .

The differentiation of ay, Vd and rt behaviour in connection with the 
nature of alcohol corresponds' to the differences concerning the interaction inten­
sity of respective molecules
. ■ - The connexion between ultrasonic absorption and intermoleculár interactions 
permitted the- classification of liquids based on the value of acxp/cf.msc ratio. 
According, to this criterion, o-xyleue belongs to the group of liquids with .weak 
interactions, for which 3 <- v.exp)v.visc <  400, and the. alcohols belong to the 
group of those with stronger interactions for which 1 <  aeT̂ ,/a^sc <  3

The variation of the. absorption ratio with concentration shows an increase 
until a maximum at Xoio =  0,08, followed by a diminution until its value in 
alcohol. Therefore, the systems belong,,to the group of liquids with weak inter­
actions till the concentration Xaic =  0,8 after which they havei a behaviour cha­
racterized by strong interactions If the- change of a.v;sc with concentration is 
.determined by the dynamic viscosity change, the contribution of the structural 
component of absorption results from the. wave energy transmission processes 
to the external and internal ■ degrees of freedom followed by relaxational phe­

nom ena characterised through diffèrent frequencies, '

\
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Besides these, at higher alcohol concentration, association-dissociation rela- 
xational processes of molecular grouping can occur, they being disturbed by 
the propagation of ultrasonic wave m the medium

The mtermolecular collisions m the case of extreme concentration ranges 
between the two compounds can also affect the intensity of energetic exchan­
ges between the degrees of freedom, thus contributing to the change of relaxa­
tion freuendes, respectively of the ultrasonic absorption ^values )
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THERMOSOLUTAL INSTABILITY OF A COMPOSITE ROTATING 
PLASMA IN THE PRESENCE OF THE SUSPENDED PARTICLES

MIRCEA VASIU*

ABSTRACT. The influence of th e  suspended particles on the onset of Benard 
convection is stud ied  in  th e  presence of a vertical m agnetic field and of a uni- 
fo.rm ro tational m otion The effect of fin ite  Tarm or radius (FLR  effect) of a  
composite plasm a m  the  presence of th e  uniform  solute gradient is also studied.

Introduction In this paper we have generalized the results obtained in [1 ]— [4]. 
The plasma consists of a ionized component and a neutra!component. The ionized 
component is incompressible, viscous, with finite resistivity (finite magnetic

/  —V

' viscosity), in uniform rotational motion with • angular velocity 0(0, 0, O).
Also it is under the influence of a uniform vertical magnetic field В (0, 0, B 0) 
and at the same time under the influence of the gravitational acceleration
g(0, 0, — g) The neutral component is asşumed to be incompressible and viscous. 
Consider an infinite horizontal plasma layer of thickness d heated from below 
and subjected to a uniform gradient temperature and a uniform solute gra­
dient. In the present study we have investigated the role of viscosity for the 
plasma and at the same time the collision interaction between the charged par- 
ticles(ions) and neutral particles

Perturbation Equations Taking a small ‘ perturbation of the steady-state, 
we get the linearized MHD equations m the form 

—> ,r\n 1 —► —► —+ —► —► —►
—  ----- (v T V-4) +  +  b{v — u) +  . evc(«„ — u) +  (<x'y —a0)g +
St Po

+  2« X £2 +  — —  (V X ЪВ) X В i 1)
t̂ oPo

~Т7~ =  - v e(«, -  *) +  (2)01

(Tl  +  1) ? = * P)
— v — ►

i V и =  0, у  • u„ =  0 (4)

Y  (**) = V  X ( и х  В) +  vMA SB , (5)ot

[ i  ~  “d e =  Pa  ' ' i6)

( i b  . <7>
9 University BabeŞ'Bolyai, Department of Physics, 3400 Cluj-Napoca, Romania
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where u{iix,u y,u z),u,Xu,lx,u ny,u ns), ЪВ(ЪВХ, SByt 8Д), v{vx,'vy,-vz), bp, SP, 0, y  
denote perturbations in' velocity of the , ionized component, velocity of the 
neutral componet, magnetic field, velocity of the suspended particles, pressure 
of the plasma, stress tensor, density of the ionized component, temperature and 
concentration, respectively , A =  v 2
The change Sp in density caused by the perturbations 0 and y is given by

Sp =  — p(a0 — a y )  ' (Ş>

The quantities ß, ß', öc, a', x, x', denote, respectively, the temperature gradient,, 
the solute gradient, the thermal coefficient of expansion, solvent coefficient 
thermal diffusivity and solute diffusivity.
Tor the vertical magnetic field, the perturbations SP, for the stress tensor 
P  have the components ,

The perturbations have the form
Scp(%, y, z, t) =  <p*.(z) exp '\{%kxx +  ik}y  +  nt), (10)

where <pA(z) is the amplitude, kx, ky are the wave number along л; and у  direc­
tions and n is the growth rate. Using (10) and an adequate mathematical method 
[2], the equations (1) —(7) can be brought £o the form

(16>
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where^v0 is the gyroviscosity (v0 =  const /со,, со, is the ion' gyration frequency), 
vm is the electricalresistivity of the'ionized component, v is the -kinematic vis­
cosity, p0 is the density 'of the ionized component, D2 =  d2jdz2, k2 =  k% k~y>. '
К r= (VZm)z, \  =  (VXSB) , W(z), ®(z), T{z), Z{z)KX(z), K(z) are ţhe amplitudes, 
of the perturbations ' %, 0, у, Ç, £, 8 Bz respectively, as have the form: crs =. 
=  nsd2/v, where1 - - ' ,

n .
щ =  %|1 +  - Sn~ S4cVnk2, , . . ' (17).

n 4 C +  V „ / , 2  /  ИТ +  1 n  +  vc +  V„Ä2

where e '= p j p, p„ is the density of the neutral component, vc is the ion-neutral 
collisional frequency, "S =  £p(т,- ep = pp/p is the.mass concentration of the sus­
pended particles (p̂  is the mass density, of the suspended particles, -t is,the: 
relaxation time). Introducing the quantities .

c, = {id2 С» — Vd* -
У Co --- ■ vd

v„,d
--^Ir/d, cu = J T d t и  =  4 ' ,

a = nd2/4, V = 2Ш2̂ 0̂ р х =  v/x, p 2 =  v/vm, p 3 =  v/x'/^g =  nbd2jv, (18)) 
where a2 =  Jt2d2 and the operators1

0 =  D2 — a2, 0S =  D2-  a2 -  at,~ Ox = D2 — a2 — p xa, 0 2 
0 3 = D2 — a2 — p 3a, Oa = 2D2 +  a2, ,

the equations (11)— ,(16) can be reduced to the" form
0 1(®) = - c 1W ■
■ 0 3Г =  — c2W

OsZ =  - c4OaDW -  c3DX  -  cu DW

D2 — a2 —p 2a

- (19»

/-

0 2K -c5DW
OsOW =  caOaDZ +-ce0  -  с?Г -  cODK  +  cu DZ

0 2X -c-BZ

-(20» 
(21), 
(22),
(23) ,
(24) :
(25) ,

Dispersion Equation. Using a' proper mathematical method [5] we 'obtain, 
the dispersion equation.' By eliminating the functions ©, Z, К, Г/X  from equa­
tions (20) — (25) we obtain the following equation

1{D2 -  a2 p za)(D2 - a 2 -  a,) -  QD2]{[(D2 - a2 -  p xa){D2 -  a2-
- ■ p 3 a){D2 -  «2)][(U2 -  a2 — p 2o)(D2 -  я2 -  u8), — ÇU2-] +  • ; -,

+. {D2 - a 2-  p2G)a2[R{D2 -  я2 -  p3a) -  S{D2 -  я2 -  j/qa) ]}F =  (26»
=  - U [7 +  {2D2 +  я2)]2(£>2 -  a2 — p26)2{D2 — a2 — p xc){D2 —

' -  a2 -  P3g)D W , - - , ' “ *'
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where Q =  ß 2<f2/(j.0pvvIU is the Chandrasekhar number, R =  aßgd4/xv is the 
thermal Rayleigh number, 5 =  a 'ß'g<f4/x'v is the solute Rayleigh number.
The equation (26) generaliszes the dispersion equàtion obtained by Gupta and 
Singh. [4], Vasiu [3]-, [2]

For stationary convection (n — 0, a =  0, % =  0, cr8 =  0, v„ =  0) we .have
0 = 0S = 0 1 = 0 2 = 0 3 = D2 - a 2

and the dispersion equation (26) can be reduced to the form
[0(02 -  QD2)2 +  (O2 -  QD2){Ra2 -  Sa2) ] F  =  -U { V  +  2D2 +  a2)20 2D2W

(27)
where O2 = ’ (D2 — д2)2
Consider the case of a plasma layer with two free surfaces Then the boundary 
conditions at z =  0 and z =  d are

W = D2W =  0, @ =  Г =  X =}DZ =  0
The proper solution of equation (26) characterizing the lowest mode is

» W  =  E 0 sin (t zz) (28)
where E 0 is a constant

» Substituting (28) m (27) and letting x =  a2/n2, R 1 =  Rjiz*, S x =  S/тс4', Q1 =  QtP, 
V l =  Vjn2, we obtain the modified Rayleigh number R x

R i ' 1 + * 4 ( i  +  *)2 +  Ox] +  и  +  s i-*[(1 + *)2 + ßl]
(29)

where x =  (д/тс)2 =  (kd/n)2
This relation is identical with the relation obtained by Gupta and Singh [4]. 
From (29) we obtain

d R , =  Lj A 2(V , -  B) 

dVi *{A +  QJ
dH 1 _  A  (F t -  B)2 
d U ~  x(A +  Qi)

d R ţ ,
d.S\

where A =  (1 +  x)2, В =  2 — я; We observe, dR ildV1 >  0 for x > 2, so that, 
for x > 2, the effect of .rotation is always for the stabilization of the system 
and dRJdU  >  0, dRJdSj^ >  0 for all values of V1 and x The FRR effects 
and solute gradient have a stabilizing influence on the thermosolutal instability.
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ISOTOPE ANALYSIS OF MARS GASEOUS COMPONENTS
1 \

DUMITRU HISTOIU,* DANIEL u r s u ,** n ic o l a e  l u p ş a ,** n ic o l a e  g l ig a n ** v ă d i m
GLEBOVICI ISTOMIN***

ABSTRACT. In  th e  case of Mars, as well as in  th e  case of the  other planets, 
th e  knowledge of th e  atm osphere composition and especially of isotopic ratios 
is very  useful for the explanation of the genesis and  evolution of the atm os­
phere The im portance of the physical and chemical processes w hich are playing 
a m ajor role in  the s ta te  of the atm osphere, can be outlined by  isotopic data  

1 T he mass spectrom etry  is the m ost im portan t and versatile m ethod for 
isotopic ratios measurem ents Taking account of the advatanges of quadrupole 
mass spectrom eters [1,2 ] and those of double collectors magnetic mass spectro­
meters, a tw in quadrupole mass analyser device is presented

iRtroductioR. The use of mass spectrometers devices in the planetary missions 
was very useful for the study of planetary atmospheres of the Earth, Venus, 
Mars and Jupiter [3—6]

Very valuable, for the trends of explanations of the evolution of the 'whole 
planetary system and of the planetary atmospheres, are the isotopic data.

Taking account of the accuracy of double collector methods, used for the 
mass spectrometer isotopic analysis, a device consisting of twin quadrupole 
mass spectrometers is presented.

The device. The double collector m ethod is realised by the simultaneous use of a pair of 
quadrupole mass spectrom eters Such a mode of operation of the device can resolve some problems, 
like those appearing in  th e  case of quick com m utation of the range of ionic current measuring; 
systems, quick tem porary variations of the pressures and bulk variations of th e  electronics.

The construction of th e  device is presented in  Fig 1
The geometry of the tw in  quadrupole mass spectrom eters is identical
In  order to  tune one of the quadrupolar mass spectrom eter on the mass m the  potentials i ţ i /  -f- 

- f  У -cos oi) are applied on the  rods of mass analyzer F or given a and q — operating param eters 
— the m agnitude of U and  V  can be deduced from the relations [7]

8eU 4eV
a =  ---- -—  q =  ---------

mr^W1

In  these relations e — electron charge, r„ — radius of the quadrupole field, w — operating  
frequency of the mass analyser

F or th e  tun ing  of th e  other quadrupole mass spectrom eter, on the mass m +  k the  'potentials 
( V ' +  V  cos wt) m ust have U' =  17(1 h/m) and V  =  V(1 +  k/m) '

U ntil the  contributions of the ions having masses m  +  k — 1 and m +  Ä 4- 1 does n o t g ive 
rem arkable contributions to  the peak of the ions of mass m +  A, one can decrease th e  mass reso­
lutions in  order to  obtain  higher ionic currents

T he operations of device is done and controlled by microcomputerized electronic un it.
T he microcomputerized electronic u n it (Fig 2) consists from
— power supply of th e  ion sources (ASI),
— two identical radiofrequency generators (G R FlP GRFj),
— pilo t oscillator (OP),

•  University ,,Babeş-Bolyai", Department of Physics, 3400 Cluj-Napoca, Ronmnta
** Institute of Isotoptc and Molecular Technology, P  0  Box 700, 3400 Cluj-Napoca, Romania

* * *  Space Research Instituit, Moscow, C S  /
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If 1 g 2 Schematiç diagram o f the electronic un it.
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— two identical measuring channels for th e  ionic currents (E M X, E M S),
— m icrocom puter system  (MC),
— general power supply bloc (SA) 1 •
T he potentials (V  ) on th e  electrodes of the b o th ,ion sources (S-b, S I s) are given in  parallel 

from  common voltage sources From  separate current sources are obtained the currents (IF 1, IF*} 
for th e  filam ents of the ion sources E ach current source is commanded by the system of emission, 
regulation In  th is mode is assured the highest iden tity  of operation conditions for the both  io n  
sources

M icrocomputer system  controls and regulates th e  emission current (IE 1: IE*) and the energy 
of ionizing electrons (which m ust be identical for both  ion sources)

T he potentials' furnished by  th e  tw o radiofrequency generators, applied to  the mass analysers 
(AQ1,A Q Z), are controlled independently by  th e  microcomputer system, in  such a m anner th a t a. 
m ass I analyser is tuned on mass m and the other on mass tn +  k

T he ionic currents,, detected  by the collecting system s (S D Ilt S D I2) are measured by  electro­
m etric systems (E M X, EM*), and th e  values are fed to the microcomputer system for future pro­

cessing of data.
Bassed on stored programs, the microco mp u ter system  can assure the com m utation of the- 

device on ionic or on neu tral mode of operation In  ionic mode, one measures th e  ionic compo­
nen ts of atmosphere, th e  filam ents of th e  ion sources being cut-off Also the m icrocom puter 
system  assures the choice of scan mode.for both  quadrupole mass spectrometers This mode is useful, 
fo r diagnostic of operation and also for collection of inform ations relating the  composition of atm os­
phere By telecomande there is the possibility for th e  installation of other modes (not previously 

installed) of operation of the device.

Considerations on isotopic measurements. During the preparation for Mars; 
missions, m order to test the apparatus, it must be exploited m simulated martian, 
atmospheie Taking account of the acquired data by Manner — 4, Mariner 9,. 
Viking —1, Viking —2, Mars —2, Mars —3, Mars —5 and Mars —6 , [8 —10'], 
was considered a Mars atmosphere composition like that presented in Table 1.

In Table 2 are presented the mass spectra of the most important com­
ponents of martian atmosphere The spectra are calculated for the case of ter­
restrial isotopic abundances. In the last column, under the name Sp M  is pre­
sented a composite| mass spectrum by combining the data given m Table 1 
and 2 The data of Table 2 are showing that there are many superpositions of 
different fragment ions at the same mjz ;

Dowering the energy of ionizing electrons, one could obtain only the most 
abundant ions of, mass spectra [10] In these conditions one can avoid a lot 
of superpositions and consequently the mass spectra are much simpler Such 
mass spectra are shouwn in Table 3 In Table 4 are pressented the ionization, 
potentials of considered compdnents

Taking account of the ionizing" potentials, on remaiks for, 0.5 eV spread 
' of electrons energies, that for electron energy of about • ; /

— 10 eV, one obtains peaks at the masses 142 and 143 for CH3I, 34 and. 
35 for PH3, 93—96 for CH3Br, and 94—97 for CHEBr2 Assuming that the 
martian iodine and phosphor, are monoisotopical, íme can deduce the ratio 
H/D Bassed on the ratio HjD, considering the peaks from the range 93—97 
one can obtain informations on bromide isotopes Despite of very low con­
centrations of implied neutral species, there is the chance of almost equal con­
centrations L, ■ .

— 11.5 eV one obtains peaks at the masses 50—53 for CH3C1, 49—52 for 
CH2C12 and 80—82 for HBr The reduction of these data permits to obtain 
useful informations about chlorine and bromide isotopes, ’ z

)



Tabló 1
'fhe abuudaüees ol some еошцоиеий of martian atmosphere

c C02" N 2 Ar 02 H B r CO H 20 CH3C1 CH31 PH3 СНЗВг CH2C12 CH2Br2 ' HCN N20

[%] 93 4 2 13 1 07 06 005 004 003 003 003 .002 .001 001

Table 2

The „terrestria l,, mass speetra of the components of the m artian atmosphere

mjz C02 N2 Ar 02 H B r CO H20 CH3C1 CH3I PH3 СНЗВг CH2C12 CH2Br2 HCN N 20 Sp M

^  1 14 01 02 .0002
2 7 00 58 1 00 .0076

12 2 77 4 71 3 30 05 50 2 90 4 19 2 7724
13 ■ 03 05 ^ 5 44 61 91 5 S3 1 74 .0315
14 5 20 8 46 95 2 11 9 36 1 67 12 98 2245
15 02 72 38 12 81 46 62 11 01 05 0068
16 6 35 5 13 1 72 90 84 15 54 5 04 6 3617
17 ' 21 20 . 0161
18 01 - 01 *  100* 01 0775
19 11 ~
20 20 0001
26 16 60 - 0002
27 +  100 + 0011
28 6 55 *  100* *  100* 1 50 10 83 10 926
29 08 74 116 08 1083
30 01 2 Г , r 31 22 0140
31 32 10 “ 13 0012
32 *  100* 12 70 .06 1402
33 08 33 10 0012
34 .41 *  100* 0038
35 6 20 04 11 57 0007
36 34 1 60 2 10 0074
37 1 98 ,3 70 0002
38 06 51 67 0014
40 s +  100 + ✓ 2 1505
44 *  100* ' *  100* 100
45 1 20 77 1 1954
46 41 - .21 4093
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T a b le  3 (continued)
w05The ,»terrestrial,, mass spectra ol the oomponents ol the martian atmosphere (continued)

m jz CO 2 N 2 Ar 0 2  H B r CO H 2 0  CH3C1 CH3I PH 3 СНЗВг CH2C12 CH2Br2 HCN N 2 0  Sp M .

47 ,01 7,10 16,83 .0057
48 3,44 8 43 0009
49 13 57 4:1004: .0040
50 ' 4c 100 4: 3 78 .0055
61 4 76 -30 26 .0012
63 31,63 .35. .0017
63 - .37 '
79 . 45 01 6,12 27.40 .0492
80 ♦  100 4: 1 55 3 71 .1077
81 43 80 5 95 26 66 .0479
82 97 29 /■ 1 51 .59 3.61 .1048
83 01 1 90
84 58.10 0019
85 1 88
86 36 98 .0012
87 - 62
88 5 90 .0002
89 0 7 -
91 6.53 12.93 .0005
92 • 3 91 5 30 0002
93 26 45 4:1004: 0030 '
94 4: 1004: 6 16 0034

' 95 20.68 85 05 0025
96 , 93 59 98 0030
97 - 1 09

127 37 80" 0016
128 \. 2 73 0001
139 4 50 0002
140 3 97 0002
141 14 12 - 0006
142 4= 1004= 0043 „
143 1.16
158 .77
160 3 04
162 3 73
164 1 46
170 21
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Table 2 (continued)

The „terrestrial,, mass spectra of the components of the martian atmosphere (continued)

m/z CO2 N 2 , Ar 0 2  H B r CO H 2 0  CH3C1 CH3I  PH 3 СНЗВг CH2C12 CH2Br2 HCN N 20 Sp M

171 ' ' 31
172 - 23 94 0005
173 88
174 46 00 0010
175 . 82 __
176 - ' ^  22 28 0005
177 .26

- Table 3

\v The „m ass spectra,, of the principal Ions

m/z, C02 N2 Ar 02 H B r СО H 20 CH3C1 CH3I PH 3 СНЗВг CH2C12 CH2Br2 HCN N 20

18 *  100* '

19 - .066
20 > 204
27 *  100*
28 *  100* * 100*

, \
1 503

29 735 1 158 004
30 .001 .205
3Í 002 *
32 * 100*
33 .075 -
34 ,409 * 100*

- 35 ,044 ■
36 .338
38 063
40 * 100* CO

A
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Tlie „m ass spectra,, of tbc principal Ions (continued)

Table à (continued) to03

mjz C02 N2 Ar 02  H Br CO H 2 0  CH3C1 CH3I PH4 СНЗВг CH2C12 CH2Br2 HCN N20

44 *  100* *  100*
45 1 195 773
46 410 206
47 005 ' 002
49 • *  100*
50 *  100* 1 149
51 1 164 31 978
52 31 978 368
53 .368
80 *  100*
81 .015
82 97 293
83 _ 014 -

93 - *  100*
94 *  100* 1 149
95 1 164 97 293
96 97 29 1 118
97 - 1 132

142 -  - -  ' - • ■ ( ------ * 100*- /
143 1 162

The Ionization potenslals of the principal Ions

Table 4

C C02 N2 Ar 0 2  H B r СО H 2 0  CH3C1 CH3I PH3 СНЗВг CH2C12 CH2Br2 HCN N 2 0 .

[eV] 13 79 15.51 15 79 12 2 11.62 14.01 12 56 11 17 9 49 9 98 10 49 11 35 10 49 13 57 12.9 '
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— 12 5 eV one/ obtains peaks at masses 32—34 for 0 2, 18—20 for H />  
and 44—47 for N20  The reduction of these data permits to obtain useful infor­
mations about oxygen and nitrogen isotopes,

— 13 5 eV one obtains peaks at masses 27—29 for HCN, 44—47 for C02 
and 28—31 for CO Due to the very high concentration of C02 only informa­
tions aboutw carbon and oxygen isotopes can be deduced
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STUDIA UNIV BABEŞ-BOLYAI, PHYSICA', XXXVI, 1, 1991 ’

EFFECT OF THE MAGNETIC CORRELATIONS ON TH E SPECIFIC HEAR 
OF THE 2D HIGH TEMPERATURE SUPERCONDUCTORS

I. GROSU

ABSTRACT. The influence of th e  magnetic correlations in  a two-dimensional 
F erm i liqu id  is considered m  order to  find  the low tem perature  specific heat 
The specific heat has two term s corresponding to  the  electronic and th e  la ttice  
p a rt T he electronic specific heat has been calculated tak ing  in to  consideration 
th e  electronic mass enhancem ent due to  th e  spin fluctuations T he low -tem pera­
tu re  la ttice  p a rt behaves like X2

Introduction. I t  is well known that the enhancement of the electronic mass- 
in the Fermi systems appears due to the interactions of the electrons with 
different excitations as phonons, spin fluctuations, (paramagnons), or with 
localized spins In the low temperature limit, the electronic part of the spe­
cific heat is given' by \

Ce = ' t, T = —  -ЧоТ - (1>
m

I
where у 0-is the Sommej-feld constant of a twordimensional non-interacting sys­
tem The evaluation of the enhanced mass m* will be performed using the for­
mula

—  = i «)m cu>
(2>

where Yi{Pf,u) is the self-energy of the electrons, interacting- with the spin 
fluctuations Using (2) m (1), a complete formula of the electronic specific 
heat will be determinated The result will contain corrections due to the spin 
fluctuations The lattice part will be performed using a standard procedure 

Effective electronic mass and electronic specific heat. Using the standard 
many-body method proposed by F u 1 d e [1], the electronic self-energy will 
be ' '

X (А ш л) =  — ~  X Í - ^ 7  • » „ )  • R ( p  — p ' , i<ù„ — ш т)
ß m J (2л)2

g =  the coupling constant between electrons and the spin fluctuations.
ß =  —— , K p — the Boltzmann constant.

k b t

G{p',uùm)-the Green function of an interacting electronic system.- 
R {p — p ’, — uo,„) the bosonic propagator.

(3)
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Using the spectral representation *
+ 00

G Q>‘, ш т) =  ţ dE S(P', E)  
гео — E

‘ +  0 0  —у

R[p -  p', uùn -  ш„) =  f- d£ ' P ■E)
J  гып,— гсо,„ — £

and considering
S ( P ' , E )  ~  Ц Е - Е р . )

Ep> =  -f- Re 2

r(?, £ ' ) = - + ■  IwR (?, £ ')

(4)

(5)

( 6)

(7)

(8)
we find .

2  p F  oo

яг 1 -  « 0)
2т1грр J ^  J dя • ImR(q,z) • Re tY 'ţ-i +  (9)

о о
where pF — the Fermi momentum 

T  — the digamma function
an the case of the spm fluctuations formula (9) and the i-matrix method gives 
In  alternative expression

7Г =  1 -  W(0)+ 7  Í V  p  • ь,< (î' 2) • Re[‘T' ( i  +  + ) ]  <10>о 0

Here t(q, z) =  —U2 ■ Imx(q, z) ■ (11)
where U-is the Coulomb interaction 'and x ls the dynamical susceptibility In 
the Random Phase Approximation (R P A) [2] the dynamical susceptibility 
of a 2D Fermi system hs

.• x (m  =  , f x ; ] ,1 — U X 0(q, z)

The imaginary part of Xo ^as been calculated as [3]. 

ImX  о (q, z) = N ( 0)-

From (11 — 13) we get
T и  \ N(fl )U2 г1m t(q, z) =

\

(1 -  I7A(0))2 + [ ^ № - ) 2

(12)

(13)

Í- - ) 2[2pF)
(14)
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Now using (14) m (10)

^  =  1 +  [ 
m  1

UN{ 0)
2т: (1 -  U N(0)) J 2т:E f■/■Шл -***[яг'(т+,£)]х

X 'l 1

V1 +  A  JV^ л/1 +  s j i  +  A

In
I . ( 1 +VT T ^ )  + -щ г^1  + VT^K

2 (l + V1 +  ̂) — ^2". V1 + л/l + A

-  f  . 1 . -  l] • V2  • - r p  1 . - • a r c tg -
\,д /1  +  Л ’ )  у  *Jl A  — 1 ^

V2

Vv 1 + Л — 1

where :

A = tW(0) г
2Ep(l  -  UN{0)) T

(15)

(16)

From (15) the electronic mass m* decreases as the temperature T  increases 
and from here : 1 ■ . '

Cc = ro—  • T  = f(T) ■ T (17)

Two-dimensional lattice specific heat. Using the Debye method the spe­
cific heat of a two-dimensional periodic, crystal lattice containing N  identical 
atoms at low temperature varies with temperature as T 2. Indeed

Ci = dU
dr

with
“D

и  = li io • g(a>) dw

(18)

(19)
K r T -  l

and g{ со) S • со
k V 2

-, where 5 is the area of the,crystal (is chosen to be unity).
Thus in the low temperature limit

C, =  24^(3) • N  ■ KB T2 Ţ2 (20)

where £(»)-is the zeta Riemann function and -
0Д =  21i- vJ n’1. > n = — — is the Debye temperature of a two-dimensional crVstal.lift j
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Conclusions. The specific heat of â 2D high Tc superconductor was calcu­
lated in the low temperature limit. We find that •

C = Ce + G{ = r (T) • T  + A T 2 ' (21)
with a temperature dependent „effective Sommerfeld constant” The tempera- 1 
ture dependence ' of the „Sommerfeld constant” is connectéd with the tem pera-' 
•ture dependence of the effective electronic.mass, which decreases with tempera­
ture in agreement with ciclotronic resonance and heat' capacity measure- 

ч ments , '
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' THE) FRAGTAT STRUCTURE OF THE ZEROSETS

Z. GINGL*,.Z. NEDA**

ABSTRACT. W e studied  th e  fractal properties of the zerosets for 1, 2 and 3 
dimensional random  walks on square-type lattices W e obtained th e  sam e D  =
=  0 5  dimensional fractal structure in  1 and 3 dim ensions, and a to ta lly  diffe- ' 
ren t behaviour in  2 dimensions d = 3 is a critical dimensions , for th e  zerosets.

1. Introduction. ' The aim of our paper is to study the fractal dimension of 
the zerosets generated by random walks o n - 1 dimensional (lcf), 2  dimensional 
square (2d), and 3 dimensional cubic lattices (3d) We defme zeroset as the set 
containing the time-moments in which our particle intersect the origin For an 
i n f in i te  random motion this set could have a fractal structure on the real 
axis, characterized by a D (0 < D < 1) fractal dimension. We proposed to 
determine this D fractal dimension.

2. The Method. Taking account that our motions on the chosen lattices 
will be in discrete steps we must use the number of steps as the time variable 
One can immediately observe 'that a particle might be back in the origin only 
after even number of steps The D fractal dimension - will be ■ calculated by exa­
mining the length distribution of the intervals between the points of the zeroset, 
using the following theorem [6 ]

T h e o r e m  The distribution of empty regions (holes) in a fractal of dimen­
sion D, scales as a function of their linear size with an exponent —D — 1. 
The statement is essentially the following.

n(z, As) ~ z~D~l • de, (1)

where n(e, Ae) is the number of gaps (empty regions) of length between e and 
e -)- Ae 1
The length distribution of the intervals between the points of the zeroset will 
be studied analytically (Ы) and numerically using the following recursion for­
mula .

■Q(N) =  P(N) Q(t) • P(N -  г), (2)
t=i

where
Q(t) : is the probability of returning first time m the origin exactly after 

г random steps,
P(i) . is the probability of finding the particle in the origin after i random 

■ steps .

*  József Attila University, Szeged, Hungary
• •  Babeş-Bolyax University, Cluj, Romania
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Using simple combinatorics we found the P(i) values for our lattices - Now 
with Q(2) =  P(2), and with equation (2) we are able to study Q{N). From equa­
tion (1) we have

. ’ Q ( N ) ' ~ N - ° 7 ' , ’ (3)
and ' so for N  > 1 we can determine the- possible D fractal dimensions 

3 The 1 d  case. For the 1 dimensional random walk
N

and using equation (2) л\е established an analytical-result for Qx(N)

N  -
N/2 y N - Z

(4)

(5Î

Now it is easy ttí stu4y analytically and numerically the asymptotical behaviour 
of Qx(N) Foganthmmg (5) and using the Stirling formula, we found for 
N  > 1 that . .

_Qx ( N ) ~ № * ,  , (6 *
and so . , ' '

, , ^ i  =  05  ■ (7)
In accordance with the kjiown literature results [2], [7] we igot the D1 =  0.5 
vak e for this fractal dimension

4 The 2d case. For this random walk we have

P *(A r)=W  [jV/2F = P ‘(JV)'  - (S)' V
Unfortunately we did not find any analytical result for Q^N), and so we studied 
it only numerically - -
Examining the [ht'Q2(N) — ln (JV)] plot we got —Dz(N) — 1, in function 

-of N  ~The Dz value we are looking for is the asymptotical limit of —Dz(N) — 
-  1 ( ( - D z  -  1) =  limff_ M(_jD«(JV) -  1)}
Now supposing that —Dz(N) — 1 converge as ‘ -

-Dz(N)  -  1 =  ( - D z  -  1) ■ [1 -  C ■ N~a], '  ̂ (£>>
we can determine C, Dz and a with the G a u s s i a n  best fit method We 
ţeaehed to calculate Q2(N) until N max =  60 000, but the convergence'was still 
very weak (a <  0 2) The best values we obtained on the [Nmax/2, N max-1 
interval were a =  0 1315 and Dz =  0 0684 From-this results, we conclude only 
that for N  <  60 000 th exzeroset of a 2d random walk cannot be approximated 
as a simple Dz dimensional fractal, because D~z(N) is not constant, even for_ 
large N  For 'the JV -> oo asymptoticablimit our results suggest only that Dz 
must be smaller than 0 07! ' ; ' , G
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5 The Ш case. In a cubic lattice •

PS(N) N  -  2k ] 
(N -  2k)l2\ (10)'

Working exactly as in 2d, surpisingly we found tha t the convergence of the 
—De(N) — 1 serieş is good even for small N  and the zeroset has the same struc­
ture as in Id, with the fractal dimension • ,

D3 = 0 5 ( П )

I t  is. worthwhile noting that the convergence for —D3(N) — 1 is even better' 
th a t in t i

. 6 Conclusions. We conclude that after four results, the zeroset of the 1 d
and 3d random walks has the same fractal structure with the D — 0.5 fractal 
dimension The approximation for small N  of the zeroset with a D =  0.5 frac­
tal is better m 3d I t seems that if =  3 is the critical dimension and so for d >  3, 
JP(N) and Q[N) will scale in the same manner

1
U 2 d, ^ 3d

P(N )~ N ~ °  5 N - 1 N ~ 15

Q(N)~ N “ 15 (N “ i 06s) N -1 ' 5

Unfortunately in 2d. the approximation of 'the 'zeroset with a Dz dimensional 
fractal is Wrong for N  <  60 000 For the N  -> oo asymptotical limit we obtained 
only that Dz <  0 07 I t would be interesting to study this problem in higher 
dimensions too
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INFLUENCE OF THE DRIFT ON THE ABSORPTION OF 
ELECTROMAGNETIC WAVES IN THE d o w e r  

IONOSPHERE

SZÖCS GÚZA* und SZÍÍCS HUBA**

ABSTRACT. The absorption of the electrom agnetic waves increases w ith  increa­
sing electron-concentration of the ionospheric layers Investigation of waves 
w ith  specific w avelenght yields valuable inform ation on the s ta te  of the iono­
spheric layers The Л — 3 method a t 185 kcps frequency has been applied in  
our observation Relationships between varia tion  of the monthly averages of 
L '  absorption coefficient and the m agnitude and direction of the ionospheric 
d rift were studied  using correlation analysis

Electron concentration of the ionosphere is described by the ,continuity 
equation

8NI dt =  q — kN1 — div (Nv),

where t is the time, N  the electron concentration, q and к coefficients of origin
— ►

and recombination of charges respectively, and v the velocity of convection.
All these factors are hardly foreseen, the teim div(A'p) which is characteristic 
for the, charge transport, has a special importance Hance the drift (l e the 

1 charge transported by the effect of .he geomagnetic field) plays an important 
use in the electron concentration

The relationship between the drift and,t!he absorbtion of electromagnetic 
waves has been analysed Wave absorption increases with predetermined wave 
length field mformation and the condition of the lower ionosphere.

In our studies the A-—3 method was applied, which is based on the. refle­
xion of the electromagnetic waves at increased incidence Absorption of very 
long and long waves is characteristic for the lower' und upper layers of the lower 
ionosphere, respectively Monthly averages of L'  absorption was considered for 
increased incidence of waves with / =  185 AHr(wave length =  1622m). The 
transmitter was the Deutschlander, vhile the receiver was the Kuhlnngsbora 
(53A°N and 12 6 °E) The surface distance between the transmitter and receiver 
was 195 km Measurement of absorption was determined at night between 100 
grades solar zenith and 23 30 D T ,’while measurement of w(ms_1) and the incli­
nation angle 0  characteristic for the drift was determmed between 23 and 
23 30 ÜT  ;

The monthly averages of L(dB) lixF/m, the decimation angle 0  for .1969, 
the number of days of drift measurement and v monthly averages of drift velo­
city are given m Table I

*  „Eszterházy Károly” Pedagogical College, Eger, Hungary
* *  „Kandó Kálmán” Technical College, Székesfehérvár, Hungary
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Table 1

N r M onth L
dB

V
mis

U
grade

D ay

1 I _
2 N 22 48 64,75 -, 20
3 M 21 , 40 226,75 16
4 A 22 42 186,25 20
5 M 25 44 214,11 17
6 I 25 41 185,50 20
7 I 24 45 191,05 19
8 A 24 41 172,66 14
9 S 21 44 248,21 14

10 0 19 39 230,79 19
11 N 19 42 118,50 25

'  12 D 1 22 40 123,13 24

Medial 22,18 42,40 184,98 18,20

The absorbtion v is plótted m Fig 1, while L us 0  is plotted m Fig 2 Ana­
lysis of the two graphs shows the trend of absorption and drift to be comparable. 
'Correlation coefficient 'between the two series of data is 0 50

Fig 2 is a hodograph of transport velocity against the decimation angle. 
Vector v is proportionalste the section, while position is given by decimation 
angle 0  m an Fast-North Coordmate System

The analysis resulted m the following conclusions
1 The value of correlation coefficient r — 0 5 proves that the drift' has a ţ 

■significant effect on the condition of the lower ionosphere
2 Hodograph of the drift proves that the change of monthly average of 

absorption is caused by a change m direction of the ionospheric drift (taking into 
account, that the magnitude of the velocity does not change considerably).

F i g  l F i g  2
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3. Absorption is influenced by horizontal, and vertical components of the 
drift. ■

\4  In addition to the ionospheric drift motion, the electric charges are gover­
ned by the other factors That is, the lower layers/ of the ionosphere motion , of the 
electric charge is also influenced by atmospheric turbulence , -

5 Multiple correlation computation renders a better understanding of the 
different factors influencing condition of the lower- ionosphere.

Note There are two points to be mentioned about the effect of the horizon­
t a l  drift on the ionospheric absorption of the radio-waves On the one hand, 
the effect, of the horizontal drift, „although it generates a vertical charge notion, 
is hardly demonstrated by a single resultant parameter like the absorption. 
On the other hand, the ionospheric absorption of radio-waves, by transaction 
of the electron-density, is a function of the electromagnetic radiaton of the Sun. 
At rthe observed frequency (Deutschland sender-Kuhlungsborn, 185 kcps) the 
radio-waves are reflected at a height of 90 km (г e at the bottom of layer E) 
where electron-density, m general, is governed by the electromagnetic radiation- 

Thus the absorption vane's according to the -zenith distance of the Sun 
(except dor the winter months, due to the winter anomalies), while the drift- 
velocity at the described height reflects the independent motion of the neutral 
gases, which are able to carry the charged particles whose concentration are 
less at several orders of magnitude This is also proved by the direction'of 
the dnft, which (m accordance with the circulation at the'level of the mezo- 
pause) is east-to-ivest m summer, months and west-to-east in winter months. 1
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THE SUPEERADIANT MODEL FOR FEL

SPERANŢA COLDEA*

ABSTRACT. A short analysis of the superrad ian t BEI/ operation is presented 
The case where a Stim ulated  R am an Backscattering F E L  operates as an am pli­
fier for noise is considered

1 Introduction. The analysis of the superradiant (or superluminiscent) 
EEL model is made based upon some theoretical study of the radiation 
produced by the interaction of an electron beam with a rippled magnetic field . 
[1] — [3] From the intersection of the Doppler-shifted negative energy space- 
charge mode and the cyclotron waves (m the dispersion diagram) with the wave 
-guide modes of the beam,'excited in a SRB—FED, the spectrum of resul­
ted radiation can be investigated Experimentally was established tha t this 
radiation occus m the 10—30 GHz spectral region Only the negative-energy 
(Stokes) modes are unstable, the-positive-energy (antiStokes) mode being stable. 
Éhe analysis is complicated, by the existence of many wave-guide modes and 
the -presence of the beam noise

2. Discussion Some intense submillimeter radiation produced by SRB 
process from a strong microwave pump field was also discovered [4] In this- 
case we must admite that the role of the rippled field was also to produce a strong 
pump wave m the electron frame , we will'simplify the study by considering a 
short ondulator (wiggler) period which permits the generation of a radiation in 
the millimeter frequency region

The mechanism of the superradiant process could be described as follows. 
the ponderomotive force of the beat wave, produced by the pump, and the 
growing scattered wave bunch, the space-charge of the electron beam and the 
pump wave scattered from the periodic space-charge fluctuation remforce the 
scattered radiation [5] The xiresent noise on the beam is amplified (the SRB 
process is a convective' instability)

If a short-pulse, moderate dense electron beam (with 15 ns), s  2, 
<в4/2тс ä 2 GHz) is used, we can examine the dependence of power upon pump- 
amplitude Usually, in the experiments the strength of the rippled field is control­
led by pulsed wigglers I t was observed that the signal initially achieves a thres­
hold, this will increase exponentially, the increasing coefficient being linear 
in pump-wiggler amplitude The existence of a threshold is a characteristic 
of the three-wave parametric processes, being related to the wave-coupling 
mechanism [6 ]. ■

Two modes were identified experimentally. one due to scattering from the 
space-charge mode, and another due to scattering from the cyclotron fmode 
[7]. The dependence of superradiant SRB upon pump amplitude is a linear 
one

* University ,,Babcş-Bolyai’\t Department of Physics, 3400 Cluj-Napoca, Romania .
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The, growth rate of the-cyclotron mode varies as ы rather than ы)/2 
and its damping rate varies as oj

If the intersection of the beam dispersion lme with the wave-guide modes. 
 ̂ is near the light lme, it is clear, that single resonances will be produced If 
' and suffer a variation, the mode coupling process can be identified

The study of the dependence of scattered radiation power on the ondulator 
length reveales a .convective instability The power of the cyclotron mode will 
be saturated, if the pump amplitude increases Probably the saturation nonlinear 
process is caused by the beam-dynamics effects

I t  is clear that,' when cùc =  eBSQjmc =  (the pump wave frequency) or 
со* =  — (x3b, the efficiency of three'-wave scattering will be enhanced.
We could demonstrate this by ^considering a ' helical wiggler (ondulator) with 
the period l =  18 mm imposed over a small current electron beam (y* =  2 , 
I  =  1 UÄ), m the electron frame of motion Two resonances m scattered radia - 
tion signal should be found, when .the electron gyrates m the same sens as the 
helical field When the Bzp field is reversed, no resonant effect is obtamed The 

' two'resonances correspond to Q. =  yco0 and Qc =  op =  ум0 — co6 
i, ■ As a conclusion we can observ, that are many limitations-m-the supperra- 

diant - FBP operation the output radiation is dependent upon the noise pie- 
. sent at the beam input into1 the wiggler, also the spectrum of unstable modes is 

-larger when the gam pump amplitqde is increased (the finite bandwidth ps given 
by Дсо,. ~ Imái), this phenomenon being observed experimentally too In the 
Raman regime FFF operation, the -lme (bandwidth) ’broadening mechanism 
is a'homogeneous one
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CROSS-POUARIZATION RATE USING A TIME AVERAGED 
PRECESSION FREQUENCY

I. ARDELEAN*

ABSTRACT. A theory  based on form alism  of projection operator is developed 
to  describe the ra te  of therm al m ixing T is  between two spin species, one abun­
dan t (I), irrad ia ted  w ith  a phase alternating  radiofrequency field, and other 
dilute (S) The cross polarization spectra is obtained

1 ÏDtroiluction. The introduction of the cross-polarization technique makes 
possible to overcome th^ low sensitivity of dilute spins, and provides a mean 
of observing the N M R signals of those nuclei m solids [1] However, this met 
hod cannot readily be applied to nuclei with low gyromagnetic ratios, such as, 
57Fe, 103Rh 187Os, . . . because to achieve the H a r t m a n n - H a h n  condition 
ţ 2 ] with those nuclei, very high values of rf power are required

A method to reduce the rf power requirements for the crosspolarization of 
nuclei with small gyromagnetic ratios, which is based on the time average of 
the precession frequency, has been realized by T a k e g o s h i  and M c D o ­
w e l l  [4] They have shown that by alternating the phase of the I  spin loc­
king rf 'field, the precession of an I  spin isochromat around the effective field 
is time reversed

In order to design the efficient cross-polarization using a time-averaged 
precession frequency process, the understandmg of the spm dynamic is essen­
tial The present paper is concerned with a particular situation of current expe­
rimental interest, one in which two different species of- nuclear spms, one (I) 
abundant and the other (S) dilute, come to mutual equilibrium through a pro­
cess of cross relaxation in a time denoted by TIS

A schematic representation of the cross-polarization usmg the time-ave- 
laged precession frequency (CP — T A P F) is given m Fig 1 The enhance­
ment of the S spectral line intensities is performing by cooling the I  spins first 
ßf > ßL, and then crosspolarizmg the two spin systems m order to increase ßs - 

Here I  spins are prepared by a 90±* pulse followed by a phase-alternating 
spin-locking rf field d“U(—Y), one can control the angle .of precession’of the I  
spin around the effective field m a cycle time tc = tx -\- t2 As long as the cycle 
time tc of the phase alternating sequence of the I  spm-lockmg field is short 
compared to the correlation time tc of the dipolar fluctuations m the tilted\ 
rotating frame, l e £C<̂ TC, the apparent precession frequency of the I  spm isochro­
mat around the effective field felt by the S spms is the time average one [4]. 
Then the new Hartmann-Hahn condition for cross-polarization usmg the time- 
averaged precession frequency (C P — T A P F) is

( 1)

*  Polytechmcal Institute, Physics Department, 3400 Cluj-Napoca, Romania
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F i g  1 Pulse sequence for the CP-TAPF experiment, Y  and — Y  
represent the phases of the I  spin-locking field

* \
with (ùeI =  — t2)ltc, where =  уSHIS, шй7 =  у2Не1 Therefoie the S'
spin, rf filed strength required for cross-polarization can be reduced a sca­
ling factor (tx — t2)jtc ^ 1 from that reguired to achieve the H a r t m a n n  — 
H a h  n condition

'2 Hamiltonian and frame of reference. The most common spin system 
encountered m the double resonance experiments contains 'two spin species 
1 and S with different magnetogyric ratios 77 and The sample, which con­
tains NT and N s spins (Nj  > Ns) is placed 111 a large static magnetic field H 0. 
The field H 0 is supposed to be along the Z axis We discuss only the situation, 
in which we may neglect the relative motions of the spins, and all the spin 
lattice relaxation times of both s]hn species are taken to be infinitely long

The high field double-resonance Hamiltonian m the laboratory reference 
frame is

H = HI + H s + Hu + H f (t) (2)
The Hamiltonian Hf is defined as

Н/ =  Hzl +  Hu  (3) .
where '  ̂ /
HzI = —Iùc1I z, cof7 =  Y/H0 represents the Zeeman term and Hu  desenbes di­
polar magnetic interaction between I  spins

The Hamiltonian Hz which characterizes the dilute spin system is
IIS =  HSs -+ я 5:

where HZs = —(ù{sSz Because we are interested 111 the behavior of spin system 
on a time scale small compared with the spm-spin relaxation time of the S 
spins, we can neglect the term Hss m eq (4) .4

The Hamiltonian HIs describes the mteracion between 1 and S spin 
systems

The Hamiltonian describes the mtei action of the spin system with
radio-frequency magnetic field of amplitudes H u and H u and frequencies u>T 
and cos I t has the form

Hrf(t) =  —2col7 I r cos co7/i — 2(ols SY cos cùst (5a)
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for -f-Y-phase of rf field, and
H rf{t) =  2cou I y cos cùft — 2<x> s S-j. cos u>st (5b)

for — Y phase rf filed Here cou =  -f/Нц  and cols =  , lor convenience .we
have used m eqs (3) — (5) units m which ii =  1

The time evolution of the statistical ensemble, having an explicitly time- 
dependent Hamiltonian, can be descnebed by a density operator p(f) which 
satisfies the Yiouville-von Newmann equation

4 p(«) =  №  Pm  = H 9(t)ot - (6)
A

where H =  [H , . . ] is a Tiouville operator
A solution of eq (6) can be obtained if we describe the 

semble in a new quantum-mechanical representation defined b}r 
transformation [5] 4 1

statistical en- 
the canonical

PTS(t) =  (TR) pW(TP) + (7)
here

R =  Rr = Rs =  <T'“A ' (8 a)
and 4

T  = Ţ iTs, Tj =  T s =  e’°A (8b)
these defining „tilted rotating frames” . In these reference systems the.Hamilo- 
man jof 7 - S  spin system is '

H TR == [TR) H {TR)+ + i[TR)(TR)+ ■ (9)
A concrete expression for H TR can be obtained from eqs (9) and (2) — (5) 

in which -we consider only pure dipolar coupling between the spins for +Y  
phase, rf  field ,

H \ R =  - 4 lZ, -  +  P 2 (cos 8r) +  Щ  (10a)
and for — G phase rf field

H tr =  соtII, -  с о +  P 2 (cos e jH h  +  Hp ' (10b)
r

wheie the effective frequencies are cô  =  [co  ̂ — Aco)]1/z and coes =  [cozs +  
+  AcoI)1!2 with Дсо/ =  <o0/ — <0/, Aois =  co0s — cos. Here Hu  — zero-order, ave­
rage of homonuclear dipolar Hamiltonian

B h  = Y  & „ ( / , ? - 37 ,^ ,) . (1 1 ) '
^ . *<1

with the interaction factor
b,j =  т2Л r f P 2 (cos e j
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The Hamiltonian H p describes I  — S spin interaction and at resonance i t  
is given by

H p =  5j btmI iyS„я . , - (1 2 )
t ,m

with

K » =  — 2 г я Д п ,»-Р2 (c ° s  0 „ J

In  the above expressions, the indices (i, j) and m refer to the I  and 5 spins, 
respectively, rtJ is the distance between г and j  spins, 0O is the angle bet­
ween the vector rt} connecting г and ] spins and the applied magnetic field 
H 0. The 0/ angle is defined as 0/ =  tg _1 [oiu /(eic/ — co7)] and to resonance
0j =  тг/2

In a C P—TAPF  experiment we can replace the full Hamiltonian (10}’ 
by a zero order average Hamiltonian [3] defined as

and we obtain

H'T R --------— -  H jj  ~ A  +  Hp (13)

where ые1 =  a>el(t1 — t2)jtc is the time averaged precession frequency m accor­
dance with experimental results o f T a k e g o s h i  [4]

I t  is now possible to separate the spin systems’involved m a double-reL 
sonance experim ent into two subsystems characterized by the Hamiltonians 
Hi and Hs definèd by

H± =  —~u>eII z — HIit

H  2 caeâSs
(14)

coupled by a Hamiltonian given by (1 2 )
. 3 The computation of cross-relaxation rate. The spin systems, which par­

ticipate in a double resonance experiment, can be described by their thermody­
namic coordinates which are represented by the quantum-mechanical average 
of the observable operators. The time évolution of the thermodynamic coordi­
nates as a function of the condition of experimental preparation and the phy­
sical characteristics of the subsystèms can be obtained from the Tiouville- von 
Hewmann equation (6 ) for the density operator of the whole system

In a double-resonance experiment, _ the subsystems are represented by I  
'and 5 spin systems The thermodynamic coordinates are defined by the 
quantum-mechanical averages of the operators

(Я Д  =  r r{H lPTR(l)} 
(H 2yt = T r{H2pTR(t)}
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An exact kinetic equation for the thermodynamic coordinates defined by 
eq. (15), has-been derived in an elegant manner .using ortogonal operator expan­
sion [5] and projection operator technique The ortogonality of the operators 
is' defined m the following sense

ГЛ В Д .} =  0 (16)

Defining the projection operator P on the subspaces of Hamiltonian ope­
rators H 1 and H 2 are.

я ,
T r{H}} Т Г{Щ }

From eqs. (6), (10), (13), (15) for kinetic equation we obtain 

8

(17)

8t
<HX = - г  Tr{HíH trP ç>xR(t)} -  гT г{Нг IPTXS(t) (1 -  P) Ргд(0)} -

\ ăi'Tr{Hi H°rRS(t -  П (1 -  P) H \ RP 9\ R[t')}
(18)

where î =  1 , 2  and

§{t) =  . ■ (19)

is propagator and in the lowest Born approximation wè can consider tha 
S(() ,= S 0(t). We assume here that the spin systems are prepared so that the 
initial density operator has a high-temperature canonical form

Ргя(0) S (1 -  №  -  № ) / r f{ 1} ' (20)
where and ß2 are inverse spin temperatures

In the second-order approximation of the perturbation Hamiltonian when 
a fast-correlation assumption is introduced for times t rc the limit in the 
integral of eq. (18) can be replaced by infinity and we obtain

CO

~  <ЯД =  -  $ drTf{ H ß TRS 0(r) (1 -  P) Ê \ RP 9tr(í)} (21)
о

Suppose now that we are interested m the cross-polarization dynamics 
of dilute spins. From eq (21) the following equation can be' written in this 
case

_s
8t < H  2> ,

<Я„><
ТЛЩ} Т Г{НЦ

J d x  C(H2, H 1, t) 

0

(22) -
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V ^ I

where the correlation functions are defined by ’ '

С (H2 , H 2, T) =  Tr{(HpH2) S 0 (t ) (HpH2)}, '
(23)

C(H2 ; H , , T) =  T,{(HpH2) 5 0(т) (ЯрЯ,)},
for which the following relation is valid

j  CO

$ dT[C(tf2, я ! Л ) +  С(Я2, я , , т)] =  о
О

We can define new thermodynamic coordinates by
PiW =  <Нг\ 1 Тг{Н1}, ş2(0 =  <Я2>(/Г,{Я1} (24)

which in the high-temperature approximations have the dimension of inverse 
temperature [k =  1) For these formal inverse spin temperatures, the following 
equation is valid [5] :

ap«(0
at

PiW -  P.W
4 S

(25)

where the cross-relaxation time which characterizes the cross-relaxation process 
is

TTs J dr T r{(HpH 2) exp [ - 1(Я, +  Я 2)т] (HpH 2)} (26)
о

Using the particular forms of H v H 2 and H p we obtain

TrS = — M2iSlJz[&(ùe)

where the spectral density function which .describe the fluctuations in the ther­
mal bath represented by the abundant spin system are given by

00

J . (со) =  ^ dx cos cotCj(t) 
0

with Сг(t) the dipolar autocorrelation function

С.Ы =  r r{(E b , j J  exp U  Я//т] (£  /Г,{(£ biml j 2}
{ I tn *  J  t,tn )  i,m

and Дсое =  cotS — coi7 ч ,
In  eq (27) M2isi is the Van Vleck second moment of the magnetic-reso­

nance line determined by the cross coupling dipolar interaction
From eq (27) we can observe that maximum cross-polarization rate is 

obtained for ме7 =  coes ( H a r t m a  n,n - H a h n  condition) in according with 
expernnental results of T a k e g o s h i  and Me  D o w e l l  [4].

/
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' 4 jConclusion. The heteronuclear polarization transfer rate in the case of 
double resonance time averaged precession frequency have been derived The 
maximum transfer is obtained for Aw* =  0 which verify experimental results- 
[4]. Also have been obtained the variation on Tjs with cSeI — <nes as a cross- 
polarization spectrum

*
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(

THE AIR-OUAEITY USING TO MEASURE THE BETA-RADI AT ON 
ERŐM AEROSOES IN CDUJ-NAPOCA

MARTA BAYER*, NICOLETA HIRIŞCĂU*, E. MUNTEANU*

ABSTRACT. The nuclear activ ity  contributes to  the radioactive loading of 
th e  atm osphere The radioactive m aterials contained by  the air m ay irrad ia te  
the m an directly, by  inhalation  or immersion, or indirectly  , through nouris­
hm ent chain [2, 3]

The radioactive aerosols are form ed by  the  scattering  of the radioactive 
products m  th e  air, th e ir composition being variable and frequently very 
complex

- T his paper presents the obtained result regarding th e  radioactivity, of the 
aerosols long-lived constituent through ovef all beta  measurings

The used working method [1, 8 , 9, 10] was based on filtering a definite air 
volume through E P P and S E F-21-50 with 0  =  3 cm This was mounted 
on a plastic or metallic holder and an air pump connected. The filtering lased 
7 — 8 hours during this time, a quantity of 25—30 m3 air was filtered, being; 
absorded by the F P P for aerosols and S F E - 21-50 for the radioactive gases 
special filters The total volume of air sempled can be measured" The filter is- 
analysed to obtain the integrated radioactivity per unit volume of air By weigh­
ing the F P P filter before and after aspiration we can estimate the concentration, 
of powders in air. Before the measuring, the F P P filters were kept in boxes, 
for 3—5 days in order to eliminate the interference of the Rn and Th short­
lived products

1
Table 1

D ate of 
filtering

Volume of 
air (ш3)’

Concentrations of 
powder (pg/m3)

B eta radioacti­
v ity  after 48 
hours (mqjm3)

1991 
Jan  20 20 065 a26 4 22 ± 4
F ebr 25 , 24 656 33 3 13 ± 4
March 10 25 317 406 0 30 ± 3
March 17 25 248 412 0 24 ± 4
March 24_ 25 500 204 0 24 ± 4
March 31 30 134 206 0 25 ± 3
April 7 , 28 034 142 6 31 ± 4
A pril 14 27 162 192 2 38 ±5,

± 4A pril 21 25 340 ’ 343 '3 13
May 6 27 002 403 7 20 ± 4
May 25—26 45 674 374 4 22 ± 3
Ju n e  9— 11 76 134 442 6 26 ± 3
Ju ly  8— 10 75 490 245 0 18 ± 3

* Institute of Public Health and Medical Research Cluj-Napoca
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The radioactivity of the filters was measured by putting them on known 
Tund salvers placed in an anticoincidence counter connected' to ah impulse-me­
ter. " ' . . .

The reaults are presented in the next table From these F  P P for aero­
sols filter after their' measurement, of the-beta4'— îadiation and 1—131 and 
Gs—137" isotope contents will be determined, black smoke and the others pollute 
substances and correlation will be searched between these

In  the first part of year 1991, the air quality m Cluj-Napoca by overall 
3jeta radioactivity and 1—131 meásurméent was not worried1 -
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BIFURCATIONS AND CHAOS IN A FAMILY OF LOGISTIC MODELS

P. E. STERIAN, I. M. VOPESCU*, V. NIMJI ESCU*, 0 . RANCU* /

ABSTRACT. A fam ily of maps of logistic type is presented and analysed The 
characteristics of such logistic m aps are given by a classic analysis of th is  app li­
cation Discrete m appings are easier to handle The conclusion is th a t  th e  sim ple 
discrete mappings could have a com plicated behaviour, w ith evolution chaos, 
b u t following th e  universal routes

I t  is im portant th a t  th e  presented applications' fam ily can be know n and 
investigated fu rth er

1 IntroductioR. The work deals with a family of one-dimensional discrete 
mappings

1 Xi+i =  /(* ,. *i, O, •••> О
where xl characterizes the system at „time” t, f  is a differentiable function 
tha t applies an interval into itself and rit r2, , rn are parameters

Discrete mappings are easier to handle than differential equations which 
can be integrated by iteration.

Simple discrete mappings can have a very complicated behaviour, with 
evolution chaos, but following universal routes

2 Tlvc family of logistie models. Let’s consider the simplificated model of 
a population noninteracting with others We denote by x(t) the number of 
organisms at time t, the mcreasing.average rate of the population on the interval 
\ t , t +  t ] is

r(t T) =  (W + ,T) — x{t))h
x (t)  +  0 ( i ,  t )

(lim 0 (zf, t) =  0)
T—* 0  
t>0

from which

r(0 = lim r(f,T )T—*0 x(t)
t>0

so that
x'(t)'= r(t) x{t)

For small populations r(t) =  r0 (the static birth rate) and the population is 
exponentially increasing. When the population became large enough, the com­
petition between organisms can’t  be ignored and r{t) <  r0 We consider Ver- 
hnlst’s effective (dynamic) birth rate

\ . r(t) =  r0 — a x(t), a >  0

*  Polytechmcal Institute Bucharest,  79585 Bucharest, Romania.
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The population evolution will be given by the differential equation 
- - x'(t) =  x(t)(r0 — ax(t))

and — using a linear transformation — by the corresponding discrete mapping
. x,+i =  rxt{\ — xt)

which is named „logistic” .
The family of logistic models is [1]:

( 1 )

(2)
(3)
(4) ’
(5)
(6)

(7)
(8)
(9)

( 10) 

( П )  

( 12)

(13)
(14)

fct+1 =  rxt( 1 — xt), 0 < x0 < 1, 0 < r < 4 
Xt+i =  ^exp (r(l — xt)) - -
xt+i =  x f l  +  r(\ — xt))

sxt+\ — xt( 1 +  r(\ — X,) -)- (r2j2 )(1  — xt)2) '
X, + 1  =  Xt(l +  r[\ -  xt) +  И 2)(1 -  xt)2 +  И 6)(1  -  xtf )  .
■Xi+1 =  #,exp (r(L —  я , ) ) ,  0  <  L <  1 ' . .

xt+1 =  rx)~b
x,+i = xt{\ — Ъ In (rxt))

xt+\- — rx\~b exp {—xt)
~xt+i = 4 ^ (1  — b ln (rx,)) r2 exp (—X,)
x̂ +i =  xt(\ — Ъ I n  {rxt)) r2( 1 —  X,) • '

-x,+r = ,xAl — Ы n (rx,)) r2{ 1 — xt — x]ß)
* Г

-Xt+1 =  X t exp (ггх™~х — г2х'Г1), rv r2 >  0, n >  m >  1 

xt+\ = x,(\ +  rxx f  — r2xf), rv r2 >  0, N  >  M  >  0

The deriving' of models one from each, other has been made by’ Mac 
Taurin expansion, by transformations and combining parts of other models. 
The model (3) is réductible to, (1) by the linear transformation xf-+ (rj(r +  l))^ê 

’ and by r -*r  — 1 As (2) by Mac Taurin expansion and retaining till linear, 
square or cubic term will give (3), (4) and (5), we reach the relationship 
between (1) — (5) models. In (6 ) the lineaf transformation xt (1 jL)x, implies
(2) where r -> rL <  r ' , "

3. Models’ characterization ! .
a. Bifurcations diagram and routes To chaos. The study of the models when, 

one of the parameters is varied shows these change from a regular behaviour to  
an irregular one (chaos in (1) —(6), (8)—(14) models or" unbounded evolution
(7))- - ,

The typical behaviour is plotted in Fig. 1 where we have, considered 
the model (1) with 0 <  x0 <  1 and 2,8 < r < 4. We got it plotting for each
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r the iterations from 100 to 150 The first 100 iterations weie only compu­
ted x0 e  (0 ,1 ) is arbitrarly '

The model (1) has two fixed points (solutions of f{x) == x equation) 
x\ =  0 stable for 0 < r <  1 and xZ =  1 — l/r, stable for 1 <  r <  3 =  rl 
When 3; <  r < 4 there are no stable fixed points ( |f'(x) | >  1 for x =  fixed 
point)

We will study the system for these values of r taking the second ite­
rate of /

%i+1 = r2(x — (r +  l)x2 +  2rx3 — rx*) (/- = /  of)

This has evidently the previous fixed points and m addition the solu­
tions of equation

.■rx2 —-(r +  \)x +  1 +  l/r  =  0

namely ' 4

* * = ( ' +  1 ±V(;- +  l)(r -  3)) l(2r)
Because we have (

/ 2' ( * з  ) = / ' ( * ; )  = / ' ( * 5  ) / ю
the stability of these two points is identical We have

■/'(*3 ) = / 2'(*4* ) =  ( p ' ( x 3 ) +  №  ))/2 =
=  r2{\ (r -f- 1)(#з -f- x\ ) -f- 3r(xj~ -)- x42) — 2r(xs3 -(- x43)) — 1 — (r -f- 1)(/"— 3) 
and the stability 'condition gives

r < l  + *j6 = r2
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With 'r e  (Vx, r2), after a sufficiently high number of iterations, the sequence 
{*„}(.ejv settles into a 2-cycle oscillation x' , x\ , x’ , x '  ’ . .  So, at r = ri =  r 
the system has a period doubling bifurcation

Increasing r beyond r2, (the fourth iterate map / 4 has four stable fixed 
pomts in accordance with Figure I The bifurcation theory with doubling period 
was obtained by M i t c h e l l  J. ’F r i g e n b a u m  [2] who proved that the 
system exhibits a sequence of bifurcations at 1

ri <  r2 <  . . .  <  rœ =  3,569945 . . .  
aud the sequence {r(1}„ejY converges geometrically at a rate

8 =  lim ~ >n~ 1 =  4,669201 . .
r n +  l  -  r n

so that w ith 'и not large we'have - . . .
, ' rn «  rœ — CS-"

• For r >  the system is chaotic
On Figure 1 one can see a „window” in a chaotic region This window 

is plotted again m Figure 2 on ■ which its limits are clearly noticed.
We explain the „window” — in accordance with Figure 3 — by the 

existence for the iterate map / 3 besides the fixed points x\ =  0 and x2 =  
=  1 — 1/r of other three pairs of fixed points. Each pair has one stable and one 
unstable fixed point formed at r =  1 +  a/S, 'the value of the knob r at which 
the first’bisectrix is tangent in three points at the / 4 diagram.

The bifurcation is named tangent bifurcation. Related with this is Sarkov- 
skn theorem [3] The natural numbers set is written N  = A {J В where A =  
=  {2n l\n > 0, l Js 3, l odd} and В =  {2”‘ \m > 0} With the order relation 
on N  •

3 h  5 h  V l- „  . 2 • 3 h  2 • 5 b- . . .  Ь  2й • 3 h  - -. [— 23 [— 2 2 1— 2 [— 1 ^

xt 1 OOOOOE+OO , •'J? ^• :* ‘ ;
,4;’ '•-/ •v*C' -ч- «•,

v-Y' -

'5-,

0 . OOOOOE+OO 
18__________

'  -

,3.85000E+00

Y ' r  )

3.9

I

v

F i g  2
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F i g  3

the theorem says that for every T R -* R continous mapping that has a periodic 
orbit of period n, T  has a periodic orbit of period m for every m e  N  such that 
n f— m

So, the periodic orbit of period 3 implies the existence (for the same value 
of r) of orbits with arbitrary period Nevertheless, there is no general theorem 
concerning the stability of periodic orbits In Figure 2 one can see the interval 
of stability of 3-period orbit and 3 2 bifurcations from the family 3 2k(k <= N).

Model (7) is a singular case in considered family With f(x) — rxx~b, the 
,Schi\aizian derivative” [3]

Sf('x) =f"(x) l f ' ( x)  -  3C T(*)№ ))8/2 =  b(l -  bl2)x->
s no negative defmed so that the model hasn’t  the sequence of period — dou­
blings To illustrate sj^stem behaviour we suppose r =  1 The map has the stable ; 
fixed point x" =  1 for b e  (0,2) (Figure 4 a,b) and lim x, =  oo for b >  '2

/—♦CO
Figure 4c). ,

b. Lyapunov’s exponent The mappings considered • are one-dimensional, so 
we have onty one Lyapunov -exponent

7»  =  l im -  £  In !/'(*„  >')l
n - * o o  11

where x} =  f{x}-\, r) and x0 is arbitrary m the intervals of the models
Figure 5 shows a typical variation of Li-’apunov’s exponent for a system, 

that evolves to chaos and is m a good agreement with diagram bifurcations 
(Figure 1) The values у <  0 indicate regular behaviour of the system and the- 
existence of some stable periodic orbits, % =  О m the bifurcations points and. 
X,-> 0 for the chaotic behaviour The route to chaos with P o r n e a u  — M a n ­
n e  v 1 11  e intermittences is illustrated too, moreover, one can see two k-  
periodic orbits for / < 1 - ) -  y 8 at which appears the 3-orbit.
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4 , Conclusions, applications.
The study of the family of logistic models emphasizes the similarity in beha­

viour, the routes to chaos by periodic doubling bifurcations, except model (7); 
when one of the parameters is varied

• Tlie models are used m continuous or discrete forms m economy (inventions, 
diffusion, forecasting of energy consumptions, m biology (the growth of an 
organism, demographical problems) etc [1 ]

c
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NATURAL GEOMETRIC SETTING FOR 
THE ANTI-BRACKFT

II.  П ALASIN*, L. TĂTARU**

ЛИЬ'111ЛС1. D espite the fact th a t there is a natural symplectic structure in  th e  
H am ilton ian  approach even m  the extended phase space (1), the corresponding 
one in  the 'D agrangian  approach is still missing We present a geometric setting  
for the B R ST  construction m  the Lagragian approach The nature  of the an ti- 
h racket operation and its connection to  the S c h o u t e  n-N l j e n h u i s  b racket 
w ill be clarified F inally  we present an extension of the geometric construction 

. to -include the ghost degrees of freedom

; 1 Introduction. A physical system maj^ be described by the space of alî.
trajectories M, where the phj^sical snbspace Mc is singled out by the action. 
Unction S Cœ(M) using the condition 8,S =  0 In the presence of a gauge 

T0 up G t u n  M c ccntanis icdindrnt  joints That is to say elements of Mc 
ifalize the same pht'sical state if thej’ are connected Ьзг a gauge transformation^, 
^h e  physical subspace is given Ьз? MJG and the jihysical observables become 
C<*>(Mc[G) To be definite we assume C to be a Lie group that acts freely on. 
M. That is

group—majipmg 0 g M  -> M  Vg <s G
orbit —mapping 0 p G -> M  0 P{g) == 0 e(p)
Raifi)' = 0 р П т о а {-,«} . basis of L(G)

[Ra, RvJ = AfiR-r
Since it is in general easier to acess functions on M, we need some procedure- 
to identity the physieallj’ relevant functions The strategy is to implement the 
above two step jirocedure m going from M  to M c and finally to M c/G in terms 
of the corresponding Cm-f unctions ' B a t a l i n  a n d  V i l k o v i s k y  (£  F)> 
provided an algebraic construction to implement both steps. [2; 3, 4, 5]
The passage from C°° (iW) to Ст[Мс) is accomplished by noticing that elements of 
0 ( M J  are in one to one correspondence with elements of С00 (M) modulo func­
tions that vanish on M c The latter are of the form X ’8ß  (under some regula­
rity conditions) Using the Koszul resolution of (Cœ(M), {d,S}) [5] this may In ­
stated m the form Н%(СЮ(М) ® Д (V)) =  Cœ[Mc), where the following nota­
tion has been used

•  V is the free vector space generated by elements {0* }

•  S is the Kc«?ul k cu rd a iy  cpeiator ac tirg  cn the con plcx 

C ^fM ) g ) Л (V) by its  action on the generators

Institut fu r  Theoretische Physic, Technische Umiersitut Wien, Л1 a i l i i e r  H a u p t s t r a ß e  S  — 1 0 ,  A 1 0 4 0 ,  W i e n ,  A u s t r i a . .  

Umv В abec-Bolyai, D ipl o f Physics, 3 4 0 0  C h n - J S ’a p o c a ,  К о ш а ш а
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A ’
SF =  0 V-F e  C°°(M)

S0 * =  8 tS, which has the property  S2 =  0

•  H |(C°°(M ) ®  Л (V)) is the p -th  homology space of S

To achieve the acyhcity of 8, which has turned out to be crucial for the exis­
tence of the BRST-action (see below), B V  introduced generated {0£} to kill 
the cycles i f?“0 ‘ , by imposing S0 à =  Rx0'  (0 £ will be identified with a basis 
•of L(G) ) In order to describe the gauge invariant functions F  on M c, we use 
the fact th a t they are anihilated by the generators of the group action (г e 
Rxd'F =  Ő ) Using Uie algebra cohomology this may be stated equivalently as 
Cm(McIG) =  Я^(Сс0(Мс) (X) /\(L*(G)), where we made use of

•  L*(G) the  dual of the Lie algebra L(G), where the basis elements will he denoted by {c“ },

Ф d th e  coboundary operator of the complex Сю(Мс) (x) A (IA(G)) defined on its g e n e ra to r

dF  =  caR l 8 tF  V/ s  Cx {Mc)

d~ =  0 because of the Jacobi iden tity

•  я£(С°°(М с) ®  A (£*(G))1 is th e  p -th  cohomology space of d

Putting the pieces together we find that Cm(MJG) =  Щ(Н1{СХ(М) ® A(U))® Л 
A (L*(G))) £ F  showed that it is possible identify the latter with the zeroth 
cohomology of complex Щ of the BRST complex Cœ(M) (x) Л {V © -i-(G) © 
© L*(G)) with coboundary operator given by s =  S +  d, with the property 
s2 =  0 Since s acts as a (gràded) derivation on this complex, l e it maps 
„functions of the BRST complex into „functions”, it may be considered as 
some sort of „vector field” . Keeping this and the analogy to the Hamiltonian 
formalism in mind, B V  were able to construct a bracket structure on the BRST  
complex, the so-called antibracket (.,.) and an element S BRSt of the complex 
th a t generates the vector field sF =  (F, SBRS) VF e  Cco(M) ® A (0  © 
© L(G) © L*-(G)).
The aim of the present work is to shed some light on the underlying geometry 
of algebraic BV  construction (l e to identify the extended field space and the 
antibracket as canonical geometric concepts ) In a second step we extend the 
riatural structure to incorporate the gauge symmetry of the system Finally we 
briefly comment on the geometric significance of the B R S T  condition sing­
ling out physical observables

2 Batalin-Vilkovisky field space and the Scliouten-Nijenhuis bracket. In
order to provide a natural geometric setting for the BV  approach and its ingre­
dients, let us first disregard any symmetries that may be present in the system 
under consideration Therefore we start from a manifold M, which serves as a 
model for the space of all fields (M will be considered from the sheaf-theoretic 
point of view. That is to say, the differentiable structure will be defined by 
assuming M  to be a Hausdorff space together witli the correspondence U —►
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00 (£7), for any open U G  M, which defines the smooth functions over U.) 
ocal coordinates on M  will be denoted by {01} To set the stage for BV  a- 
proach we consider the supermanifold* M ex that is naturally associated with the 
mgent-bundle TM  of M  £14] Mex is obtained by extending the structure 
leaf О  of the manifold M  to Д 8Г, where ST denotes the sheaf of sections 
(TM) of the tangent bundle Local coordinates of TM obtained from {0*1} 
re given by (0', 0} ) — (0‘, d3) With respect to these coordinates a function
1 Mex may be written as

/ ( 0 , 0 *) = / ( 0 ) + / ' ( 0 R  +  'Рда  л  . . A  8 t P + . . . ,

hich may be interpreted as a section of oT Functions with a fixed antighost 
amber, that is a fixed power of 0 t* , are identified with Д-vector fields over 
Г Owing to this correspondence we may take advantage' of the natural bracket 
Tined on Д-vector fields This is the so-called S c h о и t e n—N  г j  e fi­
ú i  s (SN) bracket ]Sjv. [6 , 7] In local coordinates it is given by

[ - ] A p {&) Aÿ+Î(̂ )

r* , Y] =  ( - dp-*x *>-< 3.Y'« V .  Л a/f +  (i)
/

H------ -— — ( - 1  )# - i)y ,í - i la x í#aí , д  d u

(g -  1)1 p \  v '  '  / ? - 1 / x  p

here '
X  e  A P( ï ï ) ,  Y  e  A ?( ^ )

s rp =  8a  A A 3,p

'  -  I  p  =  г 1 1p  ( 2 )

In the particular case of Д =  7 =  1 the SN '  bracket reduces to  the Lie 
racket Interpreting Д(оГ) as Cœ(Mex) we see tha t the SN  bracket defines a 
lhnear, odd (since it changes the degree by one) operation on Cc0(M„) The 
illowmg properties of the SN  bracket are readily obtained from (1)

9  L inearity  m  both  argum ents 

". e  Graded com m utativity

[X,Y]  =  ( - 1  )i ? [Y,X]

О D erivation property

[X, У A Z] =  [X,Y] Д Z +  (— ljU’- D iy  д  [X,Z] 

•  Graded Jacobi identity  •

[X, [Y,Z]] =  ( - 1  )P~ 1[[X ,Y ] ,Z ]  +  Z ]]

f o r  t h e  d e f i n i t i o n  o f  . s u p e r m a n i f o l d  s e e  t h e  A p p e n d i x
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(The smgmicance of the SN  bracket may be seen i'rom the following example 
Suppose we want to define a Poisson bracket on M  using a 2-vector tiled h 
and the definition {f,g} = h'^Jdjg /, g e  CK{M) The condition for { , } t  
satisfy the Jacoby identity turns out to be \h, h~\SN =  0 [8 ])

This raises the question if there is a connection between the canonical strut 
ture defined by the SN  biacket and the antibracket which is defined [12, 13 
for arbitiary functions F, G of 0, 0* m the following manner

i-p __  8rF  S/G 8,F  ő/G ‘ \
'  ’ ~  H &  8 0 f  8 Щ ~ 8 &

Taking F  and G to be hpmogenous oi degree p and q m the antifields respecţi 
vely (l e identifying F, G with p, q-vt

F  =  — X*P0 ;p\

G =  -i- Y^0*
? 1

(F, G) = — d,XlPdr ---- -----  Y'J9-'dt
. P1 M ? -  i) 1

=  ( - 1 ) ,[Х ,У ]^ +с-13/р+?_г

So we have identified the SN  bracket, which is a natural object from £ 
differential geometric point of view, up to a power of ( — 1 ) with the anti 
bracket of the BV  approach
However, this means that we are in the same position as in the Hamiltoniar 
(BF) approach, which starts from an a priori given symplectic manifold f 
which provides a Poisson'bracket on C°°(S) The above considerations show 
that Pagrangian {BV) approach starts from the supermanifold M cx, which u 
canonically associated with M together with a skew Poisson structure. (cu 
antibracket m physical terminology) on Д Sf- which is given by the SN  bracket, 

3 Incorporation of Symmetries. Pet us now assume that the system undei 
consideration carries the action of a gauge group G More precisely let there
be a free right action of G on M. (In this way G-* M  -V M/G becomes a prin­
cipal fibre bundle) The Killing vector fields relative ot the G-action, which 
corresponds to a given basis {-fa} of the Pie-algebra P(G), will be denoted by 
R x{0) = Rx{0) d, Their commutation relations define the structure constants

[RXI R,fi] = flf,R-(

Taking into account the previous section shows that we may follow the con­
struction used m the Hamiltonian (BF) approach, which extends the phase 
space and the Poisson structure to the ghost degrees of freedom Therefore

ictors) we obtam

1 vU0 \  =  — X ‘Pd,,

.0; = —  Y ’'1'àj ,
« q I Î . (3

1 Х'*Р-'В, d Y ll*3,
iÍ - i q\ 1 Î
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■ur aim has to be the construction of an extension of the canonical superman- 
fold. M„  and the SN  bracket defined on Cco(Msx) m order to accomodate 
he ghost degrees of freedom of the В V approach. Guided by the fact tha t 
he ghost are odd degrees of freedom and that they belong to L\{G), our cons- 
ruction will be the following
ft first let us define some extension M  of the original manifold M  which incor-

л .

lorates the ghosts Obviously M  has to be a supermanifold. In the next step let
✓ 's '

is pass to TM, which is motivated by the way the previous chapter incorpora- 
ed the antifields 0* Via an appropriate gradmg let us pass to the Д V» 
vhich will serve as structure sheaf of M « Finally by the extension of the SN

A A

iracket to Д(ЯГ) we will obtain the skew Poisson structure on СдМ ^).
/ч

L'he construction of M  is achieved by associating a vector-bundle E  with stan- 
lard fibre L*(G) to the principal bundle G -> M  —> MjG This is achieved by 
die following construction

E = n*(M X  CL*{G))
M  X  gL*(G) = (M X L*{G))IG,

.vhere we take the G-action on L*[G) to be the coadjoint action, which is 
defined by

(AW*feK Q =  (со, Ad(g)Q V g e C  CO e  L*{G), К ® L{G)
V 71

Finally we use the projection M  -*MjG to pull-back the associated bundle 
M X gL*(G) to a bundle E over M.  Tet ns now usé the bundle E, or more

/X
precisely the sheaf of its sections e =  Г(E) to define the supermanifold M  to 
be (M , Д(е)) This object will serve as generalization of M  m order to include 
the ghost degrees of freedoip. A general element of C“ (M) will be of the form

/(0 , c) = / (0 )  +  c“/ a(0) +  . . +  i -  .. c«Pfai (0)
P I г

with respect to a local coordinate system (0 ‘, ca) In the next step we identify 
the BV antifields with the tangent vector fields (dt, 3a) given by this coordi-

A

nate system To this end we have to consider the tangent bundle T M  and
A

the sheaf of its sections ST, which is defined to be the set of all derivations of 
CM(M). Explicitly, we have' *

г, e  яг => v(fg) =  v(f)g +  (— 1 y"fv{g) V/, g s  O (M )
(o)

v(0, c) =  vl(0, c)dt +  va{0, c)8a 
ith respect to local coordinates (0 ‘, c“).

\
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_  "  . / Ч  - -  l / \
This construction suggests the definition of M ex- =  (M, д  (áT)), where the ext 
rior product Д is taken with respect to the gradation

V Д v\ =  ( — l)(i+«)(i+»'V д  у

=> а, л  ^  =  — д  _
=> 3 , Д sa = да Д A

- ' ' a  =  V A  ал

Thé generalization of the SN  bracket may be obtained from (1) by - simp] 
taking into account the powers of- (—1) that arise from pulling the basis of tl 
left term through the components of the right term.. The extended SN  brack« 
is therefore conveniently written as - - \

л ( у ^ Ч ) - ' -  ^

• - (- 1)y,i+,1 i r v y V , 4 - . ) A ( ÿ ^ 4 ) .  - ' ■'

where the index A denotes either г or a and I  is an arbitrary collection of 
' indices Moreover the 1 relation to the antibracket is biven by

(X, Y) =  (-1)*[Х , У-]
The properties of (7) are obviously generalized from the properties of (1) b; 
rep lac in g -w ith  X  in the-exponent of ( — 1) Together with the extension 0

/4 1
the SN  bracket to ^-vectors oyer M  this construction gives our geometri
model of M ex, the extended field space as a skew Poisson manifold with ; 
skew Poisson structure given by the extended SN  bracket

Appendix. 1

T ins secuon is devoted to' the  to  basic sheaf-theoretic notions used m  the  theory of supermanifolds 
In  order to  define the concept of a superm anifold [9, 10, 11] i t  is useful to  take a different po in t о 
view on an o rd inary  manifold M  T h a t is, we consider M  to  be topological space together w ith  ai 

■ assignm ent of a ring  of contm ous functions to  each open subset U of M  (î e U —» £C(U) cr C(U) 
Moreover th e  fam ily SL =  (A(U), U с  M  open) obeys the following conditions

e  U < =  V  open, /  e  a ( F ) = > / |  e  A(U) '  ' '

- " I ‘
* Y  =  U j s A ,  Ua open, I  some index se t , g , f &  S.(V) and g \U xy= f\Ua Va e  / .= > /=  ^

® V =  U open, I  some index set /  <= A (U  ) V e  I  s t.^  c t ^ i u  'X  ■L 1 J  oc 4 cl'  a

f a  I Van из =  -fßlf/anUß Va,ß e  J  => 3 /  e  V  =  Д  . . '

•  to  every p  "= M  there is an open neighbourhood U c: M,  th a t is homeomorphic to  Rn  Lel 
th e  components of th is homeomorphism be denoted by y 1 U—y R, then

-  • ' ec{U): =  с “Чд?) ( x ^ j b ' ) ) -  ■

Locally the elements of A(TJ) have th e  form /  = /(y 1, . , y»>).

- t X , Y j =  ( - l )x+1 ■Х1р-^л81- i )

I
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The first three conditions m ake th e  fam ily ét in to  w hat is m athem atically known as a sneaf. I t  
is called the  structu re  sheaf of M  Usually one -writes M  for th e  C°°-manifold instead of the  p a ir  
'{M, ét) ' In  the sam e w ay one m ay define a vector bundle E  over M  by a sheaf e of free modu­
le s  over the structure  sheaf, él of M  e is identified  w ith  the  sheaf of sections of th e  vecto r 
bundle E  - I
The passage to  a superm anifold is now accomplished by tensoring ét w ith  some exterior producţ: 
of a vector space V  More .precisely ,

1 '
to  every ’̂ j e  M 3U  <= M  open s t  ,&{U) ~  a (V )  (g) Д(Е) ,

T h is  defines the extension ä  of ä  Locally a function in  ét (17) becomes ,

f  =  /(У, e) =  m  +  o%(y>) +  +  ^ 7  e*  • - • caPfai ap,

w here {c“} denotes a basis of V.  S tated  differently, a superm anifold is obtained by generalizing th e  
n o tio n  of the structure sheaf of an ordinary manifold

I /N /
A superm aniford M  =  (M, él) m ay be constructed by  using a vector bundle V —* E -*  M  over1

- A

M,  and declaring él =  Д (s), where e denotes th e  sheaf of sections of E  T his construction will 
m ainly be used in  our w ork Using th e  sheaf-theoretic po in t of view i t  is easy to  generalize th e

1 J  XS
notion of a vector bundle to  a supervector bundle W e simply define its  sheaf of sections c to  b e

■ - /4 /4
a sheaf of free modules over th e  structure sheaf & of its  base supermanifold M  A  supervector '

, ' _ _ 
bund le  th a t  is canonically associated w ith  every supermanifold M  is the  (super) tangen t bundle/ч 1 ( /\ !

' <TM I t  is defined to  be th e  sheaf of all graded derivations S  o f  &l (Explicitly ,v e  S  =i> v(Jg) —

v(f  g) +  (— 1 Ÿ vfv(g) Vf,g e  él) This bundle is locally generated by <dt =  ----- , 8a = -------
I 8yl ‘ 8c*
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