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SIMULTANEOUS DETERMINATION OF U AND Th FROM ROCKS
BY GAMMA SPECTROMETRY

C. COSMA”, L. MANIAT', P. EAVODSKI™'

Received: 10.10.1992

ABSTRACT. Using the high resolution gamma spsctrometry method
(GeLi) was determined the U and Th content in two rocks melange
with a great concentration of these elements. As standards ware
used twoc reference materials from IAEA, Viena. Uranium was
determined by using eleven characteristic gamma ray energies and
for thorium ten characteristic energies are used. The obtained
concentrations are: 1.272% for uranium and 0.70% for thorium with
relative error of 3.2% and 3.9% respectively.

Introduction. Nuclear energy davelopment conducted to the
development and improvement methods . of proapecting and
exploitation of U and Th ores. The measursment possibility of
gamma energy emited by thesa elaments or their radioactive
descendents offers the possibility of elaboration of a rapide
method, and sufficient accuarate, for the determination of U and
Th from ores and rocks. Dsvelopment of this method makes possibls
the isotopic analyses of uranium, which is necessary in procass
of isotopic enrichment, in determination of burning ratio and in
process of reprocessing of nuclear fuel [1~4].

The procedure and resultas of obtalning of a U and Th
standard, which can be used in simultaneous determination of
these elements in rocks and ores presented,

Rxperimental Method. For measurement of U and Th by gamma

spectrometry was used gamma spectrometry of high resolution based

“Babeg-Bolyai" University, Faculty of Physics, 3400 Cluj-Napooca,
Romania . '
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Institute of Isotopic and Molecular Technology, 3400 Cluj-Napoca,
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on the detection with semiconductor detectors (GeLi), which has
the advantage of elimination of unliked multiple interferences
during determinations.

Measurements were done at I.F.A. Bucharest in Laboratory 8
IFIN, with a help of Canberra gamma spectroscopy chain with
vertical 75 cm’ Ge(Li) detector. It was done measurements on
three samples included in Table 1.

Table 1. The basic characteristics of analysed samples.

Sample (a) (b) (c)
Uranium Thor ium Uranium=-Thorium
Characteristic standard(U8S) standard(Ths) standard (UThS)
Chemical formule 0,0, Th (NO4) ,*4H,0 ore
Mass (g) 10040.04 100+0.04 171,67+0.05
Provenance IAEA Viaenna IAEA Vienna pechblend+thorium ore
Congentration 1.009 1.945 unknown
(mg/g)

Uranium and thorium concentration from UThS sample will be
determined by comparation with the standars (a) and (b). Gamma
spectra were succesively registered in the analyser memory with
the following periods: Uranium standard - 3,250s, Thorium

standard - 3,000s, UThS sample -~ 1,500s.

Results and Discussione. Gamma spectra, resulted from the
measurements, were processed principally by determination of the
net area under the photo-peaks, together with energetical
calibration and detection efficiency.

For those two standards, the net areas of the photo-peaks

were extracted directly from multichannel analyser, which das
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implemented a microprocessor for determination of these areas.

The sample spectrum being a combihation of those two spectra
of standards, has a high complexity. Fig. 1 - 3 present some
~ sequences from this spectre on the limited energy interval. For
this reason the spectrum was processed with the help of alsAMPO -

80 programme package introduced in a CORAL Computer of ITIM
Cluj-Napoca [4]. Sample spectrum was transfered into computer,
too, from magnetic tape.

The SAMPO - B0 Programme Package executes the following
operations: energy calibration of the spectre, calibration in
eficiency of the spectre, calibration of the peak shape,
calibration of the net area.of the peaks, identification of gamma

radionuclid emiters, calculation of the net activity for every

1299
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photo-peak, calculation of errors.

The 'heads of series of the three natural radioactive
families 238y, 232ph, 235y, emit alpha radiation and give birth at
the products which at their turn are desintegrated by emission
of alpha, betta and gamma radiations, untill are obtained finally
stable isotopes. Actinium family (?3%U-238%y) contributes to the

total uranium activity with 1/138 parts.

Uranium family after half-life period, is devided in five
groups:

a. 238y - 23y, Half-1ife period of 23%pPa of 24.1 days is much

longer than of the other descendents. Radioactive equili-
brum, even if it would be disturbed by some geochemical

processes, is rehabilited in 5-6 months. Gamma radioactivity
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' and attains the equilibrium with previous group after
approximately (5-8). . 108 years. N
Radium (226Ra) has a half life period of 1620 years, emits
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of this group is of 2 8%.

Thorium (23°Th) has ‘a half life period of 8 3 . 10% years

Equilibrium between 226p, and the head of this group 222pn
is established in 38 ‘'days and between the members of the
‘group in some hours. This group includes radioisotoprs.
222Rn 218pg, 214pp, 21481 and 21‘?0 situated in the main

sequence. Contribution to the gamma radioactivity of this

o
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group 1is given by 2l4phy  (14%) and 214pj (83.6%). At the

total radioactivity of uranium series this group

contributes with 45% of alpha radioactivity, with 42% of
betta radiocactivity ant with 90-97% of gamma radioactivity.

This group is the most important one from our poin; of

view. ” «

e. 210pp, the head of the fifth group, has a half-life period
of 22.3 years, entering in equilibrum with the previous
series after approximately 200 years and has 206py, as final
product. The 210py, sfays at the base of datind method of
sediments of recent date.

The main equilibrium which may occur, in this series, is
reffering to different geochemical migration of 238U, 234U; 226pa
and 222pn (5,6]. .

Thorium family descendents have the half-life period
relatively small and radicactive equilibrum in this series is
practically permanent. From the point of view of gamma radiation
energyes emited by the members of thils series is‘remarked that
of the 22pp, 212p{ ang 29871 radiosotopes. \

In all quantitative measurements of U and Th must be had
into consideration the question of radioactive equilibrum or
nonnequilibrium in censidered series. A special atﬁention must
be given, from this point of view, to radon and thoron [7, 8].
In the case, we are not sure on thé equilibrum of 238y - 226y ip

the‘sample, it is possible to determine the 238U content from the

energy E = 1.015 MeV emited by 23%rh desintegration. This
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transition has a low probability (0.59%) and may be used in the
case in which we have high resolution detectors, only. Method of
trace detection [9, 10] 1is _ very indicated in radium
determinations.

Because neither 238y nor 232Th do not emite gamma lines uti}e
to active determination of thesa it 1s used the activity
measurement of their desintegration products. When the
equilibrium is brocken this matter is not possible. This
situation appears when U and Th arg axposed unde;vchemical
treatments conected to their' purification. The equilibrium is
established after six months in the 238y - 234pg gequence and it
takes more than 60 years in the 232qp - 224Rpq sequence. Therefore,
when are not considered the state of these equilibriums, the
resulte of the measurements may be mistaken. In our case neitﬁer
standarda nor sample were undertaken under chemical treatments
and if someone,may suppose that in then, there is a radiocactive
equilibrium. This fact 1s cheched by the results of our
measurements. We must be sure in this case of the radon (222Rn)
and thoron (22%mrn) equilibrium.

Table 2 and 3 contain the experimental data quotationed from
the computer memory for our UThS, in which from the total 45
peaks we retained 11 for uranium and 10 for thorium calculations.

The average of rations of Ry and Ry, were calculated with
the formulae of weighted arithmetical average with the rélat#ve
errors of individual ratip and the relative errors average with-

the formulae of armonical average. The relations of areas must
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be corrected for the different acquisition times and specifically
Ry is multiplyed by 2.16 and Ry, is multiplyed by 2.00.

Table 2. Experimental data for the uranium determination.

Lt

Radio- E A ) A, € R (A, /A,) A
isotops | (kev) | (imp) 8y | (idp) (£ o (%)
23y 144 9.396 | 4 810 6 11.6 7.7
234py 1.001 3.500 | 3.6 295 11 11.86 11.6
214py 351.9 362.304 | 0.1 35.085 | 1.1 10,32 1.1
' 242 94.030 | 0.4 9.105 | 3.5 10.32 3.52
2l4gy 609 243.600 | 0.2 23.056 | 1.3 10.56 1.31
666 6.576 | 2.3 584 10 11.26 10.26
767.7 19.470 | 1.0 1.942 ]| 7.4 9.96 7.46
1.120 | 47.670 | 0.5 4.131 | 3.7 11.53 3.73
1.237 | 17.037 | 1.0 1.388 | 8.8 12.28 8.55
1.728 7.285 | 1.6 626 7.1 11.88 7.27
1.764 | 36.210 [ 0.6 3.098 | 3.7 11,68 3.74
Ry = 10.0126 A = 3.17%

Table 3. Experimental data for thorium determination.

Radio- E A P ‘A e (A /A_.) A
isotope | (keV) | (imp) (¢ S I T i IS
228y 209.5 9.530'| 4.25 3.194 | 6.8 | 2.98 8.0
. 269.8 ,| 15.120 | 2.03 3.927 | 7.0 | 3.88 - 7.3
338.2 19.860 | 1.47 6.088 | 3.6 |3.26
795.1 2.839 | 4.19 926 11 3.06 11.8
911.1 18.185 | 1.08 5.476 | 2.6 |} 3.32 2.8
212gy 238 4 100.260 | 0.48 33:267 | 1.1 {3.01 1.2
727.7 5.545 | 2.76 1.804 | 5.2 | 3.07 5.9
208 510.6 10.626 | 1.83 2.808 | 7.0 | 3.78 7.2
583 27.815 | 0.87 8.479 | 2.6 | 3.28 2.74
860 3.220 | 4.34 954 9.5 | 3.37 10.4
Rpp = 3.093 and A = 3.89%

For the mass of U and Th from the UThS is obtained:
My = Ry . 2.16Myg = (2.188 + 0.069)g,
My, = Rpp . 2.00Mg,, = (1.293 + 0.046)g .
"and for the concgntration the values:

10



Cy =

SIMULTANEOUS DETERMINATION OF U AND Th

1

|

, |

(Mg/Mg) . 100 = 1.271%, J

Crp = (Mpp/Mg) . 100 = 0.70%,

where: Mg = 171.67g is the UThS mass. tl

OO WK
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BELTRAMI PARAMETRIZATION AND GAUGING OF
VIRASORO AND W~-INFINITY ALGEBRAS

Liviu TATAR®, Radu TATAR™"

Received: 15.09.1992

ABSTRACT. The gauging of Virasora and w-infinity algebras are
discussed from the point of view of BRST symmetry. Both algebras
are realised ae "Russian formulas®” for the ourvatures built from
tha generators of the Lie algebras and the corresponding gauge
fields. The generalized curvatures are to detarmine the gauge
invariant Lagrangians as well as the anomaly structures of the
conformal two dimensional theorxy and the w-gravity.

1. Introduction. The two dimensional conformal field theory
has the Virasoro as the underlying symmetry. The classical string
action is a typical example o;‘f a theory invariant under the
Virasoro algebra. Its invariance and its conformal properties are
most clearly exhibited in terﬁé of Beltr&mi differential /1-4/.
In this parametrization the BRST agebra factofizes in two
independent and separafé structures, which implies that the ghost
Lagrangian is a sum of a holomorphic and an antiholomorphic terms
and the action for the string can be expressed ony in terms of
Weyl i;variant quantities.

However, any attempt to treat thezspin two gauge field, 1.e.
the Beltrami differential, on the same footing as the higher spin
fields, which occur in the w-gravity, does not have any futufe,
since there are no highér—spin zwelbein fields and any higher-
spin Beltrami differential, with a similar geometric interpre-~

tation as the spin-2 zweibein field.

* Department of Theoretical Physicg, Unilversity of Cluj-Napoca, Str.
M.Kogdlniceanu 1, 3400 Cluj-Napoca, Romania

> Department of Physics, University of Craiova, Str. Al.I.Cuga 13, 1100
Cralova, Romania
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Oon the other hand, in two dimension there is an alternative

formulation /5, 6/ to describe the coupling of gravity to matter
which includes the auxiliary fields J and J . This alternative

formulation has two advantages: on the one hand, it can be quite
naturally connected with the gauging of the Virasoro algebra and,
on the other hand, it does allow a natural extension for the
higher spin gauge fileds. Which can be treated ‘on the same
footing as the spin 2 gauge field.

In this paper we shall adopt a very nice point of view,
advocated in some reeent papers by Baulieu, Bellon and Grimm /7-
11/. We sﬁall consider the Lie algebras as the starting point in
our investigations, rather than considering them as special
invariance properties of a given Lagrangian. For a given Lie
algebra we associate a gauge fiela'a£d a ghost to each generator
of it.‘and we build Ithe corresponding BRST symmetry from a
geometrical constrain on the éurvature called the "Russian
formula". This can be done very efficient if we use a Poisson
bracket algebra reallsation of the Lie algebra, which ig'possible
not only for the Virasoro algebra but also for the w-infinity
algebra. For using the Poisson bragket, in addition to the space
dependence 1s convenient to introduce one (t) or two (t, u)
additional variables. If seens Ehat a modification of the Moyai
bracket /12/ could be used instead of the Poissgon bracket to
obtain a realization of W-infinity algebra /13/.

The generalized one-form connection, constructed in the

standard way /11/, will contain the Beltrami differential and the

14
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corresponding ghost for the Virasoro algebra and the high spin
‘gauge fields and their 'ghosts for w-infinity algebra. This
connection is fundamental object of our and it can be used to
build up the gauge inveraint action, the possible anomalies and
the Wess-Zumino action. For accomplishing these tasks it is
necessary to introduce the matter fields. Furthermore, the
gauging of left-moving and right-moving of w-infinity algebra,
cannot be achieved by simply adding gauge field times current

terms. The action in this case could be most conveniently written
by introducing, once again, the auxiliary fields J and J , which

must be eliminated at the end of the calculation.

2. THE BELTRAMI DIFFERENTIAL AND THE VIRASORO ALGEBRA
2.1. The gauge fields. The Virasoro algebra, without the
central charge, contains an infinite number of generators L_,,
Ly, Ly, ... which satisfy the following commutation relations:
(L, -Lgl = (m - n)L 7 -1 s n,m < o . (1)
This Lie algebra can be realisgd very simple as a Poisson-
bracket algebra of functions on a one-dimensional phase space,
with the Poisson bracket defined as:
{£,9}y = £3,g - (3,£)g, | (2)
for two functions f(t) and g(t). Taking a basic set of functions
1, = ol (3)

we obtain the Virasoro agebra

{lnllm}t = (m - n) 1m+n (4)

The BRST symmetry is realised, in the ghost sector, by

15
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associating a ghost c¢,, n2 -1 to each generator L". In the
general matrix representation (1) the ghost fields are gathered

together in a Lie-valued ghost:

c=Y Loc, (5)
n=-1
which is not very convenient for the following since (5) contains
the unknown generators L". However if use the basic (3) then the
ghost c(t) has a simpler form:
c(t) = ), ce™t . (6)
n=-1

For a geéneral Lie algebra, the BRST transformation of the ghosts

c, associated to it are given by:
scan-ﬂéﬁécbcc
where the coefficlents f, are defined by
(T,, T,] = f5 T,
with T, the generatoes of the Lie algebra. This BRST
transformation can be rewritten 1in a simpler forms if one
introduced the ghost ¢ = T,c*®
sc = ——;l[c,c] . (7)
For the Virasoro algebra (4) the BRST symmetry takes the
following compact form
sc +-%(c,c}c= 0 . (8)

This BRST equation can be extended to include the gauge
fields associated to generators L™, for the Virasoro algebra we
have found convenient to associate a one-form A". Furthermore,

following Stora, we add the ghost number to the form degree and

16
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assume all commutators to be graded by this total degree.
Therefore, we can combine the ordinary one-forms with ghost
number zero and the zero-form with ghost number one i.e. A" = A"
+ C?. For the Yang-Mills fields a;sociated with a given algebra
with the ghost satisfying Eq. (7) we can write "the Russian

formula':
ﬁ=az+%[x,m =F=dA+-;—[A,A]

where d =d+s and A = A+c with A = A®T, is 'the Lie-values

conection form. For the Virasoro algebra we clain that a similar

formula takes place i.e.
am%{ﬁ,mt «d5+K3,8=0 (9)

with

K = i (An+cn) tntl (10)

ns=-1

and d = d + 8§ with d the usual differentia.

Since the Virasoro algebra is deeply related to the two
dimensional conformal symmetry, it is natural to try to connect
the one-form A" with the complex structure of a Riemanniann
surface. Conformal classes of metrics on a Riemann surface can
be parameérized by Beltrami coefficlents p(z,Z) which are smooth
complex valued function of the complex coordinates (z,Z) of the
surface, with specificytransformation properties. The complex
coordinate (z, Z) corresponding to the complex structure

parametrized by the Beltrami differential are given by the

relations

17
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dZ = Aldz +pdz] and c.c. (11)

Here A and p are smooth complex-values functions of (z,Z)

which satisfy: '
| (3-pd)z =0 and c.c. C (12)
(0-pd)A = (Bp)A and c.c. T (13)
The infinitesimal diffeormorphism generated by the vector
field £9 = £(z,2):0+E(2,2)9 can be obtained with the Lie

derivative Lg; = i;,d+di;, acting on 2

0Z = LyaZ = 1;5dZ = [h(dz+pdz)]} (£9) =
= A(E+pE) = Ac,

(14)

with ¢ = £ +pE. By evaluation the variation of dZ in two ways 6 (d
Z) = d(§ Z) we can get the induced variation of u:
8p = [8-pd+ (Bu)lc . (15)
If we identify c in (14) with the ghost vector field of two
dimensional diffeomorphism, we can ldentify Eqs. (14) and (18)
with the definition of the BRST differential s
§Z = Ac; sp = [0-pd+ (dp)lc. (16)
The nilpotency of s requires
sc = cdc (17)
Now the equatlon (9) for ghost number zero and‘one and for
t = 0 gives:
da™l + a7al = o
sA™! + dc™! + A71c0 + ¢71A0, (18)
Comparing Egs. (18) and (17) we can easily see that a possible
solutions of these equations:

Al =dz+udz; ¢t =c;

18
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A® = (9u)dz; c° = oc . (19)
The rest of the one-forms A" and the ghosts c” can be found out
by imposing the validity of Eq.(9) for all values of t /11/. On
the other hand, we can sove Eqg. (9) by making a gauge choice
A=dz+dzA; (2,2, t) +8(2,Z, t) . (20)
With this choice Eq. (9) yilelds

0 =
Foad

3 L 04 _ 0
af i 587
equations which have the obvious solution
A=dz+dzAz(z+t,Z) +c(z+t,Z) = (21)
= et%(dz+dzu +cl.

2.2. Virasoro Invariant Lagrangian. From the field A one

could construct an invariant if one looks for a two-form & ,
which is d-closed and it is defined up to d-exact terms. The
ghost zero part of € is a possible BRST-invariant Lagrangian.

The only possible candidate built only from A is A%, which

nevertheless is not d-closed since & satisfies Eq. (9). Here 3 is

‘the complex conjugate of A. Therefore, in order to build up an
invariant Lagrangian we must couple & to a new field, the matter
filds.

The matter fields are zero-forms, which cannot contain
ghosts. For our purpose the starting point is the equation (11).
In two~dimension, there is a possibility to describe the coupling

of gravity to matter fielld, which includes two auxiliary fields

19
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J and J /5/. The matter field in this aproach is described by a
scalar field, which we will take to be a scalar field, which we
will take to be a single real scalar @.

We will suppose that the real field ¢ and (J,E) are

conected by the equation

dep = JA1+JA? (22)

i.e. the field ¢, J and p are related by:
J = d¢ -§J

J = 0¢ - pudJ.
The auxiliary field J could be considered as the first term

(227)

in a set of zero forms J{?) with n > -1, which we assemble into:

F = ,,Z.:l £nL, () (23)
and the equation (22) can be extended for the tilde fields as:
dg = JA+3% . (24)
Applying d to this equation and using d% = 0 we get
(dHA+F@H +c.c. =0. (25)
The action of the BRST symmetry on § and J can be read off
from Egs. (24) and (25). The equation (24) can be fulfilled
whether one imposes the condition for vanishing of the curvature
of J:
dF+ (4,31, = o. (26)
With the gauge choice (21) eq. (26) yields

J=J(z+t, 2) (27a)
and’
8 _a 8\7=30 a
(5? A at)J‘ J(3,Az) . (27b)

20
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For t = 0 eqg. (27b) coincides with eq. (13) i.e. we can
identify J with A and ¢ with Z+3Z. '
with Jand &, it is quite easy to construct a BRST invariant

action as the real two-form

2= (3H GD | (28)
One can indeed verify that
dd = o,

which proves that the ghost zero:part of & is a BRST-invariant

two-form. Now whether we take into consideration eq. (22) the
classical Lagrangian, obtained from (28) for t = 0 has the usual

form:

@, = % . -1u'u (3¢ - BO¢) (Do - pdp) (29)

In fact, in the gauge we have considered, t ooccurs only
through z + t and after 'integration, the action does not depend
on 1it. Therefore, the Virasoro gauge théory rgduées; rather
naturally, to the two dimensional conformal field theory.

2.3. Virasoro covariant anomalies. The Wess-Zumino action.
In this formulation of the Virasoro gauge field theory the
general forms of the consistent and covariant anomalies can be
determined rather straightforwar@ly. Besides, the Wess-Zumino
action haé a simple form and is calculated very easily. AsAit is
well known, in the BRST formaliém, an anomaly for the Virasore
‘algebra is a two form with ghost number one. A convariant anomaly
is an anomaly which has a covariant form and therefore it is well

defined on the whole Riemann surface.
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Thus, in order to find an anomaly, one must look for a

general (i.e. including the ghosts) three form A, satisfying
d&, = 0. A solution of this equation was proposed by Baulieu,
Bellon and Grimm /11/ and it has the form
A, =4 k& & (30)

where a dot means the derivative with respect to t. In the gauge

(21) A, has its ghost one part given by

A{c,p) = -0cPudzAdz (31)
for t = 0, which is the diffeomorphism anomaly obtained in a
factorized form /2,3/.

The form of A is not well defined on the whole Riemann
surface since it does not have an covariant form under a
conformal charge of coordinate z - z’(z).

To obtain the covariant form of the anomaly, we might follow
the algebraic approach proposed by Abud, Gieres and Noirot
/14,15/. However, we have found rather difficult the implemen-
tation of these ideas for the Virasoro algebra. So, at this point
we will just follow the general prescription for the covarian-
tisation on a generic Riemann surface. In fact, the anomaly (31)
is equivalent to

A=cPpdzAdz (317)
and it involves the third order differential operator 83. This
expression is not well defined on a generic Riemann surface since
the'integrand does not transform with the Jacobian upon passage

from one coordinate chart to another. In fact the modified
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expression

A=cl[d+(RI+IR)] 1 (32)

with R, a projective connection, given by
R=821n).—-21-(31n).)2, (33)

transforms with the Jacobian and represents the covariant
anomaly. We believe that this form of the anomaly can be obtained
by using the general algebraic methods for the covariant anomaly.

Since the Virasoro algebra is closed connected to the
general coordinate transformations, which define a non-comutative
group, the construction of the associated Wass-~Zumino action
represents a serious problem. However, for the factorized

anomaly, the problem is simpler. This factorized anomaly could

be obtained from A, by using the standard procedure /17/. In fact

we have to "kill" the anomaly A by enlarging the space of fields.
We shall 1ift the whole construction from the Rieman surface M
to Mx[0,1] by considering a family of Beltrami differentials pu,
such that pg = 0 and 4, = 4 and a family of the "Goldstone field"
which taked its values in the group of diffeomorphisms and ¢, =
identity and ¢; = ¢. The field A and the differential are
replaced in this case by
+ A = A+adu; d,, = d+du.

The function a is determined form Eq. (2) written in terms

of the new fields and differentials. The Wess-Zumino action for

the Virasoro algebra (30) is the ghost zero part of the three-

form X;(A?) with A? the field obtained from A by the action of
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the diffeomorphism ¢. If we integrate out the auxiliary variable

u, one finds the following form of the Wess-Zumino action:

4 =% dz A dz (p¥$31n A* .—pazln i)

which takes the form given by Polyakov /18/
Q= —-;— dz A dz pd*1na (34)

if ¢ is restricted by the condition u® = 0.

It is worth pointing out that the form (34) of the WZ can
be written with the one-form A and co called "half Liouville
filed" L /13/. The field L is a matter field, which has the first
term in the t expansion just ln'l, with A define in (13) and
which fulfils the equation

dL+A3,L-8,A = 0.
_With this definition we can find out, by a simple
inspection, that the two-form

®=-LAA (35)

satisfies the equation d¥ = &, i.e. its zero ghost part is the

WZ action for the Virasoro algebra. In fact, it is easy to see

that the ghost number zero of ¥ coincides with (34).

3. W-INFINITY ALGEBRA

3.1. The fields. The W,,, algebra is an extension of the
Virasoro algebra on the one hand, and a limiting case of the W-
infinity algebra, on the other hand /18/. It can be written in
the following simple form:

[Ld. 1) = (G+1ym- (G+1)n1Lk] (36)
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This algebra admits an- algebraic interpretation, as the
algebra of smooth symplectic, area-preserving, diffeomorphisms
of a cylinder. This can be easily seen considering a set
functions /19/:

Ul =+41 e"l"‘yl'1
on a cylinder s! x R, with 0 € x 5 2m, - < y < +w. These
functions form a complete set 1f -0 < m < +o and 1 2> -1. The
symplectic structure is generated by the Poisson bracket

_ Of dg _ Of dg
{f,g},,, o Iy o’ (37)

and the area preserving transformation are generated by §x“ wa

{A,x*} (4 = 1, 2) where A is an arbitrary function. One can see

that the basis {u,]} satisfies the W40 algebra:

(ud, u) = I+ m- (F+1)nlud. (38)
The ghost sector of the BRST symmetry for this algebra can

be constructed in a similar manner with the Virasoro case. Here
we shall use the basis
l; = £l gpia

instead of u,' and we define the ghost

s r
C= ot ui+1 C;l-i
n,i=-~1

with ¢, the ghost associated to the generater Lj.

The Virasoro case (8) can be extended for the w-infinity
algebra in a straightforward way. The BRST symmetry of the ghosts
has now the form ' |

sc + %{c,c}c,u =0. (39)
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This equation can be extended to include the gauge fields

associated to the generators L;. We can assemble all these fields

into a power series

A, = 7oty i gt
u,1=-1

where A; is a one form attached to the generator L; which

1

contains the gauge fields. Moreover, for the complete one-form
A=4+C

it has been proposed /1i/ the equation
ap%{x,ﬁ}c,u = 0. (40)

where d = d+s. This equation contains eg. (39) for the ghost

number two.

As in the Virasoro case, we can chose a special gauge and

identify the physical gauge fields. If one identifies A;' as the

Beltrami differential, then the equation (40), which is
equivalent to the BRST symmetry for w-infinity algebra, has the

solution /11/:

A= udz+IE ultt(a,(z+t)dz + c,(z+t)) (41)
where A, is the complex“;éuge field, coupled to the spin-(1+2)
conserved current in the w-gravity, and ¢ is the corresponding
ghost. The BRST transformations for these fields can be obtained
from eq. (40) and are given by

1=1

SA, = ;: [(7+1)A;8c, 4 - (1-7+1) C,_;0A,]
-6

sc; = ;; (j+1) ¢;9c, .
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3.2. Action for Ww-gravity. There are a relative small number
of realisations for w-infinity algebra by gauging it, in
comparison to the more known c;asses realisations of Virasoro
algebra, despite the kiﬁdship between the two. éauging this
algebra we obtain W-gravity. As ‘in the Virgsoro case, a BRST -

invamlant action cannot be constructed only with the field A.
However, the guxiliary fields J and J and the scalar field ¢ are
introduced here in a different manner. For w—-gravity, we replace
eq. (22) by

do = (D) +3(D (43)

where

A =A(u-j, t, z,2) = sz+12 (dza, + ¢)) g,
asl
From this equation we can obtain the BRST transformations
of ¢ and J and J , the relations between these fields since this

equation is equivalent to the following ones:

s¢ = ' (gi*ic, +3(l~1)El) (44)
=1

J=dp-% a g
L=-1
Y 3:‘54) - A1J1+1 (45)
. a1

The BRST transformations of the auxiliary fields J and J and
the compatibility of eqs. (45) can be obtained from éq. (43) by

using the nilpotence of di.e. d% = 0. In this way we obtain

dJg = dA(J) and c.c.
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sJ =Y alc,Jr)
I==1

and
dJ = 12 [(1+1) A%+ (34y) Jt*) .
a=1 !
It is worth while to point out that eqs. (45) could be

considered the equation of motion for the auxiliary fields J

and J , given by the action o

L = -2 (39) (Bg) - TT+(3) T+ (3) T -
(46)
?31 oz TR T
which describes the coupling of the gauge fields A; to the spin-
(1+2) conserved current (dg)i*2,
The Lagrangian (46) can be extended to describe Wy gravity

/22/. If one replaces in ¥ the scalar field ¢ and the auxiliary
fields J and J with a set of scalar fields that take their values

in the Lie algebra of SU(N), then, although the entire w-algebra
is realised as a symmetry, it is really only the gauge fields A,,
1 < N-1 that play an essential role. The rest of the gauge fields
can be set to zero by means of additional symmetries of the
Lagrangian, that are of the Stueckelberg type. Therefore, in this
case the remaining fields give rise to a non-trivial gauging of
the Wy algebra.

The 'BRST invariance of ¥ given by (46) can be checked by
using the BRST transformations of the fields A;,¢ and J.
Nevertheless, it is desirable to obtain an action which is d-

closed and with the ghost zero part just ¢. For this we will
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introduce a new one-form.

- 1

B(o) =—6dz+ (A,dz + Cl)—l—J’“1 (47)
o~ 1+2

which seems' to be the "integral" of A(J). The action which is d-

closed and has the ghost zero part just L has the form
2= 2ANEW) - KD BN +ZDFWD]  (48)

Indeed, on the one hand, the ghost zero part of Q is

;:A LT ] 12 l—l-(AlJl’zh-A_l}Il")

If we take into account the relations (45), this Lagrangian

3=-— JJ|1

boils down to (46). On the other hand L is d-closed, fact which
can be verified by a direct computation and the use of the form

of 4J.

3.3. W~anomaly. As for the Virasoro algebra, we shall find,
by inspection, a d-closed form, which depends on A and ¢c,;. It is

easy to verify, that the looking for three-form can be chosen in
this case as [11/:
i, =444 . (49)

The closeness A, can be verified by using eq. (40). In the

gauge (41) the ghost part of X, for t = u = 0 takes. the simple

form

= (A,0C., -C.,08A_)dzAdz, : (50)

which is invariant under holomorphic coordinate transformations.

However this part of the anomaly is just the first term in a much
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more complicated expression obtained by Hull /20/ and K. Li and
Pope /21/.

A possible solution of this problem seems to be connected
to the definition of trace for the auxiliary variables t and u.
In order to get rid of these variables we must add a "trace" in
front of the anomaly, which means either putting t = u = 0 after
doing all differentiations with respect to them, or integration
in a special way over t and u. If one wants to follow, as close
as possible,'the Yang-Mills case, we shallltry to write the
anomaly in a w-infinity basis. Since in the YM case anomaly
A(c,A) is written as: -

A(c,A) = Tr(cG(A)) = C,G, Tr (T*T»)
it seems natural to try to write our anomaly in the same form.
With a suitable definition of the trace, we can suppose that
Tr(ul ud) £ 898, (51)

Therefore the anomaly Aé takes the form .

A; = Z.: a (A, ¢, - ¢, 311 a,) dzA\dZ
with a, certain co;f?icients. This form of the anomaly has the
same form as the one given by C. Hull /20/. However the form and
the interpretation of these anomaly structures deserve further

study.
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MAGIC ANGLE SPINNING AND POLARIZATION TRANSFER
IN SYSTEMS WITH RESOLVED HETERONUCLEAR INTERACTIONS

“

1. ARDELEAN"
Received. 17.09.1992

RBSTRACT., - Thermodynamic aspecte under fast magic angle sample
spinning for ferocene are studied. An extension of the static
cross-poclarization model is8 presentad which applies to the
"gidebands" of the Hartmann-Hahn condition. . The S-spin
magnetization in a 'CP experiment' as function of the S-spin
irradiation 0y is calculated (CP-MAS spectrum).

1. Introduction. High-speed spinning at the magic angle can
significantly modify the rate of polarization transfer from
abundant to rare spins in an cross-polarization NMR experiment
on solid, if the spinning speed is greater than or comparable to
the static dipole-dipole interaction among abundant spins in the
rotating framé in a spih-lock(SL) experiment [1]. We consider in
the following the "fast spipﬁing" linit where the MAS (magic-
angle spinning) frequency ©,./2m exceeds the proton-proton
interaction (o, >> by4) . The basic phenomena were demonstfated by
Waugh et al. [1], the Hartmann-Hahn condition [2] is split into
sidebands appearing at the Hartmann-Hahn match plus or minus
integer multiples of the MAS frequency w;, = @;, * nw, [3] with
w3y = -yyB;; and w,, = -ygB,,. For sufficiently fast spinning the
sidebands for n = %1 and %2 dominate the spectruh. At the
sideband position, the secular dipolar terms exiét in the
interaction Hamiltonian causing polarization transfer.

In the following 'we refer to the observed §=spin

magnetizatign(in a CP-experiment as function of strength of the

* Technical University, Department of Physics, 3400 Cluj-Napoca, Romanlia
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S-spin irradiation w,, as the "CP spectrum". We consider an
organic solid by ferocene [ (CgHg),Fe] single crystal with short
covalent bonds between !3C and !H nuclei.

In the case of an S spin with a strong coupling to a spin
I, both spins being coupled more modestly to the remaining spins
I, (k > 1), the gystem is treated satisfactorily [4] as the
tightly coupled spin pair immersed in a bath consisting by the
remaining protons. We describe the dynamics of CP-MAS process in
two 'stages. First we treat the spin pair alone, then we allow the
spin pair to come into thermodynamic contact with remaining spins

and.discuss the quasi-equilibrium which is reached.

2. The isclated spin pair Hamiltonian. The Hamiltonian of
the spin pair I;-S in the usual doubly rotating tilted frame, for
strong resonant rf field applied along the X axis of the rotating
frame, is given by [4]:

H

pair = Wir L+ 0,5, +b (£)21,, 8, (1)

where b, (t) is dipolar coupling constant and its time dependence
is caused by the sample rotation.
For a static sample it is time independent and given by

b, - %61(3c0s261—1) |
with the anisotropy of the dipolar coupling
Bo¥rYs

anr;
Here r; is the I;-S internuclear distance and 6; the angle

8, = -2

between the internuclear vector and the static magnetic field Bj.

Magic angle spinning leaves invariant the spin part of the
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Hamiltonian but renders the dipolar coupling constants time
dependent. If 6% and 9" denote the polar angles that relate the
internuclear vector to the MAS rotation axis and o,/2m to the MAS
frequency, the dipolar coupling constant is given by:
by (t) =-§ 8, [(1/y3) exp (1w, t) Cyy (67, %) - (1/y3) exp (-1w,t) Gy, (87, ¢7)
+(1//6) exp (2iw,t) C,, (6%, ) + (1/y3) exp(-2iw,t) C,, (07, ¢7)]
where Cy4 are the modified spherical harmonics
Cig (87, 07) = VAR] (ZK+I) Y, (07, ¢%) , k,g=1,2

To be able to apply éhermodynamics properly to the MAS case,
we have to approximate the time - dependent Hamiltonian of Eq.
(1) by a time independent Hamiltonian H® because the rules of
thermodynamics apply only to conservative systems. One way to
achieve this is to calculate the average Hamiltonian in an
appropriate intgraction frame and to neglect the nonsecular or
time dependent parts of the interaction Hamiltonian [3]. If we
describe the CP-MAS experiment in the doubly tilted rotating
frame, the reservoir terms remain time independent under MAS but
the perturbation V, containing the heteronuclear dipole coupling,
become time dependent. The perturbation Hamiltonian V(t) has
frequency components at e, and 2¢,. For n = -2, -1, 1, 2 (the
sidebands of the CP spectrum) the transition frequencies of a
heteronuclear process is matched by a frequency component of
V(t). We transform therefore to a rotating coordinate system
where the resonant part of V(t) becomes time independent. A such
transformation can be made using a transformation operator

U = exp (in o,ts,) (2)
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After a such transformation the perturbation can be decomposed
into a time dependent and a time independent contribution V(t)
‘= Vg + V;(t). The time dependent part of the perturbation
contalins frequencies at intAeger of the new reservoir Hamiltonian.

The full Hamiltonian can be written as:

: Hppir = 0,1, + (0, ,~nw,) S, + 26‘[12_ sin 28‘[—1—exp(icp’) (8°1, -
~S*I) + % exp (- 1¢7) (S'I;-S'I;)] (3a)
for n = 1 and
Hibir = @0, 1, + (0,,-no,) S, + ;‘i—/}%ain‘ﬁ'[% ‘exp(zitp') (S*I, -
-5°1)) + Lexp(-21¢7) (s*r;)] , (3b)
for n = +2 case. In the following we can take for ¢° a particular

value ¢ = 0 and will be obtainsd for full Hamiltonian

.Y . )
Hpatr = 0y I+ (0,,-n0,) §,+ —8in267(21,,9,) - (4a)
4/2 .
for n = 1 case, and
)
Hppir = @, I, + (0,,-D0,) S, + 4\/15 ein?07(21,,5,) (4b)
for n = +2 case. It may be separated in twé,commutinq' parts {4]
Hoair = HE +D§ : ' (8)
with
HY = oI1F, HF = wb12,
0F = [(B1,+ @)% + () /2, @b = [(By,-0,,)%+ (a) 7'/
1% = 1Zcos®T + 1E81n6T,
I2 = 12cos0? + 1251in6s,
>N 1 A 1
IB = E (I]_,+S.) ’ I' = '5(1-1,-3.):
IE=1(1+S++1--S-) IAal(*- o+
x =50 1 v Ix 5115 +I,8%),
B, = @,-nO,, '
where
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a, = iz sin?6*, n = z1
L= 0, n=+2
and
tgdf = a,/ (0, +B,,)
tg0t = a,/ (0,;-®,,) = -b/Aw

The elgenvalues of Hpﬂir are i%wf and il/zm‘; and the spin
pairs may be treated as two independent two-level systems

involving the inner and outer pair of energy 'levels and

representing the zero and double quantum frame, respectively.
3. Modified thermodynamic thaeory for resolved heteronuclear

coupling. We assume in the following that the initiallﬁspin

density operator o(o) is prepared as )

|4 - Ei%or -
a(o) (1 xT, _Ixx)/T,U} ’ . (6)

by a initial (m/2), pulse on the I spin applied to a system in
thermal equilibrium at the high lattice temperature T;, in the

static field By. Defining
. = t 001
or = kT, T, (1} .
the ‘initial density operator in the tilted rotating frame is
N+1
o7(0) = aor’(z: I, , (7)
Because the spin pair treated in the last section interact
with the surrounding protons and will tend to reach thermal

equilibrium through spin diffusion, the quasi—equilibrium density
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operator O’T(Tge) can be represented [4] as the projection of the
operator a',r(o) to a three-dimensional space defined by three

orthogonal quasi-invariants { Q;, Q;, Q3 }:
3

0T (1) = “o:; a;0, . (8)

We suppose that the set of operators Q;; may be chose such that

'

Q; are orthogonal
<Q,l0;> =0, i#j

where < A|B > = Tr{A*B}. they are,
N+l

1 ,.% > ’
0, = Fz (@t MO (217430 Iy, (9)
R > g
Q = 53 (©s ~2041) |NI, -Z; I,l. (10)
0, = ~0s IS, | EEEY

because the homonuclear I-£ sp‘in dipolar interactions are

néglécted as following by magic angle samplé sbinning.
Assuming now a strong 1;:f field [wyg + 031] >> iall and

making the approximation ok = ®,,+w,; the coefficients a; are

evaluated from the condition
<aT(0) |0;>
U,,&; = 2
or “i < Q’_ QJ > ( . (l: )
as

N+1
B+ (N+1) @y

a; =

1
a B = e
2 Aw

a, = ——l—A_ cos 64,
me

. The quasi-equilibrium density operator becoﬁte
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N+1
r A
oT(t,) = aoI{Ie +2: I, + I, cos B“‘} (13)
=2
From this expression the quasi-equilibrium value of <S,> is
£, 0oy | af

+al (14)

<S> =<8 >T =
* : 8KT, (wy5-Nw,-@7)?

and we observe that the Hartmann-Hahn condition for a static
sample, w;g; = ©;7 splits for MAS into a series of new matching

conditions w;, + no. = w;; where n = *1, 2.

4. conclusions. Intensity of the carbon signal in an organic
solid by ferocene after a CP magic angle sample spinning
experiment has been calculated by a modified CP model. The
maximum of cross-polarization will be obtain for a modified

Hartmann-Hahn condition &,, = ®,; , obtaining a split of CP-

spectrum. The "sidebands" are located at the Hartmann-Hahn

condition plus or minus multiples of the MAS frequency.
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THE THERMAL INSTABILITY OF A MAGNETOFLUID
IN A VERTICAL CHANNEL IN THE PRESENCE OF A RADIATION EFFECT

Al. MARCU"

Received. 3.07.1992

ABSTRACT. -~ This paper studies the effect of radiation on the
free convection flow of an electrical conducting viscous fluid
throungh an open-ended vertical channel and permeated by a
constant magnetic field in transverse direction. The temperature
of walls has supposed to vary linearly with the distance. In the
first paper we obtaine the expression of amplitude disturbance of
velocity.

Introduction. The problem of heat transfer in electrically
fluids permeated by electromagnetic fields have been studied by
many authors [1], [2), ([(3]. Such studies are of a great
importance in the design of magnetohydrodynamic generators, shoks
tubes, pumps, etc. The comprerhensive review ofiwhich has been
given by Romlg [4].

The purpose of this paper 1s to studies the instabilities
of an electrically fluid confined in an open-ended vertical
channel in the presence of an magnetic field perpendicular to the

direction of flow, taking in account the radiaton effect.

Basic egquations and the problem. We consider a layer of an
electrically viscous fluid within a vertical open-ended channel

is heated from below and in the presence of a radiation effect.

An horizontal uniform magnetic field E% is applied normally to

one side of channel walls. In this model we are not concerned

"Babeg-Bolyai* University, Faculty of Physics, 3400 Cluj-Napoca,
Romania
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with the forced convection (3], but the free convection occurs
when the 'negative temperature gradient in vertical direction is
sufficiently great.

We take the origin at the centre of the channel, the z-axis

along the vertical direction of walls. The uniform magnetic field5,

acts in the direction of x-axis.
The relevant magnetohydrodynamic equations for mass,

momentum, magnetic field, energy and state are respectively:

p(—gg+?'VV)=;Vp+il;(Vx§)x§+p§+p1A17 (1)
g_f.; Vx (#xB) +v,AB (2)
%%+VVT= ozAT—piCb‘WqJE , | (3)
p =P, (1-BAT) | (4)

in which ¥ is the velocity, p the mass density, p the pressure,
.g(0,0,-g) the gravitational acceleration, ke the magnetic
perme;bility, B the magnetic field intensity, u, the viscosity,
T temperature, v, the magnetic viscosity, a the thermal diffu-
sivity, P the coefficient of thermal expansion and ¢y the
radiative heat flux and Cp the specific heat at the constant
pressure.

We assume that the surface temperature of the walls vary
along the vertical direqtion, the induced magnetic field- and
velocity have.only a component in vertical direction and all
physical variables expect temperature and pressure are function
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of x.

In the primary static state the temperature has the form
[5]:
T=T,+£(x) +N, (5)
where N is the vertical gradient (a constant). The gubscript zero
denotes a reference point which will be specified iater.

Then from (1) and (4), (5) we find succesively:

b = byl - P £ (x) - BN,] «©
"f:ii_;z) = =pog (1 - B L (x) - BN,] )

where N(<0) is the upward temperature gradient.

Supose that the initial state is slightly perturbed with the
perturbed quantities denoted by ¥/, 0, B/, b. Egs.(1)-(3) to the

linear approximation [3] become:

9% o L yprs L (UxB) xB,+vAP-POE (8)
gfg Po BePo
=5 = Vx (¥xB,) +v,b (9)
00 p
3t eAO-CB-Nv (10)
where C is obtained taking account [4]:
1 9gy _ 4(T-T) | (debk)
pC, 0x PC, fK‘o darT Od'\ ' (11)
4 o dem
C = —
pC'p.[KM( 52 )odx (12)
l E& =
5 C Ix co . (13)

where kA is the absorbtion coefficient, e A the Planck function
and the subscript zero indicates that the quantities have been
evaluated at the reference temperature T,. In the equ. (10) we

have neglected viscous and ohmic dissipation, the fluid does not
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absorb its own emitted radiation, in the case of an optically
thin limit, that is, there is no self absorbtion, but the fluid
does absorb radiation emitted by the boundaries.

It is posible to assume that the velocity and induced

magnetic field are function of x and y and are given by:

q= (0,0, wix,y, t)) =»V-1Z= 0
b= (0,0,b,(x,y,t)) =VB =0 (14)

Egs. (8)-(10) however, reduce to:
dw _ B, db

J
3¢ hop. dx +vAw+ g6 (15)

ab, oW

3% = Bog, * Vel b, (16)
a_e. = - - . 2 o = a a

3t aA8-CO-Nw; V A pye + Py (17)

/
We have neglected %Lz because we are not concerned by the

forced convection. If we introduce the folowing nondimensional

quantities
. X » _X » \Y t . bz v Wl
x = =3 = ; t E - = 2 o e
ley I 2'17*"I BOIW o’
e‘:-—__;Pul; =—.2Ml_ 3=230' =.!‘.l
Wi’ Progi R ) M = BJ1 pov'P'” p (18)
Substitut‘ing these and imediately dropping bars one obtains:
aw* db;
=p M2_"%2 + AW* - RO
ot T dx* (19)
ob; _ aw* '
P = +P Ab;
fotr ax+ ™ T (20)
a0 . . . 12
‘e = AO*-FO *Wi F a0 (21)
These wquations permit the separable solution:
W* = U(x,y) et
0° = 8(x,y) et (22)
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b, = B(x,y) et
in which A is assumed complex. The separated equations (19) to

(21) then become:

AU = pmMZ% +AU-R® (23)
X
P,AB=P,AB+ oy (24)
ox*
P, L8 =A8-FO+U (25)

Dunwoody [3] has shown that for P, > 1 the principle of
exchange of stabilities is valid, i.e. A is real and the neutral
instability is characterised by A = 0.

In this case:

RO = PmMz-aa—B;+AU (26)
X

OU . _.p A B (27)
ox"*

U=FB8-A® (28)
The elimination of 6 and B between egs. (26) - (28) results:
V‘U—FV“U+R-M"’—-—32— VAU + FM? U = 0 (29)

0x*? dx*? .

if we note D = d/dx" and the disturbance has the form:

U(x*, y*) = f(x*)cos{ay") ' (30)
we obtain (see appendix):

[Dé-D* (32 +F+M?) + D2 (3a*+a? (2F+M?) + R+ FM?)] £~

= laf{(1 +F) -Ra?] f (31)
We note

3a?+F+M? = C)

3al+a?(2F+M?) +R+FM* = G, (32)

a*(1+F) - Re? = C,
and eq. (31) has the form:

[D¢-C,D4+C,D?] f = Gf (33)
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with the boundary condition

U=0; B=0; 2 =0 at x* =11 (34)
ox*
In virtute of (34) one has at the boundaries:
v2| 90U ) = _p m2 FB (35)
ox* ox*?
from (26) and
A (36)
O0x*? ax* k
from (27). Combining (35) and (36)
(v2-m2) 97 = (37)
ox*

The boundary condition of f(x) obtained from (34) and (37)
are thérefore:
f(x*) =0; (D?*~a?-M?)Df =0 at y’ = %1 ‘ (38)

The roots of caract. ejuation are:

C. lP
I, =% —T1~2 —3-ctg2<p

(32)

2

3
it

3 K- - ‘

H >
N 4 = >20; p>90

¢ = arctg Ql tg:zl
2p?
27qg
Equation (33) has the solution

tgy =

£(x*) = 4,0% +2,6™ + %" (a,cosa,x’ +A,8ina,x*) + .
+ e-a,x'(Ascosa3x‘ +A;8ina,x*) (40)

where
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C
a, = 7%-—2 -§cth¢
(o) P
= ——+~+—ct 2 |
a2 3 3 g ¢ 0 .
a, = y/P/sin2¢

Taking account of (38) we found the boundary conditions for (40):

£(x*) =0; Df =0; (D*-a?)f =M* at x* = 21 , (41)
This is the first part of this paper. Tpe calculus of disturbance
amplitudes, the ph&sical interpretation’ of symetric and
antisymetric motion, the value of critical Rayleigh number and
graphically results will be ?he subject of the second part of

this paper.

APPENDIX

Appling Laplace opérator to equ. (26) we find:

RV20 = Mz—aa—‘ (P,V2B) + V4 _(42)
x
by (27) result:
U o
- a ——~ _(P V?B 43
. 0x*? ox* " ) (43)
Combining (42) and (43)
2@ = Llygayg. M2 PU ’
Ve = VU R 3o (44)

Appling Laplace operator to equ. (28) result:
V2U = FV28 - V4@ ‘ (45)

»

and combining with (44) we find:

viy = Eygapg. FM2 PU gy
U= VU~ S V48 (46)

with the same procedure applied on (44) and taking account of

(46) we have:

vig = Lyay- FM2 FU lgey, Migs &U | o
R R 0Ox*? R R ox*2
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&

R"Mz-a—.é']sz*' FM
X

VSU-FVAU+ 2———862U

X *2
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MAGNETOGRAVITATIONAL STABILITY OF RESISTIVE ROTATING PLASMA
THROUGH POROUS MEDIUM WITH THERMAL CONDUCTION
AND FINITE LARMOR RADIUS

M. VAsIU

Recelved: 10.10.1992

ABSTRACT. - The purpose of this paper is to give the dispresion

equation and the stability criterion for longitudinal propagation

of the perturbations in the case of an infinitely extending

homogenous viscous self-gravitating plasma through porous medium

with finite electrical and i;harmal conductivities and finite

Larmor corrections.

Introduction. In this present paper the magnetogravitational
stability of resistive rotating viscous plasma through a porous
medium with finite electrical and thermal conductivities and
finite Larmor radlus corrections is studied. The problem of
magnetogravitational stability of a pure cosmic plasma flowing
through a porous medium has been investigated in same studies
(1], [2}, [31, [4), [5]).

. Plasma is assumed as a compresible and viscous medium in a
uniform rotational motion with angular velocity f(0,0,0) and the
same time is found under the influence of uniform vertical
magnetic field Bb(0,0,Qq) and under the influence of a proper

gravitational field.

it
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,Il '

g
[ '

the plasma appear small perturbations We neglect the sgquares and

1

products of the perturbations. ' i “

a The linearised perturbation equations of the plasma are

a‘7+2nxi7=-in(s'P)+V5¢+vvd+ L
0 : . .

ot ‘
Vuv.oy oV 1 : ' 5‘ o
+_v,v.'7 S Vx 88 xB ’
3 ki Hopo ° ..
. 3(65) ;\_ Vew o e T
‘~ _a_f— Po v : ) .ot oot ' ' 2)
ﬁ_(aié_’_). Vx (Oxso) v A(&E) : : | k?)“*
- ,qu(épf-vzéip) = YOA(SP-V”SP)‘ S R ')
A(Sp)y = amadp T T U Tt e sy
‘»‘XV'CS'B’?EO',N S ("" ) - ‘ull. - ‘ (6)‘

where 6P, §¢, p; §p, ¥, 6B are the perturbations in pressure
tenso‘rx, 'gravitationa‘l potential'i density, pres‘sure,‘:‘velocity and
P “f

- T as : . C ot ’
A magnetic field respectively, Po Vi Ky, B,y 0y = .a..’i are the
. v

density of plasma, kinematic viscosity, permeahility‘ of the

porous medium, porosity, resistivity - of ' plasma, thermal

”

P

‘.,diffusivity, ratio of the two specific heats (c, and C,) *'

. i Lo i

1

respectively, 'A vV, A = VR ar”e, ‘the qabla and’ ' Laplace

operatorsrespectively, G is universal’ gravitational constant.

“ We take the vertical magnetic field BQ algng g-—axis. In

) this ease ths’ esmpenents Pkl (k,1 =1, 2, 3) £er the perturbation B

A | ,
pressure tensor 4P, considering the finite,; Larmor radius as

ny
v f

N . ¢ | s \

' - - ,

) . \ . !

( - . ,
Linearised perturbation equations It is admitted: that in

!
v
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by Roberts and Taylor [1], are

6P11 = 6Pxx 6p p\r'o(-a— -a— ’ 61512 = 6P21 = Jny = 6P

ov aw)

= 6p+poVo 'a— 'a—) §P13 = §P33 = 8Py, = 6Py = 6p-2pgVp 3z 3vl

aw (7)

6P23 = 6P32 = 6Py2 = szy = 6p+2povo -a-—- -a.—

du
6P22=6Pyy=6p+90\’0 'a'-+‘a—) 5P33=5P38=6p,

where

PoVvo = KNT /4wy, vqo =rl w; /4, k, N, T, denote the

Boltzmann’s constant, the number of ions, number density, ion

temperature and ion gyration frequency respectively; v, is the

gyroviscosity, r; is the Larmér radius; V(u,v,w) .

The perturbation §¢(z,t) for the longitudinal propagation

(paralel to the magnetlc field) have the form:

S§p(z,t) = ¢*exp (1lkz+1int) (8)

where ¢" is the amplitude, k is the wave number and n (may be

complex) is the frequency of the disturbance.

Using the relations

(VX&H) XHO =Bo—a—a6zH~Bo V(JBZ)
av )

v 9x) = 50§25 37

20xV = -2avE,+2quéE,

Pya) €y,

Lspo O ., 8
Ve8P = o (8P, ) Byt o (6

where &, , By are the unit vectors, and we obtain from (1)-(5)

the following algebraic equations:

1
“u?sa; =0 (9)

= 2‘(ﬁ =vg}c2)v‘ T

in*v[ka*%] g*
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1kB *
in+v|k?+ - vok? - 2270 4B} = (10)
At
*
in+v| 32 w*-ikse*+ikER =0 (11)
3 Po
sp* = __‘3 12
[ T (12)
1kB,
§B, = Ou* (13)
nm
. ikBy
= 14
6BY o v (14)
§By =0 (15)
(in'\(-rf‘xk)v2 "
o= 16
ép In o, ép (16)
AniGp
ikse* = - —— Ow* 17
k&¢ ¥ (17)
where 0, = y0k2.
With the help of the relations
v = ot = int = ol (18)

B-E !

we define the displacement vector E(E,, £E,,8z) , where o = in.
Substituting ©&p, 8B, §B,, §¢, §p from (12), (13), (14),

(16), (17) respectively in equations (9)-(11) we obtain:

k2v3
[m+v[k2+-kl—1”2x‘2(““’oka)Ey" n,,,A §x=0 (19)

2¢2
[m+v[k2+ki1”5y+2(n—vokz)Ex+k Va £y =0 (20)
(m+ﬂk)co2+mv(%k2+_kll]]+%(sz+lenk)Ez=0' (21)

where fi, = w+v,k?, 72 = k2v2-anGp,, /2 = k2vi%-anGp,,

2 /2
where Vg = ypg/pg, Vg =1y 1 Y = Cp/Cy

Y
By the folowing substitutions:
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ﬂ—vk2+_l_ "‘\?=“’+nln""ik2+i,6\”=m+n (22)
k1 X1
A=2(Q_V0k2), B:i(J2m+J/2n ) ' _E ARG
e n
&(l r ‘Q
(l)k = (1)2 + mﬂk,
- - - ' i
equations (19)-(21) can be reduced to the %orm:j{ e
PR - Lo 1 6]
(0 nwy +k2V2)E, - 20 ,E, = 0 o (23)
L ot
2 ‘ T ;
(nmm“+k2VA)EY+AnmEx =0 A (24)
(9 + BJEg = 0. : (25)

Dispersion equatien. Equation (23)-(25) have non trivial
, LoD T e T
solutions if the determinant D of the following matrix vanishes

Lo

a0, +k2v:i  -an, 0 Ex . .

an, 2,0, +kWE o0 Lyl =0,

0 0 @, +B | &3 )
so that
2

N0, +KkyVy -Afl, 0

D= an, Q.o +k%i o [=0.
0 0 wl, +B

We obtain the dispersion equation for the longitudinal

propagation

(0@, + B) (nmmv+k2V§)2+Azn§,] =0. (28)

On equating the first factor of eq. (28) to zero we get
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W d,+B =0 (29)
and on equating the second one of eq. (28) to zero we get:
2
(apop+ k2v2 )+ a2 = 0. (30)

We limit the discussion at the dispersion relation (29). Eq. (29)

can be brought to the form:

w3+mz[v[%k2+ 1 ]+nk]+

+o{nkv[%k2+

ky

(31)
1 ]+_1J2]+ la0/2=0.

%, € )

This is identical to Vyas’, Chhajlani’ [6] (cf. eq. 25).

In the absence of the thermal diffusivity (8 = 0, Q; = 0) and the

porosity of medium (e = 1, k; = ») eq. (31) is reduced to

m2+mv(_‘31k2)+J2=0. (32)

This is identical to Vasiu’ {7} (cf. eq. 37) for (P = 0, v, = 0).

Equation (31) 1s reduced to the form

ao(l)3+a1(|)2+azw+ a3 = 0 (33)
where
4.2 1

as =1, a{ =v| —k“+ +1
0 ¢ 91 [3 -k—I] k

= 4,2 1 1.2
ay = v —k“+ + =J
2 k (3 ?;] €
83‘3 1nkJ/2.

e

According to Routh-Hurvitz’e criterion for the dynamical

stability of the system all the roots of the eq. (33) have

negative real parts (Re(w) < 0), if and only if all the principal

diagonal minors A; (1 = 1, 2, 3) of Hurwitz’s determinant D are
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positive (4; > 0). The determinant D is
a; asg 0
D=|ag a; 0 (34)

0 aj ajs

and the principal diagonal minors A; have the form

A1=a1=v[%k2+_k}1.]+nk>0 (35)
al asg 4,2 1
= =ai@,-85=[V(=k“~+ +0l
A2 1 a, 194243 { (3 E) k]
1 1
[nkv(%k2+‘}}_)+.EJ2]--Enk(J/)2>O
1
al a3 0

a; Aaj

A3= 1 82 0 = as =a3A2=—i-ﬂk(J/)2-AQ>0 -

1 a
05183 2

Thus magnetized self-gravitating plasma with finite and

thermal conductivities in porous medium is stable if

J’?s> o
oxr \

k2v!? - amcp, R 0, . (36)
if

k32 = amGpo/vi: ' (37)

medium is stable for k:>k§, where kg is modified Jeans’wave
number for thermally conducting medium.
For nonviscous (v ='0), thermally nonconducting (f, = 0)

selfgravitating porous medium, the dispersion equation (31)
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becomes
u)2+%J2 =o0. (38)
The condition of stability is
J? > o0 (39)
where J2 = k2v2 - 4nGpy. If

2 2
ky, = 4nGpo/Vy, (40)

medium is stable for k > kj, where kJ is Jeans’wave number.
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THE INDUCED BACKSCATTERING PROCESS CONSIDERED
AS A FREE ELECTRON LASER

Speranta COLDER"

Received: 20.08,1992

RBSTRACT. ~ In a plasma that has an anisotropic electron
distribution function the process of stimulated "bremsstrahlung"
(backscattering) could lead to the super-radiance phenomenon,
which is connected with the interaction from a free electron
laser. In this paper we present an analyels of this induced
emission of backscattering, which can be bigger than the
absorbtion. The condition for amplification in such a process is
determined and the gain factor is calculated in the classical
limit of the problem.

1. Introduction. In 1965 was firstly observed that in a
plasma the stimulated bremsstrahlung emission [1] can be bigger
than the aBsorbtion. In thgse paper we want to analyse this
proces from the point of view of the possibility that the induced -
backscattering could be considered as a free electron laser, in
which an amplification of this radiation takes place, the
frequencies of such a device being tunable. Without giving a
detailed mathematical description Sf the backscattering process
we can see that the atenuation due to this induced'radiation,
which may be written under a known form [2], leads to the

condition for an amplification:

2
@ 3
2(2] > 2 (2.
orx )
4
n-z>4x1011-%-‘;—’,)2-1'2. (2)

where the amplification (gain) length is given by:

"Babeg~Bolyai” University, Faculty of Physiocs, 3400 Cluj-Napoca,
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(3)

L= (V—Ce) =1.18x10% - HT:;ZZ
where vg is the electron thermal velocity, w, is the plasma
frequency, v is the radiation trequency, n-the electron density
and T is the plasma temﬁerature, he being the photon energy. We
will analyse separately these relations, our aim being‘here the
calculation of the gain factor A of the backscattering‘process
and of the imposed conéitions upon the electron distribution

function. The gain factor A is defined in the backscattering

attenuation equation [1]:

2
2.de [ %
s gt v ( ) A. ’ (4)

A being a numerical quantity which depends on the electron
distribution nature; A>0 for an isotropic distribution gnd A<o
for a sufficiently Anisotropic‘electron distribution. A parallel
process to the backscattering one is the Cémpton scattering in
the relativistic case or the Thomsén scattering in the
nonrelativistic situatio; v « c. The Compton sgcattering is
described by the following equation:

4
\ b a2 (525
and fipally, for the backscat;ering attenuation we have:

1.de . _16n2n?zef ,
e dt Vg w?
where p is the plasma collision frequency and e is the photon

(6)

energy. If we make a numerical analysis for the gain condition
given by the equation (3), we éee that for the following data:
n = 1022, T = 100eV, A = 0.1y we will obtain a gain length L =
1.18 cm and for n = 10%®, T = 10ev, and A = 10 4, L = 3.7 m. The

conclusion is that for a valuable gain length L we need heigh

-
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"

densities n of the electrons.

2. The ocalculation of the rqa:ln factor. The problem of
stimulated backscattering is essentially a quantic one, but we
could work in the classical approximation,” when he « kT for
radiofrequency waves emission. A perturbation theory will be

used. The absorbtion energy, which 1s of second order in

radiation field E(w,k) and in the noise potential¢==z:9(ﬂ,K)

can be written as [2]'

= 738 = 3 3

E‘E JT E efd v-EV-8F (7)

which can be detailed under the form:

de _ . [e* = = <pd (K, Q)> k

—— = J=_1- d3 E.v. d3Kdn. .

oc ~ (mz)f v f (w+ k- (Q+o+ (R+E-¥)
.08 Vzeppm. 0. . K . (E + ¥x B) af
57 “+VB)av(g+§$;+R 0 (0 k-7 (8)

B being the radiation selfmagnetic field. Because we select the

nonrelativistic case v « ¢, we can neglect k¥ and B and for the

noise fluctuations we can use the screened static potential:
- 2 '
Q-0 = 2. n-Ze’ (9)
T (K2+KZ)?
Ky being the Debye wavenumber. After some calculations, by using

in the equation (8) the dominant term in the integralfd3K-dQ,

we have:
de _[16m?n2-ze®). E? |V8 [ d’v K*v? ).
at ( m3V33(02 ] 8w | n f v2 109[1+ (wz_,_w;]
‘ (= (o~ mvm213+m ﬂ??(eﬂ] (10)

If the distribution function f is sufficiently anisotropic,
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we can define the gain factor by comparing the equations (10) and

(6):

A= —4_3"-10gA-vg-f0(0) =-I.

Vg *£,(0) (11)

-

h? (0*+0d)
in the case of the attenuation of the radiation field. For an
anisotropic distribution, with an axial simmetry arround an axis
8, f can be developed in the Legendre polynomials:
f=Efn'P,,(é"17) (12)
n
and
of P, (&7)
- = [ SR, 13
39 - L 57 (13)
The spherical harmonics theorem could be used with the

purpose to integrate fd’f"dﬂ and we should obtain the final form
of A: )

4 3 = av
A = __;‘_.(Vg-fo(o) +E-v93-[1-3(é"a)2] 'f—;'fz(v)) (14)
with 0<(8:d)2<1. To have an amplification the following

condition must be satisfied (A > 0):
s _d;"-fz(v) > £,(0) . (15)

This classical approximation for the backscattering is
applied for small values of the frequency ®, but 1in this case
that © is near the natural resonance frequencies .(mp, the
gyrofrequency and the ion-acoustic frequency) . But an anisotropic
plasma is unstable and the high amplitude oscillations
(instabilities) could spread the radiation. The classical
condition to have an induced backscattering with a gain factor

- given by the equation (10) can be used for various cases, like

that of an electron beam having a gaussian distribution, which
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propagates through the static ions of the plasma. The

distribution function is in this case of the form:

v-v,)?
f(v) = ——32——--exp _ zD) } (16)
2.p3 Ve
and LIS
v, 2
£,(0) = —l; exp ——%- (17)
2 Ve

By evaluating the integral ffé(v)ugg with the special

v
method of the "sadle Point", for big values of (7§), after a
(]

straightforward calculations, we obtain the following gain

v 2
)]

condition:

%-JE-vB) exp

where vp < vg.

3. Conclusions. We have intended here to demonstrate the
possibility of an amplification of stimulatedl "bremsstrahlung¥
(backscattering) radiation by using the classical approximation.
We could make further an analysis with the aim to see that the
gain is small in this case, with_the exception of deﬁse plasmas.
We see that the gain depends of the plasma collision frequency
too, which gives the plasma relaxation rate to the equilibrium
and to an anisotropic situation. The conclusion is that the gain
could be obtained easier for low frequencies radiations, but in
this case we must try that our analysis remove these effects. At
higher, optical frequencies the radiation gain can take place
before the excitation of plasma instabilities, all the resonance

frequencies being much smaller than the radiation frequency o.
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In this c?se'we are obliged to use the quantic theory (the
simplest case is the relativistic one, when v « c¢). Then it is
necessary a more detailed quantic (and classical) analysis of the
relativistic case of the obtained radiation gain process in the
optical region of the basckscattering in a plasma. Some
experiments, that are possible only in the laboratories where
very dense and hot plasmas can be produced, cogld be made with
the aim to verify these phenomena which we have discuassed here.
We have demonstrated that, for the given‘exemple, it is possible
that the amplification take place only in the classical limit.

Also an analysis which would use the particle simulation

technique should be necessary for the discussed phenomenon.

REFERENCES
1. R.Feyman, Quantum Electrodynamics, W.A.Benjamin, New york, p.1l10,

{1961).
2. D.Marcuse, Bell System Technical Journal, U.5.A., 41, 1557, (1961).

62



STUDIA UNIV. BABES$-BOLYAI, PHYSICA, XXXVII, 2, 1992
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ABSTRACT. - The grain growth in the Thoria-Urania advanced
Ruclear fuel is considered in the frame of the atomic diffusion.
The semiempirical constants deduced are reported. It appears that
within a 3 um error the model reasonably fits the the
experimental data.

Introduotion. The Thoria-Urania mixed oxide, (U,Th)0O,, is
considered as a potential fuel for the Pressurised Heavy Water
Reactors working as Thermall Breeders. It is a high density
ceramic wich must meet additional conditions relative to the
common UO,, complying with high burn-up and reprocessing
requirements [1,2]. Moreover, in order to allow a complete post-
irradiation evaluation, the restruotuEing kinetics of the fuel
must be well charactgrized.

Our previous studies'on the atomic hemogeneity in Thoria-
Urania [3,4] éuggested that the mass diffusion is the dominating
mechanism in the formation of the solid solution. Therefore, a
diffusion model is assumed now in a numerical analysis of the
grain growth kinetics of Thoria-Urania. Fortunately, by contrast
to (U,Pu)0,, [6] the high chemical stability of Thoria avoids an

alteration of the metal/oxygen ratio.

Theory. If mass diffusion is assumed, the fraction of grains

which will grow, dF, is given by [7]:

"Babeg-Bolyai"” University, Faculty 'of Physics, 3400 Cluj-Napoca,
Romania
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dr _ _ .0
v Ag exp[ RT] (1)

which yields for isothermal annealing:

F = F, exp [—).0 exp (—EQI_‘)] (2)

where F, is the initial fraction of unrecrystallized grains, Q
is the ‘activation energy and A, is a constant. Eq. (1) may be
integrated for temperature transients also [7], without
additional physical constants to be considered. In order to find
the Ay and Q constants, eq. (2) is transformed for grain sizes

as:

%2 = A &Xp [—l texp(--i%,)] (3)
where D, is taken as an asymptotic limiting value of the grain
size specific only for this type of fuel [5].

For an isothermal annealing one obtains:

D =D, {1-Aexp [C(t) *t]} (4)

which may be conveniently used to fit the experimental data by

the least squares procedure.

Bxperimental. The pellets used for the out of reactor
modelling of the grain growth were prepared by a conventional
powder mixing, pressing and sintering in an optimized procedure
[6]1. The density, homogeneity and pore size distribution were
controlled to fit the in-reactor requirements.

The annealing was performed in dry hydrogen for times
) ranéing up to 300 hours at 1873, 1973, 2073 and 1173°K. Five

specimens were analysed for every annealing temperature.
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The grain size was measured by the linear intercept method
by using Scanning Electron Microscopy micrographs.

Numerical procedure. Since the parameters of the sintered
ceramics are usually affected by a large spread, when applying
the least squares procedure precautions should be taken to avoid
local minimums or saddle points. Therefore, three numerical
procedures were considered in parallel in order to avoid
erroneous fits: a Monte-Carlo search, the conjugate gradient
algorithm and a quasi Newton algorithm. For the second and third
procedures the IMSL ZCGR and ZXMIN [8] procedures were used on
a 64 bit machine.

Results and discussions. The comparison of the parameters
obtained by the tﬁree methods were very close, eliminating the
hypothesis of local minimums. Thus, we obtained the following
temperature dependences of the parameters in model (4):

D,(T) = -30,685 + 0,03737 * T + 3 (5)
where T is the absolute temperature and D 1s measured in microns.

55512,6 + 6724

In [c(T)] = 25,815 - -

(6)
yielding for the activation energy, Q, a value of 461.5 KJ/mol.
The constant A is affected by a quite large error,
A = 0,4102 % 0,08 (7)
but if a linear dependence on T is allowed,
"A = -0,918 + 6,67*10"%*T t 0,02 (8)

the error decreases at 5% which is inferior to Lhe spread of the
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conditions remains below 3 microns (fig. 1) which appears very
reasonable for the post-irradiation evaluation of the
restructuring process in an assumed irradiation history.

Aithough the asymptotic grain size limit was observed iq all
the isothermal experiments, one must observe that D, and A did
not appear to be constants versus temperature, a fact which
induces a slight semiempirical character to the model (4) . This
is mainly due to the small activation enerqgy Q which allows the
grains to grow even at temperatures smaller than the plateau
value. This feature was not apriori considered in the model, i.e.
the initial grain size is not explicitely included.

Although the fitted parameters, eq. (5)-(8) appear to be
sufficient for practical purposes, the accuracy of the
theoretical model (4) could be further improved by considering
the pore ocoalescence. This subject will be approachea in a

further paper.
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CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF TWO
NITRONYL NITROXIDE BIRADICALS

L. DAVID", O. COZAR', G. DAMIAN", v. cHI§", A. NEGoEscu™"

Received:

ABSTRACT. - The crystal structure and the magnetic properties of
two nitronyl-nitroxide biradicals, NITPh(4-NIT)=1,4-
bis(4',4’,5°,5"'-tetramethyl-4,5-dihydro-1H-imidazol-2'-yl-1"'-
oxyl-3’-oxide) benzene (I) and NITPh(3~NIT)=1,3-bis(4’,4',5',5'—
tetramethyl-4,5-dihydro-1H-imidazol~2-yl-1'-oxyl~3‘'-oxide)
benzene (II) are reported. The compounds crystallize in the
monoclinic space groupsi (I) P23/c with a=6.266(1)A,
b=11.790(3AA, c=13.781(4)A, $=104.72(2)? and 2=2; (II) P2,/n with
a=7.318(2)A, b=25,368(3)A, cw11.669(2)A, $=104.72(2)° and 2=4.
The magnetic susceptibilities and the room temperature EPR
spectra of the free biradicals indicate that the two spins %n
biradical (1) are antiferomagnetically coupled with J=-72.3 em™',
while they are essentially not coupled in biradical (II).

Introduction. Several approaches are followed to synthesize
magnetic molecular materials [1), which can be classed in
inorganic [2], organic-inorganic [3], organic [4], and organic-
organometallic [5]), according to the chemical nature of the
magnetic centers. 8o far Gatteschi et al. (6,7] have used
nitronyl nitroxides 2-R-4/,4’,5/,5’,~tetramethyl-4,5-dihydro-1H-
imidazoline-1’-oxyl-3’/-oxide, NITR, as paramagnetic 1ligands
fowards transition metal and lanthanide ions {6,7], and obtained
a large number of different types of molecular based magnetic
materials, .
In order to obtain further information concerning to the

molecular structure and magnetic properties of some molecular

materials, we have investigated the NITPh(4~NIT) and NITPh(3-NIT)

.

"Babeg~Bolyal" University, Faculty of Physics, 3400 Cluj-Napoca,
Romania

** Technical Unlversity, 3400 Cluj-Napoca, Romania
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biradicals (Fig.1) by X-ray, EPR and magnetic susceptibility

measurements.

Experimental. The studied i%—ki ’ \ZS(

nitronyl nitroxide bira- &
dicals were prepared by a })
previously reported method N
(8], with. minor modifi- O——J¢/ N—@ 7N“?ST
cations. ‘/}r7< 0

X-ray data were T : 11

collected on an Euraf-

Nonius CAD-4 four circle ' -
Fig.1l.sketchs -of NITPh(4~NIT)' ' (I) and

diffractometer using Mo-K, NITPh(3-NIT) (II) biradicals.

radiation. The crystal structures of (I) and (II) biradicals were
solved by direct methods using the program S8IR [9] and Fourier
methods with the SHELX-76 package [10].

Magnetic susceptibiity of (i) was measured in-a field of
1.35T by using an Aztec DMS 5 Faraday balance magnetometer
equipped with a Bruker B-E15 electromagnet "and an Oxford
Instruments CF12008 continuous ‘' flow cryostat. Magnetic
susceptibilities of biradical (II) was measured 1in the
temperature range 2.4-300 K in a field of 2T by using a
Metronique Ingeniere MS803 SQUID magnetometer. Diamagnetic
corrections were estimated from Pascal’s constants. Single
crystal EPR spectra were obtained with a Varian E9 speqtrometer
at X band frequency. The low temperature spectra were recordered
by using an Oxford Instruments ESR9 liquid helium continuous flow

cryostat. Single crystals were oriented with a CAD 4
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'

diffractometer.

Results and discussion. A) NITPh (4-NIT).

nystal structure. The asymmetric unit of biradical (I)
contains half atoms from the atoms corresponding to the molecular
formula C,gH,gN4O, because a symmetry center is bresepted in the
middle of the benzen ring. The whole molecule is shwon in Figure
2. |

The
01-N1-C1-N2-02
atoms are co-
planar: as

expected due

to orbital

conjugation,

while the five gjg.2. ORTEP view of NITPh (4-NIT).

membered hete-

rocyclic ring is not planar, the tetramethylethylene moiety being
twisted‘out of the plane by 0.157(4) and 0.259(4) A. The methyl
groups are staggered one relative to the other in order to
relieve steric repulsion. The plane of the benzen ring makes an
angle of 28.0(3)° with the radical conjugation planes, and this
value ring is similar to that reported for tﬁe nitronyl nitroxide
radicals NITPh [11]. The’shortest intermolecular distances the
NO groups are 4.670(5) .A, between the N1 and 02 atoms of

molecules reported by translation in the a direction.
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Fig.3. Temperature dependence of (=) and xT(*) for NITPh{4-NIT). The
solid line represents the calculated values with the best fit parameters.

Kagnetic and BPR data. Figure 3 shows plots of y and %T vs
T for the biradical (I). The high xT value (%0.7 emu K mol~l at
270 K) is lower than that expected for two S=% uncorreléte& spins
(1T=0.75 emu K mol~1). 1T curve decreases steadily with decreases
of the temperature. The susceptibility gets through a maximum at
T=65 K. This behavior can be easily reproduced considering that

the two S=% spins of the biradical are antiferomagnetically

coupled. The J value (f/=JS5 x5,) can be derived from the relation

J/KpTpax = 8/5. [12]. The value so obtained is J = -72.3 cm™!, in

good agreement with the value derived from the fitting of the
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' experimental xT vs T data (J=72.0 cm‘l) with g=2.01 and R=3.3 10~
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Fig.4. Angular dependence of the cbserved g(®?) and line widtha(¢) values
for NITPh(4-NIT) at ths room temperature. The solid nn.a represent the baest
fit cealculated valuol .

/

Room temperature single orystal EPR’I apsctra of NITPh(4-NIT),
recorded by rotating the-crystal around the three perpendicular
X, .y ~')a;m:’l z axes, wWhere x=a and y={011), show a single exchange
narrowed lorentzian lina. The angular dependences of the g values
and’of‘ the line width are given in Figure 4. The components of
the g tensor wers obtained w'ith a 'stqndard fitting procedure
[13]. The results (gfn?iOO?, g2§2.0918; ¢g3=2.010) are in good
agreement with 'the data reported for nitroxide and nitrdnyl-

nitroxide radicals [14-16).
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The observed values are crystal values, i.e. they corespond
to the average response of the magnetically non-equivalent
biradicals présent in the monoclinic unit cell. It is well know
that in nitroxides the lowest g value is observed perpendicular’
to thg conjugation plane [17], therefore we considéred these
directions for the various magnetically nonequivalent NO groups
present iﬁ the unit cell and averaged them. The result is that
g, is expected’to lie in fhe ac plane, along of the a direction
which is in agreement with that found within experimental error.
The observed line widths are in the range of 5.4-7.8 G.
Since the lines are exchange narrowed it is possible tg rglate -
the peak to peak line widths AH to' the second moment ﬁz and to
the exchange interactions [18]. In principale there are three
factors wich can influénce the second moment: the dipolar
interaction, the unresolved Qypegfine splitting and the g
anisotropy. We ;stiﬁated these three contributidng to the second
moment of the line. The dipolar contribution to M,, due the
interaction between two spins of maéneticaliy non-equivalent
biradicals prevails the other broadening mechanisms. The observed '
AH can be reproduced with the usual formula for exchange coupled
sysyems, AH~M,/J’ [18], with the inter-radical exange coupling
constant, J/, oﬁ about 0.4 cm™!. This small value found for the:
inter-molecular coupling constant J’, compared with the intra-
molecular coupling constant J, oconfirms the goodness of the
magnetic data fitting for NITPh(4-NIT)> \
8) NITPh(3-NIT) |

Crystal Structure. The structure of biradical (II)‘ is
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characterized by the
disorder existing in
one of the five-
membered hetero-cyclic
rings. Some atoms
occupy two different
p;;itions, as shwon in

Figure 5, which

sketches the part of

the molecule . where
disorder is, present. Fiqg.5. ORTEP view of the part of NITPh(3-NIT)
displaying disorder.
The atoms labeled with
B have final occupation factors of 0.45(1). However, the carbon
atom C19 has an occupation factor 1 because it belongs in the
same time to the equatorial methyl carbon atom of the C19-C16-C20
group and to the equatorial methyl carbon atom of the C19-Cl16B-
C20B group. The differences of bond lengths and angles are
similar to those reported for other free nitronyl-nitroxide
radicals [11].
Figure 6 shows the asymmetric unit, where only the B labeled
atoms are shown. The fragment 01-N1-C7-N2-02 is nearly planar;
the leastqquares plane defined by these atoms shows a maximum
deviation of 0.038(4) A. The fragments 03-N3-C14-N4-04 and O3-N3-
C14-N4B-04B (Fig. 5) show larger deviations from planarity
(=0.20(1)A).

The plane of the benzene ring makes angles of about 35° with the
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01-N1-C7-N2-02 plane,
31° with the O03-N3-
C14-N4-04 plane and
36° with the O03-N3-
Cl4~N4B plane (fig.
5). The shortest
intermolecular

contacts between NO

groups involve

‘ nitronyl nitroxides
Fig.6.0RTEP view of NITPh(3-NIT)

reported by inversion

center. The distances N1-0Ol’and 01-N1’ are 3.480(5) A, while N1-

N1’/ and 01-01’ are 3.892(5) and 3.518(5) A respectively; the

distance 01-N2’ and the symmetric one N2-0l1’ are longer (4.087(5)

A). Contacts between NO groups of molecules related by a

translation along of the a axis, are slightly longer (01-02% =

4.331(5) A and N1-02" = 4.589(5) A).

Magnetic and EPR data. Figure 7 shows the temperature
dependence of xT for NITPh(3-NIT) which is approximately constant
over 35 K, with a value of 0.72 emu Kmol~l. xT decreases below
this temperature at 0.495 emu Kmol ! for T=2.4 K with a
characteristic slope of an antiferromagnetic coupling.

Room temperature single crystal EPR specra of NITPh(3-NIT)
were recorded by rotating the crystal around the b, ¢ and a" =
- b Xx'c axes. Figure 8 shows the angular dependence of g and of the

linewidth. The calculated g tensor components are: g,=2.005,
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Fig.7.Tempersture dependence of yT(n) for NlTPh(B-NlT)f The solid tine represent the calcutated
values with the following parameters: J=0.0cm , J'=-4 Ocm ' and g=1 98.

g,=2.009 and g3=2.010. By the same procedure outlined for
biradical (I) we found that g; is expected to be parallel to b
axis.

The interpretation of the magnetic data requires the consi-
deration of the coupling between the two spins as well as that
between the two spins as well as that between the two NO groups
related by the inversion center, represented by the coupling
constants J and J’, respectively. In fact it has been shown that
the extend of the coupling between neighboring NO groups can be
related to the geometric parameters a« and d sketched in .Fig. 9
and B, the angle between the normal lines to the conju-gation

planes and the plane containing the four atoms [6]. In biradical
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Fig.B. Angular dependence of the observed g(p) and line widths (-) values for NITPh(3-NIT) at the
room temperature. The solid lines represent the best ﬂt‘calculated values‘.

(II) we found: d = N1;3;:—1———0f
\ y

3.48 A, a = 98.9° and \
: oty

B =. 67.0°. The

comparison ' ,w ith Fig.9. ceometrical relevant parsmeters for the magnetic
interaction betwsen two NO groups related by inversion center.

previously = reported
cases [6] suggests an éntiferomagnetic coubling constant J’ of
about -5 cm™!. Other intermolecular interactiohs, leading to an

extendend magnetic structure, are expected to be of minor extent,

'
t

and will be neglected in a first approach.
In.view of these consideration thevéystem can be considered
as a system of four S=% spins described by the following spin
Hamiltonian: 1 -
H=0(8,x8,x8,x8,) +J'8, x 3, ‘ (3)
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where (5,,8,) and (§,,5,) are pairs of interacting spins within

each biradical. The fitting procedure does not give unique
results because several sets of the threel parameters g, J and J/
reproduce equally well the experimental xT vs T data. Two limit
cases have been considered, in which either J or J’ are set to
zero. The two fits yielded respectively: i) J=0.0 em™l; Jr=-4.0
cmn!, g=1.980 and R=1.8x10"2 or ii) J=-1.8 cm™!, J7=0.0 cm™t,
g=1.975 and R=2.5x1072.

Additional information on the values of the coupling
constants can be derived frém the analysis of the EPR line
widths, which are in the range 4.2-5.2 G. The second moment M,
of the line must be due to the dipolar interaction, the other
broadening mechanisms being at least 200 times smaller. The
observed line widths can be reproduced by assuming the inter-

1

radical J’ coupling constant of about 3 cm™*. This agrees were

closely with fit (1) of the magnetic data given above.

Conclusions. The analysis of the magnetic interactions
confirms the fundamental importance of tol;ology in determining
the value of the exchange coupling constants J. In fact when the
two nitronyl-nitroxide moieties are in the para position of the
benzene ring, as in NITPH(4-NIT), the coupling constants are
antiferromagnetic, J=-72.3 cm™!, while in the case of the meta
geometry of NITPh(3~NIT) spins are essentially not interacting
(I=0 cm™l).

The Extended Hilckel approximation was used in evaluating the
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interaction between the SOMO’s of the two NITR moieties of the

radicals. With an extention of the treatement used for the weakly

coupled dinuclear metal co)mplexes the observed coupling constant

)

mat be associated with the éplittinq of the two interacting

SOMO’s [19]). Two copper(lI}) complexes of the above mentioned

biradicals ‘have been investigated, too [20].
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IR STUDIES OF SOME COPPER (II) COMPLEXES
WITH ANTIINFLAMMATORY DRUGS

.
- !
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ABSTRACT. - In order to obtain further information on the
structure of metal ocomplexes with antiinflammatory drugs the
following Cu(II) compoundex [Cu(II),(aspirinate),](H,0 [Cu(II)

(indomethacin),) (H,0 [Cu(Ii)(ibuprofen) ]i 5
[Cu(II)(piroxicam) ]% were prepared and investigated by IR
spectroscopy. The assignment of the main absorption bands from
the spectra of complexes was made. The shifts of some bands and
the appearance of the other new bands in the complex spectra,
were axplained by the participation of some structural groups to
the coordination.

1. Imtreduoction. Inflammatcion is an important response to
tissue 1injury due to any cause. The importance of this
multifaceted process 1is appreciated as the beginning of the
tissue repair process, which 1s required to reestablish normal
function (1]. :

Many antiinflammatory agents have been developed to inhibit
some component of the inflammatory process without correcting the
cause of the disease or promoting tissue repair. It has been
demonstrated that copper complexes promote tissue repair
processes ([1]. The hypotheslis that copper compounds might be
active as antiinflammatory' agents is supported by the finding

that copper complexes are effective against arthritic and other
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degenerative diseases of man. Moreover, iy is well known that non
steroidal antiinfiammatory agents posses analgesic activity [2].
It is also known that a number of copper (II) coordination
complexes of non steroidal antiinflammatoryldrugs have been shown
to be more effective antiinflammatory agents than their parent
drugs [1-4]. Knowing these qualities, some IR and EPR studies
were reported on these complexes in order to estimate the action
of the presence of transition metal ions on the local structure
[5-8].

For obtaining further information on the local structure of
some metal complexes with antiinflammatory drugs the copper (II)
complexes with aspirinate, inéomethacin, ibuprofen, and piroxicam

ligands were prepared and investigated@ by IR spectroscopy.

2. Experimental. {Cu(II)z(&spirinmts)4}(Hzo)z. An amount of
0.11 mols of acetylsalicylic acid was dissolved in 50 ml of
ethanol and 0.2 mols of CuSQ, were also dissolved in 100 ml of

water. These two solutions were mixed and stirred for about 1

. hour and then an amount of 200 ml of water was added to the above

. solu-tion. The greenish precipitate obtained was dried in air at
room temperature. The structure of this compound is shown in
Fig.1.

[Cu(II),(indomethaoin)d](Hzo)z. Indomethacin (0.05 mols) was
dissolved in 50 ml of ethanol. A Cus0o, solution prepared by
add@ng 0.01 mols of CuSO; to 25 ml of ethanol-water mixture

(1:1), was added to the first solution. This admixture was
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refluxed for 0.5 hour and
then mixed with 300 ml of
water. The green
precipitate was filtered
and washed with water.
Finally it was dried in
air at room temperature.

[Cu(II) (ibuprofen),] (H,0),.

This complex was prepared

by the above exposed me- .
Flig.1l.pimeric structure of

thod for indomethacin [Cuz(asplrlnatg) ;) compound

compound.

[Cu(II) (piroxicam),} (DHP);. The Cu(Il) piroxicam compound was

prepared according to \

the following proce-

dure: 0.11 mols of

piroxicam were dis-~

solved in 100 ml of

dimethylformamide

(DMF). A CuSO, solu-

tion, prepared by ad-

ding 0.05 mols of

Filg.2. The structure of piroxicam

Cuso, to 100 ml of
ethanol-water mixture (1:1), was added to the first solution.
This mixture was refluxed under stirring for about 0.5 hour at

60°C. The greenish solid compound was filtered, washed with
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methanol and then dried in air at room temperature. The piroxicam

molecular structure is shown in Fig.,2.

1 were

IR absorption spectra in the range 400 to 3600 cm~
recorded in KBr pellets form on Carl Zeiss Jena spectrophotometer

(UR 20 model).

3. Results and discussion. ([Cu(II),(aspirinate),](H,0),.

Characteristic IR spectra are shown in Fig. 3. ‘The bands observed

S
o Aspirinate
[
(=}
=
£
2
£
< N
| i i1 1 i | i 1 1 1
L 5 7 8 9% 15 20 5 3 35 [cm-)
EV - Cu (I1)-Aspirinate
B
5
4=
g
L0
<
[V USRS W S U N 1 i 1 | L -~
L 5 6 71 8 910 15 20 25 30 B [cm)

Fig.3. IR spectra of Cu(II)-ARspirinate
at 1720 cm™! and 1760 cm™! in the free ligand spectrum may be
assigned to stretoching vibrations of the carbonyl groups of
aspirin. Both bands are strongly diminished in intensity in the

copper (II) complex spectrum and the first band is shifted to 1590

a6
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1, This fact indicates the involving of the carbonyl group in

cm”
the metal cation.

The antisymmetric carboxylate stretching vibration is also
shifted from 1610 cm™! to 1550 cm™! in cu(II)-complex which
indicates the involving of this group in coordination, too.

The band observed at 435 cm™! which do not appears in the
free ligand, may be attributed to the Cu-0O stretching vibration.
The IR spectrum of CU(II) aspirinate complex shows also an
absorption band at 770 cm™! which is characteristic to vg,_ot
8o-c=o0 Vibration. The band from 3420 cm™! is due to the O-H

stretching vibration of the coordination water molecules.

{Cu(II),(indonothncin)‘](H,O),. The bands observed at 1700 cm !

Absorbtion{a.u)

Absorbhon (o.u)

Indomethacin
M TR S I I | L - L < -
L 5 6 7 8 910 15 20 % E) 5 leml)
Cu{[1)- Indomethacin
L | — g~
L 5 6 7 8 910 5 2 5 30 3 [tm-T)

Fig.4. IR epectra of Cu(II)-Indomethacin
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and 1725 cm™! in the free ligand (Fig. 4) are assigned to the
carbonyl groups. These bands are found in the spectrum of the
metal complex at 1590 cm™! and 1700 cm™}, respectively. The
carboxylate stretching vibration is alsoc shifted from 1600 em™?!
to 1550 cm™l. .

We can advance the hypothesis that in the crystalline state
this compound presents two kinds of dimeric species: one due to
the coordination of carboxfl group, following the
Cu(II),(aspirinate), structure in which fhe Cu-Cu distance is
short (z2.7A)[8], and the other type, using the carbonyl group
for coordination, in which the Cu-Cu distance is bigger than in
the first case.

The two crystallization forms named $-I and y-I may be
identified by studying the v,; (C00”) frequencies. It |is
important to identify the y-I form which is more efficient
antiinflammatory agent than f-I form [9].

The IR spectrum of Cu(II)-indomethacin complex shows also
an absorption band at 3450 cm™! due to the O0-H stretching
vibration of the 1i§and water molecules.

[Cu(II) (ibuprofen),] (H,0),. The frequencies observed in the
2800+3000 cm™} region, centred on 2875 cm™!, 2930 cm™! and 2965

cm™?

, are qEG to the methyl and to the methylene groups, in the
free ligand (Fig.5).
These bands appear at the same frequencies in the Cu(II)

complex. The band observed at 1730 cm™! is assigned to the v

vibration of the acid group. This band appears at 1590 cm™! in
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Absorbtion {a.u)

Absorbtion(a.u)

buprofen
I\ [ I W | | 1 i | L
L 5 6 7T 8 91 15 20 pit 30 35 ¢
Cu {11 )-lbuprofen
11 | | I I | | b { | |
L 5 6 7 8 91 15 20 25 30 ) {d

Fig.5. IR spectra of Cu(II)-Ibuprofen

the spectrum of the Cu(II)-complex. The appreciable shift in
energy suggests that the C00~ group 1is very sansitive to
complexation.

The combination bands, vy o+8p.cao 8NA Vy otVo.cs, @PDear at
735 cm™! and 555 cm™?, respectively. Cu-ligand and the Cu-OH,
vibrations appear at 430+470 cm™! and 530 cm™l, respectively.

The 3450 cm™! absorbtion band is due to the O-H stretching
vibration of the ligand water molecules.
[Cu{IX) (piroxicam),}(DM®),. The amide I band (C=0 stretching
vibration) is moved from 1630 cm™! to about 1600 cm~! by
complexation with Cu(II), in agreement with the results of the
X-ray structure analysis,'which shows strong metal coordination

to the amide oxygen atom [10]. The sharp and strong band at 3350
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cm™! due to the 0-H group of the free ligand is not detectable in
the metal c‘omplex because of the deprotonation of the enolate O-H
group [10]. However the band at 1350 cm'l1 attribuable to the >S50,
asymmetric streching vibration 1ndiéa£es a shift of =~ 30 cm™?!

upon complexation though the >S0, group does not interact with

the metal ion.

Piroxicam

Absorbtion {a.u)

Absorbtion{o.u)

1

Cu (II)-Piroxtcam

L4 :
9% 15 20 25 30 35

Fig.6. IR spectra of Cu(II)-Piroxicam
X-ray diffraction studies of some piroxicam metal complexes
have indicated that metal ion is six-coordinated through carbonyl
oxygen atom (015) of the amiao group and pyridil nitrogen atom
(N17) of the ligand molecules (Fig.2). The axial positions along
the 0z axis are occupied by two DMF molecules bonded to the metal
through their carbonyl oxygen atoms O [10].

Piroxicam adopts the N,O-coordination mode. Although an
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ambivalent liganting behaviour cannot be excluded, it should be
noted that the observed N,O-chelation could be a reflection of
the preferenée of transition - metal ions to form intramolecular
mixedligand complexes by binding to ligands with heteroaromatic
N residques and O donors [11].

Formation of the uncharged Cu-piroxicam species 1s of
particular interest, since it h;s been shown that such neutral
Cu-drug complexes are essential for effective distribution of the
phérmacoactive agents and maintaining the copper balance in blood

plasma [12].

¢. Conolusion. The IR spectra of the antiinflammatory drugs
and theirs Cu(II) complexes’allowed us télestablish two types of
vibrations involved in complexation: 1) vibrations whﬁse
frequencies are modified by partiéipating at cgmplexation and
ii) new stretching vibrations such as vg,.o and other combination
bands. '

The asymmetric and symmetric stretching vibrations of the

COO- group appear in the 1550+1760 cm™!

region. After
complexation it was observed an appreciable shift in frequency,
in agreement with the contribution to the coordination.

The values of the shifts for the COO~ group in metal
complexes are: 130 cm™} for Cu-aspirinate, 110 cm™! for cu-
indomethacin and 140 cm™! for Cu-ibuprofen.

Some vibrations sugh as the asymmetric and symmetrig

vibrations of the CH; and CH, groups, do not change the
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frequencies values after Cu(II) complexation. The bands assigned

to these vibrations appear in the 2800+3000 cm”

1 region.

In the case of cu(II)-indomrthacin compound appear two

dimeric forms due to the different types of coordinations. This

hypothesis is also supported by EPR measurements.

10.

11.
12.
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CALCULATION ON ULTRASONIC DATA OF THE INCOMPRESSIBLE
VOLUME AND OF THE FREE VOLUME IN BINARY LIQUID SYSTEMS

1. LENART", D, RUSLENDER", A. CIUPE"

Received: 10.10.1992

ABSTRACT. - The calculation relationship of incompressible volume
and free volume, corresponding to the elementary cell, resulted
according to some models affected by approximations such as the
acceptance of molecular arrangement in a cubic close packed
quasicrystalline structure respectively of the free volume
spherical form. These relationghips have been verified on binary
liquid systems: benzene-carbon tetrachloride, benzene~ethilene
dichloride, acetone-chloroform and acetone-carbon sulphide as
well as on the corresponding pure components at various
temperatures. For this purpose we used our own experimental data
concerning ultrasonic velocity, density, coefficient of thermal
expansion as well as those of the adiabatic coefficient extracted
from the table of constants,

1. Introduction. The molecular configuration structures of
the liquids are determined by the equilibrium of intermolecular
interaction potentials. Consequently, interactions are reflected
by some physical factors which are correlated with the
intermolecular free-length. In this context we can mention:
refraction indices, density, ultrasonic velocity, compressibility
and others.

Free volume, respectively excess value become criteria in
interpreting intermolecular interactions in binar§ liguid

mixtures.

Theoretical aspects. Formulated by Collins and Brandt, the

state equation of free volume is given by:

(1)

“Babeg-Bolyai" University, Faculty of Physics, 3400 Cluj-~Napoca,
Romania
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where P; is internal pressure, R - perfect gases constant, T -
temperature, V - molar volume, Vg - incomporessible part of the
molar volume.

Expressing the internal pressure by:

2
PJ. = .Ex_agj (2)
from relationship (1) it results that:
v 1/3 v 1/3
\%4 v M qc?2

where M 1is molar mass, x==é%, a- coefficient of thermal
v
expénsipn, ¢ - ultrasound velocity, v and v, represent the cell
volume corresponding to a molecule, respectively its
incompressible part.
The elementary cell free volume is expressed by:

‘ ve = k(1 - d)? (4)
where k is a form factor, 1 - distance between the centers of two
molecules and @ ~ the molecular diameter.

. d v, 1/3 13
Relationship (4) by substitution 75\ and-j; =f

13
() } )

When the arrangement 1is in a cubilic close packed quasilattice

ve=k fv

system it results the relationship f=¢y2 and in case of a

spherical form of the free volume where the radius is 1-d, from

relationship: (4) it results that k = 47/3 and consequently:

3

4 v 1/3 .
vf=4gg-’iv 1-(_V°) . (6)
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3. Experimental. The calculations were exten@ed to some
binary liquid systems, including their respective components,
thus, the incompressible volume as well as the free volume were
determined in: benzene-carbon tetrachloride, benzene-dichloride
ethilene, acetone-chloroform and acetone-carbon-sulphide at
various concentrations and temperatures.

The thermal expansion coefficient, density and ultrasonic
velocity within the mixtures obtained were measured by the method
of optical diffraction in an ultrasonic system of 4 MHz.

In order to calculate the
. Ma?c?T

S

was used, the values for C, belng extracted from the table of

x =1
constants.

4. Results. Data obtained are shown in table I.

Table I.

conc T P;-107° v.1073 Vo Ve
(K)  (N/m?) (m*/kmol) (8% (2%)

Xcel, Benzene - carbon tetrachloride

1 2 3 4 5 6
293 3748 88,90 117,6 0,340
303 3657 89,97 117,69 0,396
313 3567 91,06 117,74 0,477

0 323 3476 92,27 117,91 0,530
333 3393 93,44 118,00 0,609
343 3304 94,72 118,13 0,702
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1 2 3 4 5 6
293 3728 90,39 119,88 0,334
303 3629 91,53 120,01 0,391
313 3535 92,69 120,12 0,455
0,2 323 3433 93,89 120,14 0,532
333 3333 95,12 120,11 0,622
343 3211 96,39 119,80 0,640
293 3649 92,13 122,21 0,340
303 3665 93,10 122,04 0,399
313 3469 94,33 122,21 0,465
0,4 323 3373 95,51 122,19 0,542
333 3269 96,85 122,27 0,635
343 3157 98,16 122,06 0,749
293 3561 93,26 123,26 0,361
303 3472 94,43 123,41 0,420
313 3386 95,63 123,55 0,487
0,6 323 3296 96,86 123,62 0,565
333 3195 98,18 123,61 0,661
343 3094 99,54 123,53 0,744
293 3492 94,89 125,35 0,369
303 3396 96,08 125,41 0,433
313 3315 97,29 125,56 0,501
0,8 323 3219 98,55 125,55 0,586
333 3121 99,88 125,52 0,625
343 3021 101,23 125,37 0,803
293 3506 96,56 128,20 0,353
303 3356 97,78 127,81 0,434
313 3263 99,09 127,97 0,506
1,0 323 3162 100,30 127,77 0,597
333 3071 101,57 127,66 0,696
343 2973 102,95 127,53 0,816
XC-H.Clx Benzene - dichloride ethilene
293 3748 88,90 117,60 0,340
303 3658 89,97 117,69 0,396
313 3567 91,06 117,71 0,477
0 323 3476 92,27 117,91 0,530
333 3393 93,44 118,00 0,609
343 3304 94,72 118,13 0,702
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1 2 3 4 5 6
293 3804 87,24 115,29 0,338
303 3721 88,27 115,41 0,396
0,2 313 3642 89,36 115,60 0,448
323 3538 90,49 115,57 0,524
333 3443 91,59 115,49 0,607
343 3344 92,85 115,52 0,705
293 3865 85,39 112,69 0,336
303 3785 86,41 112,86 0,387
313 3695 87,44 112,90 0,448
0,4 323 3610 88,53 113,02 0,515
333 3507 89,63 112,90 0,600
343 3388 90,78 112,62 0,709
293 3971 . 83,46 110,26 0,323
303 3878 84,46 110,35 0,358
313 3778 85,46 110,32 0,438
0,6 323 3705 86,50 110,50 0,499
333 3597 87,65 110,51 0,582
343 3499 88,52 110,05 0,677
293 4074 81,33 107,44 0,317
303 4011 82,26 107,67 0,359
313 3921 83,24 107,67 0,413
0,8 323 3828 84,27 107,85 0,477
333 3727 85,30 107,81 0,552
343 3613 86,44 107,73 0,646
293 4237 79,01 104,63 0,298
303 4179 79,93 104,94 0,336
313 4089 80,86 105,03 0,386
1,0 323 3997 81,85 105,15 0,444
333 3898 82,86 105,19 0,502
343 3802 83,88 105,90 0,574
XcHclx Acetone - chloroform
293 3413 73,31 89,56 0,663
303 3304 74,38 88,31 0,865
313 3211 75,49 89,19 0,915
0 323 3099 76,61 88,76 1,086
293 3434 74,84 92,21 0,625
303 3358 75,97 92,38 0,717
0,2 313 3274 77,10 92,41 0,827
323 3169 78,28 92,21 0,973
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1 2 3 4 5 6
293 3424 77,69 95,12 0,600
303 3342 77,75 95,11 0,694
0,4 313 3259 78,84 95,07 0,802
323 3176 79,93 94,93 0,928
293 3465 78,16 97,85 0,557
303 3409 79,21 98,08 0,629
0,6 313 3331 80,24 98,02 0,725
323 3247 81,39 98,03 0,837
293 3600 79,48 101,09 0,480
303 3515 80,55 101,18 0,556
0,8 313 3420 81,58 101,02 0,648
323 3328 82,70 100,96 0,752
293 3656 80,47 103,14 0,447
303 3586 81,50 103,30 0,511
1,0 313 3501 82,60 103,40 0,589
323 3425 83,71 103,52 0,674
Xcs, ' Acetone - carbon - sulphide
293 3413 73,31 89,56 0,663
0 303 3304 74,38 88,31 0,855
313 3211 75,49 89,19 0,915
293 3380 71,44 86,26 0,718
0,2 303 3279 72,41 85,91 0,847
313 3194 73,51 85,84 0,980
. 293 3468 69,16 83,31 0,710
0,4 303 3330 70,09 82,65 0,864
313 3237 71,01 82,25 1,011
293 3527 66,78 79,94 0,724
0,6 303 3410 67,67 79,47 0,863
313 3287 68,44 78,62 1,037
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1 2 3 4 5 6
293 1655 63,43 75,51 0,721

0,8 303 3578 64,20 75,26 0,830
313 3442 65,00 74,51 1,003
293 3821 60,29 71,62 0,698

1,0 303 3749 ° 61,00 71,40 0,798
313 3665 61,77 71,13 0,919

Free volume

variation with 008

the concentra-

006
tion at a
004
constant
temperature is 392
marked by the o ON
<
posibility of - -002
>g.. )
some 1interac- N ~0p4
tions occuring
-0,06
between the 008 —— CgHg CH,Cly
systems compo-~ o —- GHgecl,

nents; in” or- Figure 1

der to put them into evidence excess values have been calculated
from:
Vg — \‘f(sist.) - [Vf(l) . xl +- Vf(Z) . XZ]

and the results are shown in fig. 1 and 2.

5. Discusions. The reasoning which led to the calculation
of incompressible volume and of the free volume corresponding to

the elementary cell is based on models affected by several
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- approximations

such as:
acceptance of
molecule

arrangement in a

_ cubic close-
™ /
= 0 packed gquasi-
[
< -0p2 crystalline
-0p4 structure
: respectivelly of
-0p6
o ~ c COC)-b—CSz the free volume
-008 a
P == — CH;300CHy~CHCly spherical form.
Figure 2 The results

influenced by there approximations range within the 1limits
corresponding to the magnitude orden, offering a geometrical
reprezentation of molecular structures dependent on the inter-
molecular interaction potentials.

The independent temperature of incompressible volume as well
as the increasing free volume according to the tempeiature, have
to be mentioned.

Free volume variation, 1in close connection with concen-
tration reflects the cooperative effects of intermolecular
interactions as a consequence of interactions occuring between

the system components emphasized by representing the additivity

devilation.
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ABSTRACT. - The correlation of various formulas of the internal
pressure through their common parameter, the ultrasonic velocity,
allowed the determination of correction factors regarding the
rigorous expression of internal pressure in 1liquids. The
relationships presented in this paper have been verified on the
following organic liquids: benzene, carbon tetrachloride, ethane
dichloride at temperatures ranging from 20°C to 70°C as well as
on acetone& chlorophorme and carbon sulphide at temperatures from
20°C to 50°C. For this purpose we used our own experimental data
for the ultrasonic veloclty, denelty and coefficient of thermal
expansion and those of the adiabatic coefficient are calculated
on values from the table of constants.

1. Introduoction. The internal pressure is presented in
various formulas due to the use of different models or to the
introduction of approximate calculation which is seen in the
corresponding values discrepancy.

The establishment of the correction coefficients concerning
the rigorous expression of the internal pressure implies the
correlation of various formulas through the .mechanisms that
accompany volume variations of the medium. The internal pressure
is defined by the modification of the potential energy
corresponding to these volume variations.

\

2. Theory. The internal pressure defined by:

ou
P, = ==
1 (av)T (1)
is expressed as a funcpion of the state parameters by the

relation:

"Babeg-Bolyai" University, Faculty of Physics, 3400 Cluj-Napoca,
Romania
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t

P, = T(%)V - P, (2)

where: P, is the external pressure that may by neglected in the
case of liquids, except those undergoing great pressures.

After some transformations we obtain the calculable formula:

1 2 1
P,==aTpcg =
i " %Bs

where: a is the coefficient of thermal expansion, p 1is the

«l (3)

density, x = Co/Cor Cy is the ultrasound propagation velocity,
and fg; is the adiabatic compressibility.

The Van der Waals internal pressure derives from a reasoning
characterized by some approximatign on the basis of a molecular
model. Thus, limiting the interactions to the attraction throungh
dispersion forces we can calculate the potential energy

corresponding to all the pairs in a N number of molecules:

__2_,2A 1
B, = -SaN-5 o (4)
IO
where: %n NZ—A; = a being considered a constant value it results
I,
a
Ep = —'T, ! (5)

respectively, from relation (1):
a
2
In order to correlate Pi (w) with the ultrasound propagation

(6)

P =

velocity defined by: cZ=(0P/dp), we use:

2 V2 opP
C = Y e | —
=y (), (7)
where neglecting the external pressure we obtain:
v, Mc? a a
R )
w Vv 1% Vs
and for a narrow temperature range:
1 2 1
P = C =
1(w) 2% P Cs ZXBS (9)
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Thus, from (3) and (9) we obtain the following:
P, =2ae TP, (10)

where 2aT represents the correction coefficilent.
The Van der Waals internal pressure can be improved by the

following expression of the internal energy:

a
Bpw = - (11)
whence:
an
Pim = Vot (12)

n is a typical liquid constant depending on temperature.
From condition Py, = P; it results the relation between

the two corrections:

Vf_l =2afT (13)

3. EBxperimental. The above mentioned relations were tested
with the following organic liquids: benzene, carbon
tetrachloride, carbon sulphide, acetone, chloroform and
dichlorethylene.

We measured at various temperatures the  ultrasound
propagation velocity, at 4 MHz frequency, using the optical
diffraction method. We also determined the coefficient of thermal
expansion and the density. The values of x = Cp/Cy were obtained

from the relation:
Ma?ciT
+
CP
for Cp we used.constant tables.

X =1 (14)

4. Results. The data we obtained are shown in table I. For
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T ikl
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Figure 1

a comparison reason we presented in the last but one col

internal pressure values taken from the constant tables.
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110
105
100
095
0,9
c
P‘
¥
CH3C0CHy
080
0,75
CHC|3
CCly
0,70 GsHe
CSz
0,65 Cl'CHz-CH2Cl ]
293 303 313 323 333 343 353 363
T [k}
Figure 2

If we admit that the attraction intermolecular interactions
in those liquids are exclusively caused by the dispersion forces,
we have:

Piatty = Pywy then Pjyirepy = Pywy - Py

The temperature dependence of these internal pressure
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components is shown in figure 1 by means of the coefficients:

1 aP_l(aCC) R 1 aPl(rgp)

or 1 Yuew TP T T ar

Y (ato) Px(atc)

at 1 atm. constant external pressure.
The variation as a function of temperature of the correction

coefficients: 2aT and n is shown in figure 2.

5. Discussion. The internal pressure values resulting from
the calculation of the (12) relation are in agreement with the
literature data, which confirms the validity of Van der Waals
internal pressure correlation with the actual internal pressure
through 2aT. The two correction coefficients are typical liquig
values and depend on temperature.

From (10), (12), (13) relations, taking into consideration
the absence of the rejecting component of the internal pressure
from Pj(w)+ We have: respectively 2aT < 1 and n > 1. The rise of
2aT, respectively the decrease of n as a function of temperature,
according to the (13) relation, shows the interaction weakening
when the intermolecular spaces grow, that of the rejecting ane
being more relevant; as a consequence, the « and—;%; values
grow, because n decreases. The above mentioned remarks are valid
for all kinds of intermolecular interactions, which is very
important, especially in the liquid mixtures study.

The rise in temperature leads to a typical liquid value:

T;=-5%E, in order to fulfil the limit condition: 2a¢T = 1, n = 1.

For this temperature, from:
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Pigep) =1 -247,=1--2 it follows:
Vn—l

Pl(atl't)
Pi(rep) = 0, respectively: P; = Py(y)-

Table 1
Pi(HJ Pi P‘
Liguid T 2aT (atm) (atm) (atm) n
(K) from (9) from (3) litera from(13)
-ture
293 0,71 5163 3700 3701 1,09
303 0,75 4797 361 361 1,08
313 0,79 4460 3521 3524 1,06
Benzene 323 0,83 4146 3431 3430 1,05
333 0,87 3863 . 3350 3350 1,04
343 0,91 3594 - 3262 3251 1,03
293 0,72 4743 3416 3416 1,09
303 0,76 4373 1313 3313 1,07
Carbon 313 0,79 4049 3222 3221 . 1,06
tetra- 323 0,83, 373 3122 3129 1,05
> chloride 333 0,84 3462 3032 3032 1,04
343 0,92 3198 2935 2936 1,02
Carbon 293 0,69 5404 3772 3772 1,1
sulphide 303 0,73 5031 3702 3700 1,09
313 0,77 4672 3618 3618 1,08
293 0,74 48565 3609 3608 1,08
Chloro- 303 0,78 4493 3539 3539 1,07
torm 313 0,84 4133 3457 3458 1,05
323 0,88 3812 3381 3380 1,03
293 0,84 4016 3369 3265 1,05
Acetone 303 0,88 3671 3261 3148 1,03
313 0,94 3372 3170 - 1,02
323 0,99 3079 3059 - 1,60
293 0,66 6305 4183 4182 1,12
303 0,70 5864 4126 4126 1,10
Dichlor- 313 0,74 5419 4037 4039 1,08
ethylene 323 0,79 5006 3945 3944 1,07
333 0,83 4619 3848 3850 1,05
343 0,88 4264 3753 3758 1,04

In the case of the liquids with spherical symmetry moleculas
and non-polar character, PI(W) and Pi(w) - P; represents the
internal pressures corresponding to the cohesive forces,
respectively the repulsive ones. ‘

In order to describe their variation as a function of
intermolecular spaces, we'followed the temperature dependence of

those coefficients: Y(atty and Y . ,. It results that the

temperature does not influence the Y (att) coefficient, which
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indicates, the 1linear decrease of the attraction internal

pressure with temperature. The exponentially decrease of the
\ o .

absolute value of the y ,o,) coefficient corresponds to the range

action of the repulsive force.

In the above reasoning the external pressure was considered

constant, i.e.latm.

The non—linearify of the variation in the intermolecular
space as a function of temberature, issued from the rise in the
coefficient of thermal expansion dependiﬁg on temperature, is
neqiigible comparately to the variation of the temperature

coefficient of the internal pressure.
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