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MEDIUM SIZE NORMAL CIRCLE BOUNDED HOMOGENEOUS 
MAGNETIC FIELD SINGLE FOCUSING MASS SPECTOMETER 

WITH IMPROVED RESOLUTION

P.ARJ>ELEAN\ F.DUNCA', C.CITNA', D.IÜANOVICHJ', A.P AMPLA", C. ARDELEAN", L.MALZ"

H a lv ed  10.041993

ABSTRACT. - A 90“ dellection normal circle sector homogeneous magnetic field mass 
spectrometer was constructed and tested The Instrument was designed for a mean ion path 
radius of 100 nun The mass spectrometer mam parts are described A peak half height 
resolution of 1570 was obtained at an ion current of 0 16* 1012 A for a final accelerating slit 
of 0 02 ram For a slit 0 03 ram wide the resolution was 1410 while the ion current increased 
to 0 85x 1012 A The instrument was operated at even higher intensities, currents of 0 9* 1010 
A being collected with resolutions over 200, the final accelerating sbt width being set to 0 5 
mm

1. Introduction. The mass spectrometer was designed for isotopic concentration 

analysis It can be used for gases and volatile liquids, by covenng the mass range from 1 to 

200 mass units

The design with circular boundaries, normal beam entry and exit was found to be the 

most appropriate for our purposes An ion mam path radius of 100 mm was selected to satisfy 

both resolution and sensitivity requirements simultaneously without excessive instrument size 

and weight increase

2. Description The main parts of the mass spectrometer (Fig 1) are the sample inlet 

system (IS) with its own vacuum system, the ion source (S), the analyzer (A), the detection

Instituie o f  Isotopic ami Molecular Technology, P О Box 700, 3-100 Cluj-Na/xtca, Romania 

Technical Ufllvei stty, De/Miitment o f  Automatisation and Computers, 3-100 Cluj-No/Mica, Romania
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system (D) and the main vacuum system

The sample introduction system is a standard one, allowing the simultaneous 

attachment of two samples The valves ensure the separation of the two introduction ways, 

and the separate introduction of the samples into the expanding container These valves also 

allow the evacuation of the introduction system after the end of the analysis

From the container, the sample to be analysed is admitted by a capillary tube into the 

ion source

A

Fig 1 A schematic diagram of the mass spectometer

The introduction system is evacuated by a 4m3/h rotary pump 

The ion source of the mass spectrometer was derived from the modified Nier design 

[1] It consists (Fig 1) from an ionization chamber (IC) with the electron gun (EG) and ion 

repeller (IR), the half plates (HP), the cylindrical lens (CL), the z deflectors (ZD) and the 

final ion beam accelerating slit (AS) The electrodes weie manufactured fiom nonmagnetic

4
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stainless steel, and are aligned by ceramic spacers and supported by a system of iron rods 

The electrons are collected by an electron collector (EC) housed in the ionisation chamber, 

the collector field being screened by a shield with a slit for the electrons

The energy of the ionizing electrons produced by a rhenium filament is usually of 60- 

100 eV [2] The value of the ionizing current measured on the electron collector (EC) is 

stabilized on the range 10-70 pA

An auxiliary collimating magnetic field of 100 Oe ensuies the electronic beam 

focusing To this value must be added a small component due to the stray field of the mam 

analyzer

The optimum potential of the repeller related to the ionization chamber was established 

experimentally to be around +1 8 V to maximize the resolution and keeping a good 

sensitivity

The analyzer is a 90° normal circle homogeneous magnetic sector field The mean ion 

path curvature radius Is of 100 mm The second order focusing properties of this design 

allowed us to obtain a good resolution for a relatively small curvature radius

In this respect it was possible to use a radius of 100 mm, and to keep the instrument 

global size between limits acceptable for usual research work [3] The magnetic sector 

position can be regulated by a screw and it was accuiatelly located between the ion source 

final slit and the collector, accounting for the fringing field effects [4, 5] The magnetic sector 

is piovided with magnetic screens

The magnetic circuit of "C" type design was made from Annco iron with the coll on 

the central yoke section

The ion collection system consists of a grounded variable slit, an antidynatron slit and

5
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a Faraday cage connected to an electrometer amplifier

The main vacuum system consisting of a PVDfF-04-100 type oil diffusion pump, 

provided with a liquid nitrogen cod trap designed especially for the efficient retention of the 

oil vapours permited to obtain a pressure under IO4* torr in the absence of the sample

The vacuum valves are electrically acted by the control and protection unit which 

closes them and disconects the heater of the diffusion pump, the high voltage unit and also 

the electron gun supply m case of vacuum system failure

Fig 2 The mass bpectnun of tlie Kr obtained for a final slit width of 0 5 nun

6
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3. Experimental results and discussion. The measurements were performed on the 

isotopic peaks of Kripton By using a large 0 5 mm wide final accelerating slit a resolution 

R, of 210 at 50 % peak height (Fig 2) was obtained at m/e = 80 to m/e = 86 the ton current 

intensity being 0 9><1 O'10 A The intensity of the ionizing current was 25 pA 

An accelerating voltage of 2 1 kV was applied on the ion source 

To calculate the resolution at peak half height from the mass spectrum the following 

formula was used

R» = mML/(nAl) (1)

where mM is the average value of the masses mM = (mj + m2)/2 m u, Д1 is the width of the 

gieatest peak at half height in mm, L is the distance on the spectrum between the peak 

centroids also in mm, n is the distance between the m, and m2 in mass units(u)

A resolution R, as peak half height of 350 for a final ion beam accelerating slit of 0 25 

mm at an ion current intensity of 0 7x 10'10 A was measured The resolution increased to 840 

at an ion current intensity of 1 5x 1012 A for an accelerating slit of 0 07 mm

In the case of a final ion source slit reduced to 0 03 mm (Fig 3) the value of the 

resolution was 1410 at an ion current intensity of 0 85xl0 ‘2 A

The best resolution 1570 was reached for an accelerating slit width of 0 02 mm at a 

current of 0 16x 10')2 A (Fig 4)

The theoretical peak half height resolution can be estimated with the formula

Я, -  ( s / C+ Д и  Ш +  à U f I U + 2 à l m I I J - '  ( 2 )

where s is the width of the final source slit, C the ion main path radius, eAU„ the difference 

between the energies of the ions formed at the same point of the source at different instants, 

pioduced by high voltage short time instabilities or noise, in our case I * lO'1 of the value of

7
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Fig 3 'Oie mass spectrum of the Kr for a final lou source silt оÍ 0  03 mm

the ion accelerating voltage U, eAU, the beam energy spread due to the thickness of the 

ionization legion, typically 0 5 eV, Alril the instability or noise of the magnet current supply, 

m oui case also 1*10'"’ and e the ion electric positive charge

In Fig 5 two R, = t\s) curves are given foi instabilities of 1*10'* and 2*10'* 

lespectively The open dots aie the values obtained expenmentaly, quite close by the

8
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theoretical values

As it can be seen, for wider final ion accelerating slits the resolutions practically 

coincide with the theoretical values indicating a good focusing of the ion beam The size of 

the ion-optical object is equal or ш the case of 0 5 mm slit a little bit thinner than the width 

of the final accelerating sht

Fig 5, Tlte calculated resolutiou R, = f(s) 1 - calculated for an instability of 1 « 10 \  2 - for an instability of 
2-< 10’5, о - tie data obtained from spectra (R,)

it is also possible that the beam energy spread caused ,by the ionization region 

thickness is smaller than the value 0 5 eV usually assumed, and this could also be responsible 

for the good resolution obtained

For 0 07 mm, 0 03 mm and 0 02 mm final accelerating slit widths the experimental 

resolution is close to the theoretical values indicating that the focusing properties of the ion 

source using cylindrical lenses enabled to deliver a well focused ion beam

9
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The position of the analyzer sector, as well as the position of the magnetic screens is 

quite critical and any small displacement affects the instalment resolution

Acknowledgements. The authors thank Prof Dr V Giecu, Di.N  Palibroda and Dr 

D Ursu for helpful discussions
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ABSTRACT. - Tlie mass spectra and the fragmentation palways obtained by electron impact 
o f Phenyl- (1), 2-p-melhyI- (2), 2-p-fluortoe- (3), 2-p-chIonne- (4), 2-p-bromidc- (5), and 2-p- 
meihoxi- (6) -pheiulsulphonanudo-2-tluon0-5, Sdimetliy 1-1,3,2-dioxgphosphonnancs are 
presented. Accurate mass measurements and roetastable transitions detection for compound (1) 
were used to elucidate the proposed fragmentation reactions

Introduction. Organophosphorus сошроипф are widely used as pesticides, 

therapeutic and plastifying agents, due to their structure and biological potential Their 

thiodenvatives were increàsingly studied lately /1-8/

The articles on the mass spectrometry of these compounds outline that the 

fragmentation mechanisms depend on the nature of the atoms bonded to the P atom /7/

The aim of this work is to interprete the mass spectra and the fragmentations under 

70 eV electron impact of some [(l)-(6)]2-arylsulphonamido-2-thiono-5, 5-dimethyl-l,3,2- 

dioxaphosphormanes which contain the P=S and P-N bonds 111 Their structural formula is 

presented in Fig 1

Experimental. The compounds (l)-(6) were synthesized at the Chemistry Institute

'  Institute o f  Isotopic and Molecular Technology, 3400 Cluj-Napoca, Romania 

" Technical University, Uepai Intent o f  Physics, 3400 Cluj-Napoca, Romania 

"Babcf-liolyai" University, haculty o f  Physics, 3400 Cluj-Na/юса, Romania 

Institute oj Chemistry, 3400 Cluj~Napoca, Romania
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S

1 R =H A R=C
2,  R=CH3 5. R SB
3,  R = F 6 .RSOCH3

Fig 1 Stiuciural formula of the compounds (1)46)

from Cluj-Napoca, Romania, by a substitution reaction between 2-cblonn©-2-thionoS, 5= 

dimethyl-1,3,2-(Ио1ШрЬозрЬоппппе and the sodium salts, of the corresponding 

arylsulphonamides /7/

Measurements weie made using a MAT 31Í mass spectrometer with inverse Nier- 

Johnson geometry Standard opemüng conditions were 70 eV electron energy, 100 pA 

emission entrent; 150°C ion source tempeiatuie and 700 resolving power

The direct inlet system was used at the optimum evaporation temperatures 85°C (1), 

95UC (2), 80"C (3), 100°C (4), 120“C (5) and 125“C (6)

Metastable transitions, tegistered by the 11V and M I K E  techniques /9,10/, 

confirmed the fiagmentations for compound (1) High resolution measurements were used in 

the peak matching mode, to determine the accurate chemical formulae of the 10s 19/

Results and discussion. The 70 eV elections impact mass spectrum of compound (1) 

is shown in Fig 2

12
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Table 1 presents the main fragment ions in the mass spectra of compounds (l)-(6) and

Fig 3-5 show the proposed fragmentations together with the structures of the ions

ion (1) m /e(% ) Г(2)т/е(% ) (3) m /e(% ) (4) m /e(% ) (5)m /e(% ) (6) m /e(% )
К н зЖ Ф Г 321(4) 335(2%) 339(4) 355(2) 399(1) 351(2)

257(100) 271(100) 275(100) 291(100) 335(108) 287000)
" G p ï Ï R ) 242(2,5) 256(2) 260(2) 276(2) 3200.5) 272(3)

c(207*R) 200(1,5) 222(1) 226(-) Г242СШ 285(1.5) 238(0.5)
d(223+R) 224(9) 238(9) 242(0) 256(8) 30ЭД n æ w —
8(201 +R) 202(1.5) 216(2) 220(2) 236(1) 2800) 232Í-)

172(8) 185(12) 190(6) 206(4) Ш Щ Г Щ 5 )
q(1 83+pi) 190(10) 204(4) 208(10) 224(8) 268(8) 220(4)
h(100+R) 109(68) 203(36) 207(65) 223(10) 267(44) ~ 219(2S)
ÍÍ170+R) 171(10) 185(14) 109(8) 205(12) 240(9) 201(21)
j(1 54+R) 155(B) 169(9) 173(8) 169(8) ~ Щ § ) 185(20)
k(224+R) 225(1.5) 239(3) 243(2) 259(1) 303(1) 255(0,5)
K223+R) 224(10) 238(9) 242(7) 258(6) J É 1,  , ~ 2 5 W

m(l93+R) 194(7) 208(7) 212(6) i 228ife) 1 224(2)
n(1G5) 165(3) 165(2) 165(4) 165(5) л Ш - j i  , 165(4) '
o(133) 133(3) 133(25) 133(4) 133(4) I _ l £ J  , i
PÍ140+R) 141(13) 155(12) 159(16) 175(11.5) i i ? m
q(124+R) 125(7) 139(8) 143(7) 159(7) ~ 2 б Ш ) 1

r(92+R) 93(27) 107(21) 111(30) i 127(24) 1 r / i m  i□ Ш . .....
s(76+R) 77(58) 91(49) 95(46) 11ВД т в щ з ш т ш ш  i
t(155+R) 156(4) 170(3) 174(4) 190(2) 234(3) I 0 4 )  ■

v(235+R) 236(4) 250(3) 254(3) 270(3) I 314(3) i a f n
w(133+R) 140(40) 154(23) 150(39) 174(20) “ 2ЩУ? !" 1Щ 2)
ZÍ203+R) 204(2) 210(1.5) 222(5) 238(2) 282(3) 234(2)

Table 1 Mass spectral data for compounds (l)-(6)

In all cases, M+ produces low intensity peaks (<2%) and eliminates the neutial 

molecule S02 as reported in similar studies /3,4,11,12/, giving the base peaks at ions a  (See 

Fig 3 ) Afterwards, like other dioxaphosphonnanes /8/, ions a loose one CH3 group, leading 

to ions b and, consequently, to the stiuctures c or d  The latter ions occur by the elimination 

of the neutral molecules H2S or H20 , iespectively, processes already encountered for 

thiopllosphororganic molecules containing О /4,12-15/

Ions a may also loose the radical C,,H7 and form the structure e in Fig 3 This

14
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1/7=0.
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Fig 3 Reactions starting with the loss o f  the S 0 3 group prior lo the helherocyclc fission.
О
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fragmentation is produced by the cleavage of the dioxaphosphonnanic cycle (pan A of the 

molecule in Fig 1 ), which is a frequent process in the organophosphorus compounds with this 

kind of heterocycle /1,8,16,17/

Ions e may eliminate the neutral molecule СИ30, by the P-0 bond fission, as reported 

in likely situations /12,15/

The ions W are produced from the structure /  by the elimination of the S atom, 

subsequent to the P=S double bond fission, process confirmed by the metastable transitions 

and mentioned m other thtophosphororganic compounds /1,15/.

Undergoing a rearrangement process by a five membered transition state, as proposed 

by Edmundson /8/, ions a loose the radical C3H7 and produce ions g, in Fig. 3

The cleavage of the dioxaphosphonnanic cycle in ions a  and the elimination of the 

radical C,H8 probably leads to the structure h. Reactions of tins kind were formerly reported 

/8,19,20/

Ions h conduct to ions f  by loosing one OH side group, as found for similar cases

/13,18/

Metastable detections confirmed that ions h eliminate a neutral HjO molecule to 

produce ions i or a neutral H2S molecule to form ions j, processes frequently observed in 

organic compounds containing О and S /4,12-14,21/

These results concerning the dioxaphosphonnanic cycle cleavage, present an obvious 

similanty to those already reported /8/

Figure 4 proposes other fragmentations pathways for ions a They may loose S, to fomi 

scarcely observed ions k, or loose the radical SH and produce important ions / This is 

opposite to the results mentioned in the literature, on the A type of compounds /8/, but an

16
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Fig 4 Reactions starting with Üie loss o f  the S 0 2 group prior to the elmunation o f neutral radicals or atoms
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explanation could be given by considering the increased acidic featuie of the amydic proton, 

in our compounds ( 1 )-(6) This does not yet exclude the Edmundson’s conclusion /8/ that a 

methylenic proton from the cycle gives its contribution to the SH elimination

Metastables detection prooved that ions 1 loose CH20 , as already reported /15,19/, to 

form ions m (See Fig 4 )

Finally, producing ions », the ions a may eliminate the frahments NH and C6H4R, 

other simultaneus losses of more fragments, being sometimes observed /22,23/ Subsequently, 

ions n form the ions o, by breaking the double P-S bond, as Edmundson also reported The 

abundances of ions n and о are ten times lower for our substances than other data on the A 

type of compounds /8/ This difference is the different ways that the л electrons distribute 

between the P=S and the P-N bonds, inside the molecular ion M \  which is an aromatic amide 

in this case (Fig 1 ) and an alyphatic amide in the lite» attire

Figure 5 presents an othei fragmentation scheme for the molecular ions M+ They 

undergo simple fission of the N-S bond and form ions p  which subsequently may loose' one 

О atom, to give ions q, SO, to produce the structure r, or S02, to form ions s These 

eliminations are common for organics containing S02, /3,4,11/

The simple fission of the P-N bond, frequently encountered in phosphororganics with 

N /22/, produces the ions /, from the molecular ions

The dioxaphosphonnanic cycle may undergo cleavage even in the molecular ions, 

producing the structure v in Fig 5

Ions-v eliminate S02 to fonti ions /which subsequently loose one S atom and produce

ions w

The ions z may result fiom v, by the elimination of the S atom and further conduct

18
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Fig 5 Reactions starting by simple fission or rearrangeamciit o f  the molecular ion
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to ions w, by loosing the S02 group Metastable measurements indicated the reaction/  —» u\ 

as well as z -» ív

In ail spectra, important ions at m/e 77, 56, 55 and 51 are present due to the 

fragmentation of the aryl group

Ions at ro/e 69, also important in all spectra, result from the fission of the 

hetherocyclic part of the molecular ion M* and consist of the fragment having the following 

elemental formula C^Hg

Conclusions. These compounds mainly pursuit fragmentation by the cleavage of both 

the arylsulphonamidic and the dioxaphosphorinanic sides of the molecules

All six substances show low molecular ions ( <3% ) The base peaks, in all spectra, 

are given by ions a, formed from M+ which 1оозе S02

The fragments a undergo rearrangement reactions involving H transfer inside the 

dioxaphosphorinanic cycle as well as from this cycle to the S atom, subsequently eliminating 

CHj, C4Hj, C5H7 and С5Н„ (neutral ladicals)

During the fission reactions, the following groups are also eliminated: S02> H20 , H2S, 

CH20  (neutral molecules) and O, S, SH, OH, SO, NH, C6H4R, CjHpO (neutral atoms or 

radicals)

20
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RAMAN SPECTROSCOPIC STUDY OF THE STRUCTURE 
OF B ,03-Li20-Cu0  GLASSES

T. ILIESCU, S. SIMON, I. ARUEIJCAN ami N. MARTON’

Revolved 10031993

ABSTRACT. - The influence of the melting temperature (1273 К and 1573 K) and of the 
CuO content on the network structure in the ( t-x)[2B20 3 Li.Oj xCuO glasses with O s  \  й 0 05 
mol % is investigated by Raman spectroscopy At melting temperature 1573 К the glass 
network is broken in a larger mode like than at temperature 1273 К Cooper oxide acts as 
modifier m lithium borate glasses in wliich are present six merobered borate rings with two 
B04 tetrahedra, chain type metaborate group, ortoborate, piroborate and flee B 04 units

I

Introduction. The most common glasses are formed by mixing glass forming oxides 

(StOj, BjOj, P20 3) with modifiei metal oxide [1] The oxygen from the metal oxide becomes 

part of the covalent glass network by creating new structural umts Raman spectroscopy is a 

powerful and efficient tool for resolving the structuie of local arrangements in glasses

Raman spectra of binary lithium borate glasses were investigated at different lithium 

oxide concentration by many authors [2,3] in the Raman spectra of B20 3 glasses there is a 

specific strong band at 807 cm'1 assigned to the boroxol nngs in which boron atom is three 

coordinated [2] The addition of alkali oxide Li20  to B20 3 determines the appearance in the 

Raman spectra of a new band about 780 cm'1 Bril [4] assigned this peak to the formation of 

six membered borate rings containing one B 04 tetrahedron (boron atom is four coordinated) 

The proportion of boroxol and borate nngs depends on the Li20  content At a ratio R > 0 33 

of Li20  and B20 3 concentration there present only borate nngs

By combining the Raman scattering study and NMR investigations, structural groups

"Babci-Bolyat" University, Faculty o f  Physics, 3400 Cluj-Napoca, Поташа
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RAMAN SPECTROSCOPIC STUDY

present in borate glasses have been dearly identified [5] Fig 1 shows the several structural 

groups present in this glasses

At low R values R s  0 25 it was found [6] that the introduction in the lithium borate 

glasses of the copper oxide determine diastically changes in the glass structure The rising of 

the CuO content determines the decrease of boroxol rings number and the increasing of the 

number of six membered borate rings [6]

The structure of the lithium borate glasses with gadolinium oxide content is 

piunouncedly influenced by the melting temperature of the sample [7]

The aim of this paper is to observe the structural changes of lithium borate glasses 

with large R value (R = 0 5) at different melting temperatures (1273, 1573 K) and different 

copper oxide concentration

Experimental. The glasses were obtained by melting of boric acid, lithium carbonate 

and copper oxide mixture in the desired proportion at the indicated temperatures The 

paralleltpiped shaped samples weie obtained by pouring of melts in stainless steel forms The 

Raman spectia have recorded on GDM 1000 monochromator instrument equiped with ILA-1 

argon ion laser, the emission line at 488 mm was used with a incident power of about 0 5W

A 90“ geometry and a spectral slit width of 3-4 cm'1 were used to collect the scatteied 

light 1 he spectra were recorded without polarizer in the gatheung optics The measurements 

were earned out at room temperature

Results. The Raman spectra of lithium borate glasses with copper oxide content 

obtained at the melting températures 1273 and 1573 К are presented in fig 2 and 3,
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respectively

In the Raman spectra of the glass system (1-x) [2B20 , l.i20] xCuO obtained at melting 

temperature 1273 К (fig 2) there are present intense bands at 472 and 762 cm 1 and weak
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bands at 652, 890, 972 and 1452 cm'1 The weak band at 652 cm'1, which is present as a 

shoulder in low frequency side of the 762 cm'1 band for x = 0, increases in intensity at large 

copper oxide concentration The same increasing is observed for 472 cm'1 band For the other 

bands is not observed a significant change in intensity Note that the розШоп of the bands is 

not modified at different x values From the glasses with x > 0 05 the Raman spectra are very 

difficult to be obtained From these spectra we observe the absence of 805 cm"1 band which 

was present at low R values (0 25 - 0 33) [6] In the Raman spectra of the glass system 

(1-x)[2B20 3 Li2OJ xCuO obtained at melting 1573 К we see the intense band 467 cm'1 which 

changes its position to low frequency side at large x values and 757, 987, 1012 and 1430 cm'1 

bands with unchanged position at different x values At x = 0 05 a shouldei at 530 cm'1 is 

observed

Discussion. From the absence of 807 cm'1 band in the Raman spectia of (1-x) 

[2B20 3 Li20] xCuO glass system we conclude that boroxol rings are not present in our system 

for all x values and both melting temperatures The Raman peak at 782 cm"1 which is present 

distinctly in the spectra of the sample obtained at 1273 К with x = 0, can be assigned to six 

membered borate rings with two B 04 tetrahedra For six membered borate nngs with one B 0 4 

tetrahedron 780 cm'1 band and its constant position in the spectrom [4,6], is specific

Based on the Raman spectra of crystalline Li20  B20 ( which contains chain of 

metaborate ions, Konijnedijk and Stevels [8] associayed the bands at _ 720 and 1470 cm'1 

with the presence of a shoulder at 717 cm'1 and of the very bioad band centered at 1452 cm'1 

is an indication that at x = 0 the chain type metaborate units aie present in our system From 

the spectia pi csented in fig 2 we observe that chain type metaborate units are present at all
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X values and their concentration are practically unchanged at different n values For pure B20 3 

the band at 470 cm'1 was assigned to ring bending mode of the boroxol rings [9], In our 

system the bendtng mode is probably due of a free B 04 unit or one that is attached very 

weakly to a ring type structure From the rising in intensity of Una band at large x values (fig 

2) we conclude about the break of the glass network with increasing copper oxide 

concentration

On the basis of comparison with the spectra of crystalline analogs [10] the band at 972 

cm'1 can be assigned to the stretch of orthoborate units. The bands at 890 and 652 cm'1 

indicate the presence of pyioborate and methaborate units, respectively, The band at 762 cm'1 

is asymmetrical tn the low frequency side because of the presence of the bands at 717 and 

652 cm'1 This asymmetry became more pronounced with increasing copper oxide 

concentration From the fact that the intensity of the band at 1452 cm'1 is not changed, we 

suppose that this asymmetry is determined by the increasing in intensity .either of 652 cm'1 

band or of the wing of 472 cm'1 band This means the increasing either of metaborate unit 

number or of the free B 04 unit number at large copper oxide concentration By comparing 

the Raman spectra obtained from the samples prepared at 1573 К (fig 3) with those obtained 

from the samples prepared at 1273 K, we can observe a shift to the low frequency side of 

some bands, from 472 to 467 cm 1, 762 to 755 cm 1, 1452 to 1447 cm'1 and to high frequency 

side of the other bands, from 890 to 907 cm'1 and 972 to 1005 cm"1 The band at 467 cm'1 

is more intense than one 472 cm'1 band This means that rising of the melting temperature of 

the glass determines the break of regular borate groups The same situation was observed in 

the lithium borate glasses with gadolinium oxide content obtained at 1273 and 1473 К [7]

The shift of the band at 762 cm"1 to 755 cm"1 position confirms our supposition about
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the presence of two B 04 tetrahedra in the six membered borate rings

The shoulder at 530 cm-1 developed at x = 0 03-0 05 values can be associated with the 

presence of B 04 tetrahedra in well defined, yet interconnected borate arrangement, confirming 

the idea that copper oxide acts as modifier in lithium borate glasses

Conclusions In the glass system (l-x)[2B20 3 Li20] xCuO there are not diastical 

changes in the network structure as copper oxide is added In this glass system there are 

present six membered borate rings, with two B 04 tetrahedra,chain type metaborate groups, 

ortoboiate, pyroborale, metaborate and B 04 units Rising of the melting temperature from 

1275 to 1573 К determines a stronger break of network and the increase of free B 0 4 units
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Figure capUon

Fig 1 Boraié group and specific Raman peak observed in several borate compands Doited bne through the 
oxygen ions indicate that these are of the bridging type (from ref |3] and [5|)

Fig 2 Raman spectra of the glass system (I-x)[2Bj03 Li30 | xCuO Malting temperature 1273 К 
Fig 3 Raman spectra of the glass system (l-x)[2B30 31.1,0] xCuO Melting temperature 1573 К

x
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STUDIA UNIV BABEŞ-BOLYAI, PHYSICA, XXXVIII, 1, 19‘Л

COMPARATION OF INTERACTION ENERGIES FOR METHANE 
USING BUCKINGHAM AND LENNARD-JONES POTENTIALS

G. V. DAMIAN*

H eidm J 10111993

ABSTRACT. One of the most important problem m molecular dynamics simulation is the 
choice the good force field parameters for intemiolecular interactton The Buckingham and 
Lemiard-Jones interaction potentials sensibility, was companded using some C-C, C-H and H- 
H potential parameters for methane dimers The new Buckingam potential paramétere was 
obleined by fitting with quantum calculations in fourth-order Moller-Plesset perturbation 
method

Introduction. The requirements on the interaction potential and its parameters (also 

known as the force field) depend on the area of application and the type of data one is 

interested in When the focus of the simulation is on the low energy conformations only, a 

force field giving the proper potential minima will be considered reliable The some force 

field considered highly unreahable when thermodynamic or dynamic data are being 

simulated These types of data also require a correct shape of the potential well near its 

(local) minimum, thennodinamicai data are determined by the phase space density function, 

dynamical data by the spatial derivative of the potential function

For biomolecular applications the potential is in general divided into a part describing 

the interaction between covalently bonded atoms (atoms separated by up to 3 covalent bonds) 

and a part describing the remaining part of the interaction (nonbonded interaction, l e Van 

der Vaals and Coulomb potential)

In the molecula: dynamics (MD) simulation, the nonbonded atom-atom interactions

"Hahe^-llolyai" University, {'acuity of Physics, 3-100 Cluj-Napoca, Romama
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o f  carbon and hydrogen are important to describe the time evolution o f  simulated moleculai 

system  The atom-atom nonbonded interaction energy can be described as 

E, = Er + Ed + Ec

where

E, is the total atom-atom interaction energy 

Er is the repulsion term of interaction energy 

Ed is the dispersion term of interaction energy

Et is the coulombic term of interaction energy and wish for nonpolar molecules 

The empirical representation of the iniei molecular interaction eneigy of nonpolai 

molecules is a sum of pairwise additive atom-atom inteiaction energy terms with each term 

being the sum of several energy component

Two type of atom-atom interaction potyential are frequently used to describe the total 

nonbonded interaction energy of nonpolar fluid, the Lennard-Jones and Buckingham 

interaction potential

Results and Discussion. Intermolecular interaction energies of nonpolar methane 

dimei were compaiated using Buckingham and Lennard-Jones nonbonded interaction 

potential The initial configuration of molecules has been choice thus to coriespond to the 

dimer configuration for which intermolecular interaction energies was calculated by the fouth- 

order Moller-Plesset perturbation method using the 6-31 l(2d,2p) basis set /1/

In order to investigate the sensitivity of the atom-atom interaction energy to respect 

the type of nonbonded interaction potential, weie used three sets of paiameters

T he inteiaction energies using some type of potential and puiameteis are ploted in ligi
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1 and fig  2

a. Lennard-jones interaction potential

The general form of Lennard-Jones interaction energy is

C'J c t
E E,J

Ij
t f

ij U r‘J

i j  - 1 n atoms

wheie r,j is the atom-atom distance

The following sets of parameters were used 

ul. Gromos parameters /2/

C12(kcal A12) Ce(kcal A6)
c -c 6230000 2121 52

a2. Proposed by HJ.C.Berendsen /3/

Cl2(kcal A12) C6(kcal A6)
c -c 476746 21 440 689
C-H 57904 695 104 705
H-H 9902 173 26 076

a3. Q.S.Rîiiidall et al. /4/

C12(kcal A12) C6(kcal A6)
C-C 3401262 2406 42
C-H 412242 571 18
H-H 70461 142 705

b. Buckingham interaction potential.

The Buckingham potential are given by

и и
with rtJ tlie atom-atom distance 

The parameters used are 

Ы. ММ3 parameters /5/:



Fig. 1 The shape of some potential interaction
methane dimer A
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A(kcal ) B(kcal A 1) C(kcal A'1)
C-C 4968 2 94 280 22 •
C-H 4232 3 37 105 34
H-H 3580 3 70 52 06

Ь2. Dauchez et al. 161:

A(kcal) B(kcal A 1) C(kcal A6)
C-C 83630 3 60 568 0
C-H . 8766 3 67 125 0
H-H 2654 3 74 27 3

ЬЗ. Parameters obtained by fitting with MP4 /1/ calculation:

A(kcal) B(kcal A'1) C(kcal A6)
C-C 3148 2 84 280 225
C-H 2690 3 26 105 344
H-H 2332 3 70 52 057

Plotting the inteiaction eneigies to respect the C-C distances, for two configurations 

it can see that, the repulsive term of Lennard-Jones potential is strong dependent by the 

spatial orientations of moecules having only two adjustable parameters to descnbe small 

changes m interaction piocess

Conclusions In this paper, the nonbonded interaction energy for two methane 

configuration molecules was calculated using Buckingham and Lennard-Jones potential 

functions with the parameters used in moleculai dynamics simulations The new Buckingham 

potential parameters was obteined by fitting with ab-initio quantum calculations The 

corespondence between our calculations and Moller-Plesset pertuibation method aie piesented 

in fig 3
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A RF GENERATOR FOR CAPACITIVELY COUPLED PLASMA 
AT ATMOSPHERIC PRESSURE

S. D. ANGSEL'

Received J5 Oá J 993

ABSTRACT’. - A radiofrequency generator for maintaining a capacitively coupled plasma is 
presented. The plasma can be operated at low radiofrequency powers (100 - 500 W), argon or 
a mixture of argon and air at atmospheric pressure being the plasma gas Data referring to the 
oscillator structure, the theoretical treatment of the subject and the first experimental results 
are presented This plasma can be used as spectral source for emission spectrometric 
determinations in liquid or solid samples

1. Introduction. The realization of the spectral sources based on the radiofrequency 

(rt) plasmas is one of the most important progresses tn the atomic spectrometry domain in the 

last twenty years Among these sources a distinct class is represented by the rf plasmas at 

atmospheric pressure named inductively coupled plasma (ICP) and capacitlvely coupled 

plasma (CCP)

Altough CCP was discovered in 1928 [1], the most attention has been accorded of ICP 

till four years ago because of its extremely good performances as spectral source Its 

disadvantages (raised consumption of plasma gas and rf power, difficulty of solid samples 

analysis, great price) have determined the reappraisement of CCP as spectral source After 

Bădărău et al [2], Cnstescu and Gturgea [3] and Mavrodmeanu and Hughes [4] who have 

tested the possibility to use as spectral source of CCP, Blades et al [5-7] and Sturgeon et al 

[8-10] have improved and developed them in various forms

Because the informations about radiofrequency generators are summary and

"  "BabeyBolyai" University, Faculty oj Physic-,, 3400 Cluj-Napota, Romania
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incomplete, we have developed a research direction for study and achieve of generators for 

maintaining of rf plasmas at atmospheric pressure The starting point of our woiks have been 

the informations of Boumans et al [12], the first lesults being related in the papers [13] and 

[14]

This paper presents the obtained results after the research work with a viev to achieve 

a rf generator capable of striking and maintaining a CCP at atmospheric pressuie The 

discharge gas is argon or a mixture of aigon and air The plasma can be sustained at rl 

powers ranging from 100 to 500W and an oscillating iiequonoy about 22MHz

Fig 1 - The diagram of the oscillator T-osciU.iting inode LaC0l, L,C„ Lg,CB, - rf filter cells RBCH - automatic 
negative group C„ - couphng condenser 1,B, - suppressing coil C,.C, - condensers of die oscillating circuit 1 - 
coil of die oscillating circuli C„, C ,̂ C8„ - parasitic capacities ot the oscillator tube P-sliarp elecliodc l-nnniilni 
countercletliode C-quarU tube D-rf plasma (CCP) S-syslcm foi aerosol introduction
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2. Execution of the rf generator. For obtaining a generator capable to maintain a rf 

CCP at atmospheric pressure in various gaseous media we have earned out a number of 

experimental assemblages using difleient diagrams of oscillators Finaly, a Colpitts oscillator 

type, the diagram of which is shown in Fig 1, has been chosen This type of oscillator very 

easy enter in oscillation, hasn’t the tendency to oscillate at high parasite frequencies, can be 

used until 150MHz and has a good transfer efficiency (50-60%) of the rf power towards the 

discharge

This generator has some charactenstics resulting from the puipose it has been 

accomplished for (using of the plasma as spectral source) The condensers of the oscillating 

circuit are variable and with air as dielectric, making possible to obtain a high radiofrequency 

voltage between the ends of the coil L and a good adjustment of the load impedance (the 

plasma) to that of the generator The plasma is striking by a Tesla coil on the sharp platinum 

tip of a ulindrical brass piece (8mm о d and 60mm in length) conected at the high rf 

potential end of the coil L It is placed into a quartz tube C (15mm l d , 18mm od  and 

100mm in length) sustained by the sample introduction system S, which is made of teflon 

(PTFE) and assures a laminar flow of the aerosol (the liquid sample pneumatic nebulized) 

through the tube The earner gas (Ar or Ar and air) which is ihe plasma support gas too, has 

a flow rate of 1,5 1/min At a distance of 45mm from platinum tip, the quartz tube is 

surrounded by an annular counterelectrode I conected at the ground clamp It represents the 

second electrode of the discharge but the plasma isn-t touching it It assures the symmetry of 

the electromagnetic field lines, therefore the symmetry of the dischaige Both the coil L and 

the piece P are water-cooled
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3. Calculation of the oscillator parameters. For the rf generator presented in Fig 1 

we shall determine the electrical parameters of which depends its good function, namely the 

oscillation frequency, the condition of starting the oscillations and the negative resistance 

effect introduced through the active element (the electronic tube)

In the absence of the plasma the equivalent diagram of the circuit shown m Fig 1 is 

presented in Fig 2, in which ц and R, are the amplification coefficient and the internal 

resistance of the triode, r is the loss 

resitance of the coil L and C3 is the capacity 

of the condenser formed by the sustaining 

electrode of the plasma and the annular 

counterelectrode For the actual values of 

circuit elements the impedances of the 

capacitors C„, Cal and Cg are very small and 

ioLn »  1/шС, (ш is the angular frequency 

of the oscillator) Also C13 a  C,

By means of Kirchhoff s theorems and employing complex values, we obtain

- ” -i + 1 -2

u (J » IR. +--Я “ '
I-1

j(üC í

(1)

(2)

-  J r +  jtúL +
\

JV>C. (3)

Solving the above system and taking into account that U » - / /ушС,, we obtain the

equation
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ti)C2 toL --L !ü  + (oC.R

-ju>C7

)02
C R

Л, +/■ -ш2С,ТЛ,
4

(4 )

0

From the condition that the real and the reactive parts of the equation (4) should be 

zero we obtain the equations

wL - l l ü  + laC.fír = 0 (5)

C R
R' + r + - L I  - m1ClLRl - 0

From the equation (6) we get the oscillation frequency 

l/ '
2я

C C
l —L ± -

3

1+ '  C>

(6)

(7)

If the coll L of the oscillaung circuit has a good quality, then r «  R, and 

rlRl-C1l((\ + C2) « 1 and the oscillation frequency can be calculated with the help of the 

following relationship

2 я
c  c  / Ч Ч

\ Cl + 2̂

(8)

that represents just the proper oscillation frequency of the oscillating circuit of the oscillator 

Fiom the relation (5) and expression of the oscillation frequency (8), we obtain the

condition of starting the oscillations

C, C. + C,
(9)

that, under conditions of small losses of the coil L, becomes

a * £  (10)

For calculation of the negative resistance effect introduced through the oscillating

43



S D ANGHEL

triode, this is represented as an equivalent current generator If the internal resistance of the 

tnode is very great and the loss resistance of the coil is very small, we obtain the equivalent 

diagrams from Fig 3a and b, in which S is the slope of the triode and £  has the formula

a) b)
Fig 3 - The equivalent diagram for calculation of the negative resistance effect

Replacing the expression of U ■=■ - I  lju>Q in equation (11) we obtain

- S
tu2 с,2

( 12)

The equation (12) can be written £ = R„[2, in which Rn represents the negative resistance 

effect introduced by the triode Expressing the inductance L from equation (8) and replacing 

it in the equation (12) we obtain

( 1 3 )
raJC,C2

One can observe that the size of the negative rezistance effect depends both of the 

parameters of the oscillating tnode and the values of the circuit elements

4. Influence of the plasma on the oscillator parameters. In case on the sustaining 

electrode is striking a rf CCP the equivalent diagram from Fig 2 becomes that_.fi om Fig 4a

44



A RF GENERATOR FOR CAPACIT1VELY COUPLED PLASMA

Fig 4 - The equivalent diagram of the oscillator and if plasma

In this diagram Rp Is the plasma resistance, Cp is the plasma capacity and C+ is the 

capacity between the plasma and the annular counterelectrode The presence of the condenser 

Cp in this equivalent diagram can be explained through the unhomogeneous distribution of the 

positive and negative electric charges inside the plasma Because of less mobility of the 

positive ions it will exist a positive charge excess in the neighbourhood of the sutaining tip 

of the plasma and a negative charge excess m the upper part of die plasma This represents 

a condenser whose capacity is Cp Applying the theorem of the dipole transfiguration upon 

the diagram from Fig 4a we obtain the equivalent diagram from Fig 4b, m which

and

К
C (14)

c = c, +
■ етс : (15)

Using the same calculation method as in the previous chapter we obtain the following 

formula for oscillation frequency

К * R .  C ,

C C ,  \ К  " ,  C  + C ’
2 n L  2

o c 2

(16)
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For the actual values of the circuit elements vve have C3 «  C, and C4 »  Cp (the 

plasma is very near of the counterelectrode), therefore one can approximate thatc я C, + Cp 

and RI « Rp Thus, the expression of oscillating frequency becomes

(17)/«
1

2я
, <С, + С,)С,

■s C. + Ç.+C,

C,
RpRt C1 + C2 + C

Also, because г «  Rj and the capacities C1; C2 and C3, and resistances R, and Rp have 

respectively the same order of magnitude, the expression of the oscillation frequency can be 

written

/ - ------  1 ...... -  ( 18)

2я (C^Cp)C7
's ct + c2 + cp

One can observe that in the absence of the plasma (Cp = 0) the expression of 

oscillation frequency is the same with that from expression (8), and the presence of the 

plasma must determine a diminution of the oscillation frequency

At this oscillation frequency vve obtain the following expression for the condition of

starting the oscillations

|i = 7 ^ 7 1 +.
‘‘

c, > c, * c
JL-rR, (19)

From this relationship one can observe that when we try to strike the plasma, if the 

amplification coefficient of the tnode is too small then the oscillations tend to put out and the 

plasma isn’t sinken

The presence of the plasma determines a nse of the active resistence of the oscillating 

circuit of the oscillator which will determine a rise of the total power absorbed by the rf 

generator from the source of continuous voltage

In previous treating of our subject the contnbution of the parasitic capacities of the
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m ode (10-50pF, 

interrupted lines in 

Fig 1) and of the 

grid capaci-ty.Qj, on 

electrical parameters 

of the oscillator 

have been neglected 

Taking them into 

a c c o u n t ,  t h e  

equivalent diagram of the oscillator becomes that from Fig,5

Applying the theorem of the dipol transfiguration and the star-trtangie transformation

of the circuit between A,В and C points we obtain 

the equivalent diagram shown tn Fig 6

Such, the oscillation frequency of the 

oscillator will be

(20)

Fig 6 - Tlic equivalent oscillating circuli 

m which

2n M ~"£'~+сле +t‘" +t„.+c„,I 2 p  a t  AC  PC

c. c ce “s
C +T  VC (21)

г  - C' C*
*  ттг~ттг

g  “ И ge
(2 2 )
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C C
C + C  + C

g  ag  gt

(2 3 )

S, Experimental results and conclusions. Using this generator we have succeded in 

snking and maintaining a rf CCP at atmospheric pressure in argon or a mixture of argon and 

air The results of the measurements and calculations are synthetic presented in Table 1

Table 1

Ea
M

f
[MHz]

fp
[MHz]

I!

I
-

4 > c p 
IpF]

1260 22 604 22 510 85 0 55
1416 22 606 22 497 135 0 65
1618 22 607 22 470 185 0 87
1888 22 609 22 436 1 ! 1 14

Here Ea represents the anode supply voltage of the oscillator, f and fp are respectively 

the oscillation fiequencies in the absence of the plasma and in its presence, Pp is the rf 

absorbed power into the plasma and Cp is the electrical capacity of the plasma

The oscillation fequency was measured with an E-204 type digital frequency countei 

via a coil inductively coupled with the coil L of the oscillating circuit The rf absorbed povvei 

into the plasma was calculated by making the difference between the power consumption of 

the generator in the presence of the plasma and the power consumption in its absence This 

method can be used accepting an eiroi of U 0%  The capacity of the plasma was calculated 

from the relationship (20) in which Cp is the single unknown, all the othei values being 

measurably or known (the parasitic capacities inclusively)

Analysing the data shown in Table 1 the few conclusions can be diawn Fust, one can 

observe that in the absence of the plasma the oscillation fiequency piactically isn’t uillueiKed 

by the anode supply voltage Secondly, the lineai dependence of the power into the plasma
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on the anode supply voltage 

(Fig 7) make possible to adjust 

it at desired magnitude The 

diminution of the oscillating 

frequency when the power into 

the plasma rises can be 

con dated with the increase of 

the plasma capacity, Cp, thanks 

to the increase of the ionization 

degree of the plasma

If the plasma is used ав 

spectral source its stability is very important It was appreciated through the relative standard 

deviation (RSD) calculated for argon emission line of 347 674mm (Fig 8) in accordance with 

the formula

R S D  “ f L  100 [%] (23)
X

in which a  is the experimental standard deviation
' 1 

I

Fig 7 - Plasma power dependence upon the anodic tension.

Î > , - ï ) 2
a - ± 2^---- ----  (24)

and X is the arithmetic average of the net intensities x, for a number of n determinations In 

our case n :9 and RSD = ± 1 62%, what corresponds with the international standards (RSD 

£ 5%) foi this kind of spectial sources
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This kind of discharge (rf CCP) can be used as spectral source in optical emission
»

spectroscopy [6-11] and absorbii on emission spectroscopy [5], and as detector for gas 

ch ro m a to g ra p h y

source for liquid and
Fig 8 - The Ume stability of the emission of tlie plasma

s o l i d  s a m p l e  

analysis
r5
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APPLICATION OF THE SIMULATION METHOD 
FOR A GYROmON AMPLIFIER
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Received 1 06.1992

ABSTRACT. - The interaction between a beam of electrons gyrating in a cylindrical or 
circular wave grade and the oscillating etectnc field is studied by the small signal theory for 
this annular electron beam and be applying a numerical simulator method The dispersion 
relation for the relativistic annular layer of electrons in an uniform magnetic field along the 
waveguide axis is dons and some preUminflr results of using a 1-dimensional electromagnetic 
relativistic program of simulation for (he gy rotron amplifier are presented, being compared with 
the previous ones

1, Introduction. In the cose of the gyrotron (an electron cyclotron maser) 

electromagnetic radiation is produced as the result of gyrating of the electrons about a 

magnetic field The magnetized beam of relativistic electrons propagates through a waveguide 

whose cut-off frequency is bellow than the electron-cyclotron frequency шм < шс The 

electron beam has a high transverse energy Coherent emission results from the orbital phase 

bunching due to the energy dependent relativistic electron-cyclotron frequency' an interaction 

between the oscillating electric field and the rotating electrons takes place and gives rise to 

a sinusoidal energy modulation due to the change in relativistic mass of electrons with energy 

This determines an azimuthal modulation which forms a rotating bunch of charges which 

emits radiation at the relativistic electron-cyclotron frequency ш0

The gyrotron device amplifies radiation based on the phenomenon of cyclotron 

resonance instability Since the free energy for this instability consists in the lotational motion

"lltiheţ tíolvai" University, Faculty o f Physics, 3400 Cluj-Napoca, Romania
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of electrons the conversion of the electron streaming energy to a rotational energy can be 

considered as the classical analog of molecular pumping to produce an energy level 

population inversion {a laser).

We will investigate in this paper one of die mechanisms which transfer the kinetic 

energy of dm relativistic beam to the Seid energy of m  electromagnetic wave (the output 

radiation) The transverse dependence of the electromagnetic Add is assumed to be similar 

(o that o f the f ic ífázxsfrá gaffiy у^о~-к^э mode. , ■

Several theories of a small signal gyration device have been done [l]-[5]. Usually a 

thin rotating device has been considered, аэ we consider hore In the case when the axial wave 

number and beam are lce~ 0 , v0a= 0 , tire TM0 and.TSa modes ars usualy decupled [5] But 

if  a finite axial wavelength is Introduced the theory ° f  gyrotron includes the generation of 

both TM and ТЕ modes [l]-[2] and the coupling of these modes by magnetized beam in a 

waveguide has been demonstrated [6].

We will give a simple theoretical description of the gyrotron phenomenon in the 

second part of the paper and the results of applied particle simulation method for the gyrotron 

will be done in the last part of this paper with a short discussion of the results 2

2. The Linear Theory for a Gyrotron Amplifier We recall here that the gyrotron 

amplifier is a device which generates an electromagnetic radiation through an interaction of 

a relativistic electron beam encircling an external magnetic field, usually in a cylindrical wave 

guide (of circular cross-section) The equations that describe the considered system and that 

must be integrated are the fluid equations and the Maxwell’s equations
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An annular layer of relativistic electrons is assumed, with a small but finite thickness 

e, that rotates in a cylindrical waveguide The beam is assumed to be monoenergetic having

the unperturbed velocity f0 n v  ê s + vqa- âQ, where vflB= p* адс is the relativistic azimuthal

Я
velocity and u> = — — is the relativistic cyclotron frequency, g being the relativistic

с та г ' ,Vo d v  diafactor of the beam {# « _ _  ) ,  ™  » Û and - г Л  c 0 , p  being the radial position The
c*  d p  «p

beam has an uniform density По in a layer thickness e at*a radius p  = r ground the axis

The fluid equations are the relativistic Lorentz fores equation and the continuity 

equation given by the following relations: .

-  - c ‘E  -  (1)
c

i J + V r t f -  0 (2)
d t

The Maxwell’s equations that we us© are the following

V * E  = - Ï - É Ë .  ( 3 )
c  d l

and

î JF
V * B ~ J + - (4)

c d i

where E , В are the perturbed electno and magnetic fields The equations (1)*(2) will be 

linearized by the perturbation method v => v0 + öv, n = я0 + bn and the perturbations will 

be of the form exp ( i kz' z  + i /0 -  t w t ) , for a monoenergetic beam v020 + v()2, = v02 

The used fonn for our case of the Maxwell’s equations is the following

—  = t c h  шВ  + ш -В  -  4 nJ ,  (5 )Ai к r cO z Ö N *
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flfr
dl

1скх'Еь

and
д В х

и г  ■

(6 )

(7)

where is the cu toff frequency of the waveguide

%  integrating the Maxwell's equations on the surfaces d A  -  d A - e z where 

dA = p-rförfp, within the limits p ^ r u n d p  + c as

j f f d r -  - J Z - f D / d A  (8)

some boundary conditions for the fields are obtained

After hneansing the eq (l)-(2) the rela tions for the perturbed velocities 6vp, ôve andöv; 

and for the current density J  are obtained after some elgsbncal calculations The current J  

is of the form
rve [ i f

А - - е п 1рР-е-йн-1Г0‘‘ - е  1 -  — -V 4  + -^ < vo A  + voe<Te ) -öv (9)
^  O )  J CO

The assumption of a small beam density is made in the first approximation and it was 

considered that the electromagnetic field given by the current Э can be given by the vacuum 

waveguide EM-field [1]

After some standard algebra that is based on the equations (l)-(6) the dispersion
d .

relation for the resonanoe case <o~ + a\, kt , v0 0 ^ 0, _L_ & 0 , is obtained under the form

J r ( k L- R ) - j ! ( k - R ) ■C,
nr

vŐpY0z

c
r00
c

I - I L
Г k l

(k±'R)[Jfilc^r}‘Yl(kL‘R ) - J ^ - R y Y ^ r ) }  + (1 0 )

+ k ^ J i - J ^ R y j ! { k ^ r y r !  ik^R) -  J i ß y R y Y i i ^ - r )  =  0

56



APPLICATION Oi; THE SIMULATION METHOD

where

„ 4 ne 2NCj » + — —  •
2k dvn

w,u

N. r0n

(w2-m 3)2

Î

(H)

c - Д - i
3 n + iäa'J,(b±' r ) y ^ . К v MVùi

д М с
) .

and

4 i t e 2N g  ' '

(щ З-езЬ3 ÔP
( 12)

>■ к: to
j ţ ( k ' r )

When the beam ia net present N = О and in the presence o f the beam n = 0; if ôm is. r X ' I

the shift of the resonant frequency «% some expansions of the factors J, and J '  are made and 

the expression for bar can be given For N = 0 the eq. (7) baa the simplified form 

J t(&x R j - J , ' ( k x R )  « Ö that is the dispersion relation for the ТЕ and TM modes The eq. 

(7) indicates that the beam couples the ТЕ and TM modes (that is a week-coupling for 

J t ,or j (  ) .

In the considered case of, a circular waveguide the reduced dispersion relation has the 

following form- - - . . .  ,

. o>>2- c 2-k 2- mVo (o>-A • ? -  ш ) = - Г - /V л ce ' (13)

where 6 is the thickness of-the waveguide wall, Í is the total current and the coupling constant 

Г is defined ás follows • -, -

’ - ■ Г = 3 3 • KT*- V3 [ j f  ( V, • t a j c  • шсв ) ] / v,- c (14)

1 With the aim to make a numerical analysis of ţhe gyrotron mechanism and to compare 

with the theory and experiment the particle simulation is used for the following model a
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magnetized relativistic electron beam," of low density, with a high transverse energy, that 

flows by a waveguide with й cutt-frequency мй smaller than the electron-cyclotronic 

frequency <шс0< + © „ ) ,  ,

A relativistte electromagnetic {'dimensional simulation code, with three components 

velocity is used, considering the gyrotrcn in the laboratory frame. An electron beam with the 

energy E a 70ke V, - i  » {.5 and the current i  ° Ы ,  coupled to a TE0, mode of the
■ V, . - ' '

waveguide of radius r0 •= 0.5 cm is taten into account for comparison with some previous

results The length of the gyrotrcn is taken as being o f Î0 cm and a wail-loss is considered
1 / > 4 1 / ■*

fbf theeut-off frequency thaf may be variad .

3. Results and eonelustens. By this simulation of a gyrptoon instability, diagnostics 

as spatial evolution of the' transverse momentum, the electron positions in the normalized 

momenta space, the time evolution of the system and the relation between the input power 

and the output power by the Poynting-fiux calculations can b© given.' J

An adapted l-dimensionai electromagnetic code with three velocities (In the cylindrical 

coordinates and the laboratory frame) is used to simulate the considered gyrotran amplifier 

process The simplest TE01 mode of the waveguide is considered and wall-losses could be or 

not to betaken into account for a cut-off frequency, that could be varied The simulation code 

is adapted in the sense that the transverse dependence of the’electromagnetic fields is assumed 

to be that of the fundamental empty wávegukle mode and the transverse position of the 

electrons is taken in the point where we have the maximum coupling of the electrons and 

fields The electrons are injected at the input of the interaction region (the waveguide) and

• SC O L D E A '
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are removed nt the exit An oscillating externa} charge in front of. the beam input gives a RF 

input field The electron beam is coupled to, the TE0, mode of the circular waveguide of 

radius R = 0 54cm The dispersion relation given by eq (}3) is taken into account. ,

' The frequency selective losses at the waveguide wall could be simulated by »'resistive 

term that is defined in Fourier space. From calculations o f the coupling factor Г the losses 

at the guide wall could be eliminated , . _. ,

‘ Wé have seep earlier that the linear dtepeislon relation o f the simulated gyrotron 

instability reduces at the approximation giyen by eq (13). As one increase the wail-loss the 

gain maxima above the cut-off frequency can.be eliminated.

The results are illustrated ' 1

by the diagnostics of, the', 

simulation; given by some 

selected graphics The spatial 

evolution (along the beam) of 

the transverse ' momentum t s , 

given* in Fig 1 (the particle 

positions m the.-1 normalized 

transverse momenta space) The, 

d iagnostic  presents the 

illu s tra tio n  o f e lec tron  

bounchmg m the gyiotron by

2.0
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0 -

- 1 : 0

- 2  o:
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Fig I

the discussed saturation mechanism of this device, that is the phase trapping of electrons m
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the unstable mode potential

The Fig. 2 gives the time 

evolution of the input and 

output powers (by calculating 

the Poynting flux time 

evolution) It can be seen that 

the simulated power is lower

зло-
/ N O  LO S S

T d B /c m  LO S S Fig. 2

,2 d 8 /c fli LO S S
. (ban in the case of the theoretical linear gam

in Fig. 3 the gam as function of ftequency is given, 

for a linear evolution and also for the nonlinear case, for the 

nonlinear, evolution a maximum linear gain of 12 dB was 

obtained atid a corresponding maximum efficiency of — 10% 

39 To calculate the growth rate of the gyrotron instability
F R E Q U E N C Y  (G H z)

'Fig 3 the linear and nonlinear bandwidth can be simulated with the

aim to be compared In Fig 4 the gam to the wavelength ratio is given as function of the 

frequency and the bandwidth can be observed If the bandwidth id 3 dB at an input power of 

80 W the linear growth was calculated to be 4,5%, compared with the nonlinear value that 

is 7% at an input power of 500 W
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We can observe that the 

simulated gain and efficiency 

are slightly higher than the

experimental results [8] but they 

are in agreement with the

classical simulation results [9]-

UÖ}

fîy taking a more

sophisticated approximation (or

model) of the gytotron Fig 4

instability and also a more

stretched simulation code some other oharactemncs of the gyrotron devices could be further 

obtained and some new phenomena of this gyrotron interaction could be evidenced
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STUDIA UNIV BABEŞ-BOLYAI, PHYSICA, XXXVIII, I, 1993

THE BRST-BV SYMMETRY ÎN CLASSICAL MECHANICS

». Ш-ОВКЛМГ ead L. TĂTARII’

25 Об 1992

A B S T R A C T .  -  In this note w  devebp a petfe-ietfifwl toraadetioti o f  shwrisal гояЛаяПа 
using B V A 'c a to n  o fth s BR8T*«ymsnctiy. Ш з  is ectosvedby sianwg witíi о specie! qeaatui» 
vereion o f  BV^ection and by Asking Й »  ekasteel beat b - *  0.

1. Since its formulation, the path Integra! formulation o f quantum mechanics has 

turned out of fe© on© o f the most powefUt mole ibr the study of quantum mechanics. The 

quantization of many systems aa YM theory, topological quantum field theory or superstnng 

theory can hardly be Formulated and understood in all canonical formulations of QbT except 

the path integral However just a few attempts |1, 2] have been made to give an analogous 

path-integral formulation of classical mechanics In these formulations it was suggested to use 

a Dirac Ô function 0(ф - фс,) for the measure which gives weight "one" to the classical paths 

фс1 and weight "zero" to all the other paths In this way the measure can be rewritten in the 

standard form as the exponent of an action S, which involves a set of anhcommuting ghosts 

and which posseses a BRST-symmetry

Nevertheless, it would be interesting to see if the classical mechanics can be obtained 

as the limit h -* 0 of the quantum mechanics path integral formulation. In this note we Shall 

try to formulate the path integral quantum field theory in euch fl way ihat theclosacal limit/? -*• 0 

could be easily achieved

"Bubeş-Bnlvai" Umveisily, b'cuully o f Physics, UOO Chij-,\'a/:oca, Romania
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2. tvet S0 » £а(ф ) be the initial action for an arbitrary classical system, which is 

supposed to be without any gauge symmetry Furthermore, we do not specify the formalism 

(Hamiltonian or Tagrangian) since we intend to bo as general as possible The fields ф = ф' 

can be o f any nature but for safce of simplicity we consider a system only with bosons (even 

variables).

While the quantum generating ftmcfional has the form

■ e exp I ţ50{<|> ) - -/*ф ] 0)

and gives weight exp а д > to each path, the classical one could be built as giving

weight "one" to the classical paths and weight "zero" to ah the others. It Is given by

tZCU{ J \  я Лг|£>ф0(ф -  фе,)  exp 1  í+ J -ф 1

where фс, ia a solution of the classical equation of motion

b S / b t f  « 0

(2)

( 3 )

and N is a normalisation constant

Since фс, is a solution of the equation of motion (3), it is possible to rewrite Zc, as

Z c j *  ^|Х)ф0(05/0фО-г)с1(&25/0фу0ф*}-ехр|^/-ф  

The delta function In (4) can be represented as

Ш- bS
4ф^

( 4 )

( 5 )b(bSIb$pJ) = J /Злехр 

and the determinant could be convenientely reexpresed as a functional integral over two 

Grassmann variables c J(x)  and c }(x)

0е1(025'0/0ф,0ф^) = JDcTJc exp { P  • S0Jt‘ e * ] , (6)

with S0Jk = 0250 /0ф у0ф*. Inserting (5) and (6) m (4), we can obtain the classical 

generating functional in a form identical to the quantum generating ftmctional (1) i e
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ZCif - j D $ D h D c D c e \ p [ i ( S  + J - $ ) }  (7)

s where the action 3  is given by
л  s

3 = У - __ ° -  l c J'S0 , - c k (8)
0 ф ' °'ji

From its construction it 18 dear that tho path mtegrai with weight 3  is completely 

equivalent to the classical mechanics and there arc no quantum fluctuations driving tho 

classical system away from its own classical paths A temarkablc point of the action (8) is 

the existence o f an unexpected BRST symmetry jd, 2] This fact cannot bo a mere formal 

coincidence but it indicates that something pmfmmd ts behmde There should be a kind of 

"covariance" between tho classical and the quatum regme t e we could rotate SQ(ф) into

In this note we shall try to obtain the action (8) by using the standard antibracket- 

antifleld method of quantization developed by Batalin and Vilkovtsky [3], called BV-metbod 

of quantization (see also [6, 7}) in order to implement the BV method for a system without 

any gauge symmetry, we shall use a trick due to Alfaro and Damgard (4, 5] and we shall 

duplicate all fields <\>J and introduce the "colective fields <F" The initial action is taken to 

be

■S’« ,“  5 ( Ф У + q O  ( 9 )

and this new action is invariant under the gauge transformation

tJ óqy = - e J, (10)

where cJ are a set of infinitesimal arbitrarily functions

If we want to quantize the theory by using BV-method, we must introduce 

- a set of antifields фу* and q>’ .
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- a set of ghosts c J corresponding to t \

- a set of conjugate ghosts c 1 and a set of Lcc-Cv-CP multipliers B J which form 

together the non-minimal sector of the theory and

- a set of antifields corresponding to all ghosts and Lq̂ tcscp —.jcltipliers (с /, с), B '  ) 

The quantum action for our theory S must satisfy the master equation introduced by Batalin 

and Vilkovisky p j.

( S , S ) - 0  (11)

where (.„) Is the anti-bracket for our theory (3, 6, 7j.

Due to the lack of any local symmetry for o«r system the solution of the master 

equation has a very simple form

S  « 50(ф + <p) + (фу -  Фу ) 'C J + S} ’B J (12)

The action S is the generator, through the anti-brackets, of the BUST symmetry

The final task in BV construction is the gauge fixing process In our case this process 

should be a little bit nonstandard. We shall regard in the sequel cp* as a field and <py as a 

field That can be-obtained via a canonical transformation [7] The next step is to apply the 

standard procedure to fix the gauge {3, 6, 7] The gauge fixed action is given by 

Sv  c  =  ô i p / â t j / , с *  *  ô q > / b c J,

c j  = fwp/öcy, B j  = btyJbBJ, tp' a 0ф /0ф ’ ) (13)

For a system without any symmetry we could choose the fermion function ф = 0 and the 

gauge fixed action coincide with the initial classical action S. However if we v/ant to obtain 

the classical limit h - *  0 we could choose

ф = h c t - S ^ i  ф) (14)
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In this way the generating functional ZQL can be written as

Zqh и Zcu - |{1> 9}в*р^л0{ф) (15)

In the classical limit the last integral becomes 0 normalisation constant and the quantum 

generating functional coincide with the classical еде
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THERMODYNAMIC THEORY OF CROSS-POLARIZATION 
IN A NMR-MOIST EXPERIMENT

I. ARlHCUiAN“

Hovdved: 1 03,1993

ABSTRACT, - A modified spin thermodynamic theory of an experiment which provide an 
efficient cross-polaniation even for mismatch Hattnum-Halm condition Is developped for.S7w 
spiii'systems S spin polarization for a given mismatch is obtained.

I. Introduction. The introduction of the cross-polarization technique made is possible 

to ovei coroe the low sensitivity of dilute spins, and provided a means of observing the NMR 

signals of those nuclei in solids [1] A simple experimental scheme for cioss-polarization 

between spin species 1 and S involving simultaneous spin locking (SL) of two species has 

been firstly proposed by Hartmann and Hahn [2] The maximum of cross-polarization transfer 

is obtained for Hartmann-Hahn match condition

A new cross-polarization expenment has been suggested by Levitt et al. [3] which 

provides an efficient cross-polanzation even for mismatched Hartmann-Hahn condition They 

used a double irradiation scheme for "mismatch optimized ÎS transfer” (MOISI") experiment, 

'Hus lesembles to a normal Hartmann-Hahn cross-polanzation excepting the synchionous (л) 

phase reversal of the two spin locking r.f fields (Fig ].)

The plaises of the two r £ irradiation Fields are reversed every 1 ms so that a quasi- 

equilibrium is attained after each phase shift As a result of the each CP-process is obtained 

a Sarger S spin polarizaţi on.

"  Teifnucn} Vah-ursPtv, Physics Department, 3-400 Chj-H&spota. Па/т/ша
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In order to design an 

efficient cross-polarization 

transfer the understanding of the 

spin thermodynamic and 

obtaining a CP-spectrum is 

essential In the following a

modified spin thermodynamic Fig l Pulse sequence for CP-MOIST experiment X and X represent
the phases of the r f  spin locking fields

theory is developed whose main

features are the important role of the dipolar eneigy for the quasi-equilibfium state and the 

existance of constants of motion others that total energy |4] 2

2. The Hamiltonian We will describe in the following a SIN spin-system, where N 

abundant I spins (strongly coupled among themselves) are coupled to a single S spin The 

coupling to further S spins is neglected The sample is placed in a large static magnetic field 

which is assumed to be along the Z axis We discuss only the situation in which we may 

neglect the relative motions of the spins, and all the spin - lattice relaxation times of both spin 

species are taken to be infinitely long

For the spin system described above in "doubly rotating" interaction ftame after "rn" 

phase alternating of the r f  field and to resonance ( Дш/ => Aiuj = 0 ) the Hamiltonian becomes

[3]

H ° Hs + HIS+ Hu (1)

Here the Hamiltonian Ht + #  describes the Zeeman interaction of the spins-system and it is
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given by

Л / + Яв = “ ; /Е 4 х ( - 1 ) " + “ . А Н ) "  (2)
к

where a>lt = y,Bv  and ш1г = угВи with BU,B U - r f  magnetic field amplitudes and y; ,y, - 

the gyromagnetic ratios The Hamiltonian HIS represents heteronuclear-dipolar interaction 

Hamiltonian between 1 and S spins,

Я и в £ М 2/* Л ) (3)

and H.. is homonuclear-dipolar interaction Hamiltonian

H„
Jk

V* (4)
where ,

and

MoYiYí * 2 1 ( 3 cos2 8* -  1 )

M ? A a 1
7*

4ягД 2
_  ( 3 cos2 0A -  1 )

are heteronuclear and homonuclear coupling constants, with rk, rjk - the intemuclear distance, 0A 0 1 

- the angles between intemuclear vectors and the static magnetic field All constants are in 

angular frequencies units

For a strong iradiation on both channels (mu £/t , шь bk ) it is convenient to write the 

Hamiltomal (1) m a tilted frame rotated about the "Y" axis defined by

A ' =» exp

giving

where

H r-  * “ ,A <-i>" * Е М Ч . А )  * <

£ к

(5)

(6)

(7)
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)

the secular part of the homonuclear-dipolar interaction Hamiltonian, because the nonsecular 

part has been neglected for strong I spins r f  field (u>u

3. The spin thermodynamic theory We assume in the following that the initial spin 

density operator a  is prepared by an initial (it/2), pulse on die I spins, applied to a system in 

thermal equilibrium at the high lattice temperature T, in the static field Bó The initial spin-

density operator m rotating frame becomes

o (0 ) 1 -
k t , Y  ^

/7>{1) (8)

Defining

a ° ' °  k T LT r { \ )

and neglecting the unity operator therm, the initial density operator in the titled rotating frame

is ’ .

«40) “ « „ E a, (9)
к

In accordance with modified thermodynamic theory proposed by Levitt et al [4] after 

a sufficiently long time (about 1 ms) the system evolves to a state of quasi-equilibrium in 

which the observables such as magnetization and dipolar order do not change anymore 

Analyzing the nature of quasi-equilibuum state we obtained that, after "m"-phase alternating 

r f  field (л-shifts), the quasi-equilibnum density operator can be represented as the projection 

of tire vector cftO) onto a two-dimensional plane defined by two orthogonal quasi-invariants [ Q{n), ( Y ’ j  

'They are

and

0 \ m) = E U - i y SJL-O' (10a)
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Qi"“ ’ 4i N S < i - \ r -  Y , L ( ~ ' T + hi;
(10b)

where

and

9i
N tou + i»is 

N+  1

Деи A
Ъ  “ д П Т  ’ Лш ” Ш|А' '  ш,/

are the normalization factors Then the quasi-equiiibnum density operator becomes

о*"’ -  «о/ Ёл,(т>в,( m )

where the coefficients a*"*l> are given by recursion relation

(0Г 1 0Г 0 )
( Q^mfl)I J

with (A I B) = Tr{A B} Substituting (10) and (11) in (13) we obtain

(ra.i)= (*>

- a 2(M)cos (20^)

heie fg(0x) “ А/Дш ( A + 1 )/7V witli cross-pol an zah on width A given by

n .  i H» Iя " )  1I n  M l 
4{ L \ Q

wliere щ  is the second moment of the I spin resonance Íme [4J

For rn '-= 0 the coefficients a l \  q = 1 ,2  are

. <°>. N
% / +(BiS
-----соз2(0я)
Дш

Using Eq (14) in Eq (13) we obtain

a,(m>_
( - i r

N

t(ni) _
iVü)„+ o>14

( - l ) m ( - -----|cos2(O>)-cos"(20x)
Дш J

(H)

(12)

(13a)

(13b)

(14a)

(14b)

(15a)

(15b)

Taking into account these coefficients in Eqs (11) for density operator, after "m"
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phase alternating r f  field the density operator becomes

cfm) = a 0/ -jţ - j  [l “ cos2 (Bx) cos” ( 20x )] +

j + co$J (QK) cos"' (20>') p  j  + (16)
к

+ (-1 )™_2Í. cos2 (в*-) cos“ (2 0К)Я;7
Aw

The expected value for S spin polarization (CP-spectrum) after CP-MOIST experiment for SIN 

spin-systems is given by

From Eq (17) we observe that, foi a given mismatch (Аш #  0) we obiam the 

increase of polarization amount with number of phase shifts "m". Also for m = 0 in Eq (17) 

we find the result (22) from Ref [5]

4. Conclusions The modified spin thermodynamic theory whose main features are the 

important role of dipolar energy for the quasi-equilibrium state and the existence of the 

motion others than the total energy has been applied to a CP-MOIST experiment for a SIN 

system The S spin polarization has been derived for "m" phase shifts and a given mismatch 

Aw A qualitative agreement with experimental lesults [4] has been obtained.

1 A. Pines, M N Gibby, and J S Waugh, J Chem Phys , 59, 569 (1973)
2 SR Hartmann and EL Hahn, Phys Rev 128, 2024 (1962)
3 MH Levitt, D Suter and RR Ernst J Chem. Phys , 84, 4243 (1986)
4 A Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford 1961)
5 BH Meier, Chem Phys Lett, 188, 201 (1992)

(Sc)im) =■ Tr(cPS2) и - i2(0k)cos'n(20k)] (17)
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THE RECONSTRUCTION OF THE STATE SPACE 
FROM CHAOTIC TIME SERIES

Steliana COBRKANU'

RecetwJ I 03 1993

ABSTRACT. - There are various observational evidences that m variable stars the temporal 
behavior is often an irregular one A new Insight on tlus domain can be obtained with the 
methods of nonlinear dynamics The purpose of the paper is to describe the method of the 
reconstruction of the state space from time series and then to apply this method to the variable 
star Wolf-Rayet 16

1. Introduction. Chaos is the irregular behavior of simple deterministic equations, and 

irregular fluctuations are present in both natuial and man-made systems Chaos is a new 

paradigm for the understanding of complex dynamics and irregular structures, in an enormous 

range of quite different systems [1] [2] For a physicist confionted with a dynamical system 

that exhibits aperiodic fluctuations, this is an appealing notion, because it implies that these 

fluctuations might be explained in terms of only a few equations of motion If it is possible 

to model these complicated variations with simple deterministic equations, then it becomes 

possible to predict future variations, at least in the short term

The mathematical properties of nonlinear equations have been studied since the time 

of Poincaie [3], but the physical implications of chaos have been not widely appreciated until 

the numerical work of Lorenz [4],.which provided researchers with a simple and specific 

example of chaos

Until recently, the notion of determinism and randomness were seen as opposites and

"Babei-lSolyai" University, Faculty o f  Physics, 3400 Cluj-Napout, Romania
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were studied as separate subjects with little or no overlap Complicated phenomena so only 

simple phenomena were assumed to result from complicated physics among many degrees of 

freedom, and thus they were analyzed as random processes Simple dynamical systems were 

assumed to produce simple phenomena were modeled deterministically

Chaos provides a link between deterministic systems and random processes In a 

deterministic system, chaotic dynamics can amplify small differences, which m the long run 

produces unpredictable behavior But, on the other hand, chaos implies that not all random­

looking behavior is the product of complicated physics. Undei the influence of nonlinearity, 

only few degrees of freedom are necessary to generate chaotic motion [5] In this case, it is 

possible to model the behavior deterministically, and to make short term predictions, that are 

far better than those that would be obtained fiom a linear stochastic model So, chaos implies 

that even approximate long-term predictions may be impossible, but that very accurate short­

term predictions may be possible

In this paper we consider the situations in which on tiy to find a model directly from 

the experimental data We are interested in time senes which arise from observations o f a 

supposed deterministic dynamical system Of course, the dynamics are never stnctly 

deterministic due to dynamical noise which perturbs the states of the system or due to 

observational noise We will consider those situations where the dynamical and observational 

noise are resonably small and where much of the apparent randomness is caused by low 

dimensional chaotic behavior

An important notion in nonlinear dynamics is the dimension of the dynamics, which 

indicates the number of irreducible degrees of freedom We have considered that complex 

aperiodic behavior can result from deterministic physical systems with only a few degrees of
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freedom But it is also the case that a dissipative dynamical system which has many degrees 

of freedom (such a fluid), may settle down, after an initial transient, to motion in which only 

a few degrees of freedom are active. The dimension counts the number of degrees of freedom 

necessary to describe this motion, and thus quantifies the difficuly with which the system’s 

behavior can be modeled.

Usually one observes a time series with fewer variables than are needed to fully 

describe the dynamical system indeed, the time senes in many cases consists only of a 

sequence of scalar values Building a dynamical model directly from the data involves two 

steps the state space reconstruction and the nonlinear function approximation In this paper

we will consider only the first step of the problem, with an interesting application to the
/

variable stars

2. State space reconstruction. A state s(t) is a parameters set, typically a real vector, 

which fully describes the system at a fixed instant m time t If it is known with complete 

accuracy and if the system is strictly deterministic, then the state contains sufficient 

infoi marion to determine the future of the system The goal of state space reconstruction is 

to use the immédiat past behavior of the tune senes to reconstruct the current state of the 

system (at least to a level of accuracy permitted by noise) The dynamics is a function f  which 

maps die current state s(t) to a future state s(t + T) In the case of chaotic behavior the 

functional form of f  must be nonlinear

There are many situations in which a time senes (x(t,)}, t = 1,2, ,N is belived to be 

at least approximately described by a smooth dynamical system f  on a d-dimcnsional manifold 

M (for simplicity it is often assumed that M = Rd ) We can reprezent the dynamical system
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by the шар Г whiçh relates the initial state s(o) to n state a(t):

The time variable t can be either continuous or discrete, and f  is some times called the time - 

t map of dynamical system,

In the absence of noise, the time series is related to the dynamical system by

*(/)= h H O I (2)

where h is called the measurement function

In the presence of noise, the time series can bo generated by a dynamical system 

* ( 0 "У'Ь(о)1+Г1(0 

*(/) » ЛИО] *4(1)

where Ş denotes the observational noise, q denotes the dynamical noise, and because the only 

observable is {x(,)} then s, P, r), h, and § must be obtained from the time series.

For simplicity we will consider the case in the absence of noise (1), (2), The time 

series x(t) is D-dimensiomil, so that h,M R1* where D < d The measurement function h is 

often a scalar one and it is implicitly assumed D ж 1.

The state space reconstruction problem is that of reel eating states when the only 

information available is contained in time series, and this problem is necessarily the first step 

that must be taken to analyze a time series in terms of dynamical system’s theory

Typically f and h are both unknown, so that we can not hope to reconstruct states, in 

their original form, but we may be able to construct a space that is in some sen ce equivalent 

to the original This state space can be used for qualitative analysis, such as phase portraits, 

oi for quantitative statistical characterizations

The state space reconstruction was introduced into dynamfeal systems thcoiy

0 )

78



THE RECONSTRUCTION OF THE STATE SPACE

independently by Packard et al [6] and Takens [7] by the demonstration that it is possible 

to preserve geometrical invariants, such as the eigenvalues of a fixed point, the fractal 

dimension of an attractor, or the Lyapunov exponents of a trajectory, and can m principle be 

esumated from the time series

The basic idea behind state space reconstruction is that the past and fliture of time 

senes contain information about unobserved state vanables that can be used to define a state 

at the present time The past and fliture information contained in the time senes can be 

descnbed by the delay vector defined by

X{t) - IxU+Tllly), ,x(t), ,х ( / - ттр)Т (3)

where-for convenience the sampling time x is assumed uniform Here "+" denotes the 

transpose and by convention all states are taken to be column vectors

The dimension of the delay vector is m = 1 + mp + mt, where mp is the number of 

samples taken from the past and mf the number from the futitie If mf = 0 then the 

reconstruction is predictive (otherwise is mixed) In this case

£(/) = (*(/), ,х(г-(/м-1)т)Г (4)

and m is called the embedding dimension.

Takens studied the global properties of the map that takes the original states(t) to the 

delay x(r), and proved that m absence of noise, if m a 2d + 1, then this map genencally 

forms an embedding. An embedding is a smooth one-to-one coordinate transformation with 

a smooth inverse So that the reconstructed state space is diffeomorphic to the original state 

space

Delay vectors are currently the most widely used choice for state space reconstruction, 

but in order to use then it is necessary to choose the delay parameter x Although Takens
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theorem indicates that this choice is not important, in practice, because of noise, is very 

important to choose a good value for т Now there are many theoretical approaches to choose 

an optimal т and m [8], [9]

Another method of state space reconstruction is the principal components technique 

This is a standard procedure in signal processing, and was first applied to chaotic dynamical 

systems by Broomhead and King [10]. The procedure is to compute a covenant matrix

C0 =  < x ( i - i x ) x ( , t ~ j T ) >  ' > (5)

where |i - jj < m, and < >, denotes a time average, and then compute its eigenvalues The 

eigenvectors of C„ define a new coordinate system, which is a rotation of the original delay 

coordinate system The eigenvalues are the average loot mean-square projection of the m- 

dimensional delay coordinate time series onto the eigenvectors. Ordering them according to 

size, the first eigenvector has the maximum possible projection, the second has the largest 

possible projection foi any fixed vector orthogonal to the first, and so on

Filtering is another procedure that is often used in state space reconstruction and can 

be used in combination with any reconstruction technique [11] Results of Badii et al [12] 

shaw that some type of filtering can increase the dimension of a time series, but recently 

Mitschke [13] has shown numerically that this effect can be corrected if acausaj filters are 

used
U

It is clear that the method of reconstruction can make a difference in the quality of 

resulting coordinates, but at this moment it is no clear which method is the best [14]

3.Dimcnsion estimation The developement of algontkms for estimating the 

dimension of an attractor directly from a time senes has been an active field of research over
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the last decade The objective of these algorithms is to estimate the fractal dimension of a 

hypothesized chaotic attractor in a reconstructed state space If the time series is deterministic 

and of finite dimension, the estimated dimension of the reconstructed attractor should 

converge to the chaotic attractor, as the embedding dimension is increased. If the time senes 

is random, the estimated dimension should be equal to the embedding one

Historically, the first numerical algorithms was based on a "box-counting" principle 

[15], but this was found impractical m many situations [16] The most used way to compute 

dimension is the method developed by Grassberger and Procaccia [17] The method defines 

a correlation integral C(m,N,l), which is an average of the pomtwise mass functions 

li (a ,m ,N, \)  at each point x m the reconstructed state space Here m is the dimension of the 

embedding space, N is the number of points, l) is the fraction of points whithm

a distance 1 of the point x The asymptotic scaling of C(m,N,l) ~ ld for small 1 defines the 

cot relation dimension d

There are also the atlier approaches for estimating dimension [18] and even recently 

was proposed an electronic instrument for measuring the pomtwise correlation dimension from 

time senes, called "dimensiometer" [19]

4. Applications A vanety of time senes have been analyzed with nonlinear methods, 

exposed bnefly by us, in a wide class of domains such as fluid flows [20], sunspots [22], 

mechanical vibrations [21], ice ages [23], measles epidemics [24], elecirodydynamical 

convection [25], white dwarf star [26], magnetoencephalograrns from human brain [27], etc 

We also have investigated the time senes from the vanable stai Wolf-Rayet 16 (WR16) with 

the same methods [28] The complexity of the Founer spectrum (Fig 1) obtained in this case
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could indicate a nonlinear dynamics
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The basic consideration is that the stais with irregular light curves and variables 

fiequencies might be associated with nonlinear dissipative systems. A vanable star, as a 

dissipative oscillatoi, can have a rich dynamics exhibiting quaslperiodic or even chaotic 

behaviors It is known that a dissipative system do not remember their initial conditions It 

has a gieat sensitivity to the initial conditions and an intrinsic unpredictability in the long 

term By using a statistical description of the states of the system, the trajectories in the phase 

space (the state space), as the time evolves, will converge and remain in a given legion of this
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space This invariant subset of the phase space is the attractor of the system Its dimension 

is a very useful tool to obtain informations on the dynamics of the system For instance, if 

the dimension d is d = 1, the system exhibits self-sustained periodic oscillations, if d ri 2 the 

oscillations of the system are quasiperiodic with two incommensurate frequencies, and if d 

is non-integer the system exhibits a chaotic oscillation It is also very important to know the 

minimal dimension of the state within which the attractor is embedded, because this defines 

the minimum number of variables that must be considered in the descnption of the system’s 

dynamics

In the case of variable star that we have investigated the dynamical system is known 

only through a single observable x(t), its magnitude, and the senes is actually the light cuive 

[29], indicated in Fig 2

Foi the phase space reconstruction we have used the time delay method (the 

embedding theorem [30]) a m dimensional portrait of the system, topologically equivalent 

to the one constructed from the physical variables ts given by the set

A = { X X => [ x,(t), x2(t-H), x3(t+2x), , x„,(t+(m-l)x)]} 

where x  is the delay time

This allowed us to draw the projection of the phase portrait of the system to a low- 

dimensional subspace of the full phase space hi Fig 3 a two dimensional projection of the 

reconstructed phase space is plotted The dimension of the attractor - the fractal dimension 

d - was calculated by using the integral correlation function [17] This correlation function 

C(l), defined by

£
Г(,) ■ ““ тэт I j - I  0(|г' ^ И )

• ( ‘*J )
where H is the Heaviside step function, has the property

(6)
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C(l) ~ ld (7)

and for small values of 1, d can be considered as a fractal dimension We have calculated the 

correlation function (6) foi diffeient values of m To visualise the fractal dimension it is 

convenient accoiding to (7) to plot In C(l) as a function of ln 1 The general slope of the 

curves indicates the values of d. In Fig 4 the correlation function is shown foi different values 

of m

5. The limitations of the method and conclusions. The discontinities in the data sets 

due to day-night alternance and to the variable seeing conditions do not allow one to treat 

these data sets like those obtained in a laboratory experiment when no real limitation on the
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Fig 3 Two dimensional projection of the reconstructed phase-space

lenght of set of data exists From this point of view a very precise description of the attractoi 

of the stellar oscillations is not possible So the method used by us does not atm to obtain a 

precise value of the fractal dimension on such sets observational data, but to evaluate the 

number of independent parameters responsable for dynamics of the system From Fig 4, as 

m increases, the correlation function varies, but for m г 4 the slope can be considered as 

constant in a given range of 1 This indicates that the numbei of differential equations 

necessary to describe the light variations for WR 16 must be at least four

85



S CODREANU

R E F E R E N C E S

1 Evolution of Order and Chaos m Physics, Chemistry and Biology- ed by H Haken, Spnnger Series in 
Synergetics, Vol 17, Spnnger 1982

2 H G Schuster - Deterministic Chaos, Physik Verlag, Weinheim, 1984
3 H Poincaré - Science et Methode, Bibi Scientifique, 1908
4 E N Lorenz-Journal of Atmosphenc Science, 20, 130, 1963
5 G L Baker, J P Gollub-Chaotic dynanucs-an introduction, Cambridge Univ. Press , 1992
6 N H Packard, 1P Cmtchfield, J D Farmer, R S Shaw-Phys Rev Lett, 45, 712, 1980
7 F Takens-Dynanucal Systems and Turbulence, Berlin, Springer-Verlag, 1981
8 W Liebert, H G Schuster - Phys Lett A, 142, 107, 1988
9 A Cenvs, K Pyragas, - Phy9 Lett A, 129, 227, 1988

10 DS Broomhead, G P King- Physica D, 20, 217, 1987

86



ГНЕ RECONSTRUCTION OF THE STATE SPACE

11 A Cheimaoui, K PaweUlk, W Licbeit, H G Schuster, G Pfister - Phys Rev A, 41, 4151, 1990
12 R Buda. G Boggi, B Denghettl, M Ravagni, S Cihbcrto, A Polm, M A Rufaio - Phys Rev Lett, 60,979, 

1988
И F Masche - Phys Rev A. 41, 1169, 1990
14 M Casdagh, D Des Jardins, S Eubank, J D Farmer, J Glbson, N Hunter, J Theiler Preprint LA-UR-91- 

1637, 1991
15 D.A Russell, J D Hanson E Ott-Phys Rev Lett, 45, 1175, 1980
16 HS Greenside, A Wolf, J Swift, T Pignataro - Phys Rev A, 25, 3453, 1982
17, P Grassberger f Procaccia - Phys Rev Lett 50, 346, 1983, Phystca D, 9, 189, 1983
18 Dimensions and Entropies m Chaotic System - Proc of International Workshop New Mexico, sept ,11- 

16 1985, Editor G Mayer-Kress, springer Verlag Berlin, 1986
19 A.Namajunas A Taraasevichis-Physlca D, 58, 482, 1992
20 JO Farmer, J J Sidorowlch - Phys Rev. Lett, 59, 845, 1987
21 F Moon-Perspectives in Nonlinear Dynamics, Editors-M F Sldesmger, R Cawley, AW  Saenz, 

W Zachary, World Scientific, 1986
22 JKurthas, A A Ruzmaikin-Solar Phys, 126, 407, 1990
23 G Nicolis-Report on Progress in Physics, 49, 873, 1986
24 G Kuglimra, R.May-Nature, 344, 734, 1990
25 J G Capulo-Advanees in Nonlinear Dynamics, World Scientific, 1985
26 M Auvergne, A Baglin-Astron Aslrophys , 168, i 18, 1986
27 HR Blank et aL - Dimension and entropy analysis of MEG time senes from human a  - rhythm - 

Zeildmft ftir Physik В, (to appear)
28 S Codreanu, Z Toroczkai, A Péntek, Al.V Pop - The 18th IUPAN Internat Conf on Statistical Physics, 

' Berlin 2-8 Aug 1992. 401, 1992
29 b Gosset, 3 M.Vreux, J ManfroKl, M Remy, C.Sterken - ESO Sei Preprint Nr 703, 1990
30 FTakens - Phys Rev Lett, 51, 14, 1265, 1980

/

87





STUDIA UNIV BABBŞ-BOLYAI, PHYSICA XXXVIII 1. 19'Л

THE BEHAVIOUR OF THE NUCLEON SPIN 
IN A PERIODIC PHASE OF THE NUCLEAR MATTER
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ABSTRACT. - A phase transition of nuclear matter into a periodic phase lias been found 
Studying the third component of nucleon spin in this phase, wc liave found llial Hie e\p(-i/ifa) 
type modulations of the plane wave states are not present in the expectation value of this 
component

Recently a periodic structure in nuclear matter has been found [ 1 ] in the framework 

of quantumhadrodynamics using mean-field approximation In this letter we summarise the 

mam features of this periodic phase and calculate the third component of nucleon spin 

expectation values

In the last few years the possibility of a penodic structure m nuclear matter was 

investigated extensively [2,3,4] In these works the periodic behaviour of the matter density 

is studied In a recent woik [1] a periodic structuie in the current density at constant mattéi 

density has been found

In the framework of the quantumhadrodynamics the nucleons (ip), the scalar mesons 

(a), and the vector mesons (ш11) are described by the following field equations

[YM 0 &  -  gu %  (*)) + 8„ a  -  m]  iji(x) = 0 

D a  + nt] a  = ga ij> i(>

□ %  + ml  uj(( «= íj) у*1 ф

0 )

(2)

(3)

'  "Daheyliolyal" University, Faculty oj Physics, 3400 Cluj-Napoai, Romania
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The coupling constants gm , gu and the masses m, mo , i»u are given in [1] In the mean field, 

approximation the meson fields operators are replaced by their expectation values, which are 

assumed to have the following fonm

<a(x)> ~ 5 ,  <o)°(.v)> = ш°,

<ш’ (x)> = ш cos it a, <ш2(х)> = -iüsinÆz, <o>3(x)> = 0 (4)

According to this Ansatz the tu-field has a static, periodic variation along the z axis, 

defined by the wave vector К This periodicity induces a similar periodic behaviour of the 

nuclear vector current, i e the matter density (■фт0 чр) is constant and the current densities 

(тру1 íj)) and (фу2 ф) are periodic

In this approximation the single paiticle nucleon states can be considered as 

independent quasiparticle states described by Bloch waves
N

Ф,(/Л*) E  (5)
it- -JV

Here the bispinors //Д/7, «) are the solutions of the following equation

E  д „< од«') ОДЛ/мО, (6)
h'--N

where

= Y° [ ;!P + Y 1 w /c + m  * + у0g m ш ° ] 0 яя, -

" 4  s ’-  « J Y° ( 7 )

and

f } = (Y 1 ±  1Y2 )  (8 )

The source terms ф Г ф are also replaced by their expectation values <ф Г ф> , which 

are defined by the help of the Femu-Dirac distribution

0 ( / ;p ,A < /7 ) )  = ( l  Г  (9)
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where E,{p)  are the energy eigenvalues from Eq (6) The temperature and the baryon 

chemical potential are denoted by T and g respectively (The chemical potential of the 

antibaryons is - p) The field equations lead to a set of selfconsistent equations At fixed 

values of the parameters T,g and к these selfconsistent equations can be solved numerically 

for 5 ,  m °, and o>

The

ч ( ^ £ * ^ ) ° £  £  £
i /т «■ -  jV л '  “ -  N

j  dp3 Q ( T ,v ,E i{p) )ui ( p , n l )J^K u,(p,n)  (10)

where

£ x
aK 0  

0  CT
( 11)

ln (1IX o K (K = 1,2,3) are the Pauli matrices

We have found by direct calculation that the coefficients of exp [-!(«  -  n '  )kz] in

(10) at К = 3 were more than four ordeis of magnitude smaller in the case и ' * n than those 

with This means that the exp{-tnkz) (n = 1,2, ,N) type modulations of the plane

wave states are not piesent in the third component of nucleon spin

For the sake of physical interpretation of this result, we calculate the selfconsistent 

"magnetic" field due to the periodicity of the m-fitld 

The field tensor defined as

p’t,v= d W - (12) 

has only two non-vamshtng elements

P n “ wksinkz  a H l ,

/ ,2J = (uÆcos^zs - / / ’

91



A MIHÁLY

This means that this "magnetic" field is perpendicular to the z axis 

Therefore, the parallel component of the "magnetic" field is null and it cannot 

influence the projection of the nucleon spin on this direction In other words, the z component 

of the nucleon spin can "chose" any orientation, and our numerical results is quite natural 

However, we must notice that the situation is quite different for the other directions, 

where the periodic components of the "magnetic" field do act Thus the next step in our study 

is going to be the study of the perpendicular components of the nucleon spin, which, by using 

the same fine of thought, should have periodic expectation values along the z axis

Acknowledgement The author are very much indebted to I.Lovas and L T&taru for 

the illuminating discussions
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A STUDY OF A SIMPLE NONLINEAR MECHANICAL SYSTEM

S. COBRE ANU', Tb. COLOŞI", M. BANCA"

Received 30 051994

ABSTRACT. - The aim of a paper is an analitical and numerical investigation of a nonlinear 
mechanical system. This system is a parametrically forced mechanical oscillator, with cubic 
nonlinearity We demonstrate that the system exhibits a very complicated dynamics, including 
equilibrium points, limit cycles and complicated chaotic attractors For the numerical simulation 
we have used an original method

Introduction. The irregular and unpredictable time evolution of many nonlinear 

systems has been called chaos or deterministic chaos It occurs in many and different domains 

of the science like physics, chemistry, astronomy, biology, economy etc [1], [2] For example 

it can be observed in mechanical oscillators such as forced pendula or vibrating object [3],

[4], but also in rotating or heated fluids [5], [6], in nonlinear circuits [7], in laser cavities [8], 

in nonlinear optical devices [9], [10], in Josephson junction [11]-[13], in plasmas [14], in 

some chemical reactions [15]-[17], in biological and ecological models [18], [19] or in 

stimulated heart cells [20] and in Electroencephalogram data [21]

The central characteristic of the systems which exhibit a chaottcal dynamics is that the 

systems do not repeat their past behavior although they follow deterministic equations For 

chaotic systems the slightly different initial conditions lead to an error in prediction that 

grows exponentially in time This characteristic, which occurs only when the governing 

equations are nonlinear, is known as sensitivity to initial conditions The first who recognized

"Babeş-Balyni" University, Faculty o f  Phvsics, 3400 Clnj-Napoca, Ноннина 

" Technical Univeisitv, 3400 Cluj-Napoca, Romania
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this phenomenon was Henn Poincare (1913) Although a chaotic system can resemble a 

stochastic one, (1 e a system subject to a random external force), the sourse of the irregularity 

is quite different For the chaos the lrregulanty is part of the intrinsic dynamics of the system, 

not unpredictable outside influences If the dynamical system is described by a set of first 

order differential equations the necessary conditions for chaotic motion are that the system 

has at least three independent dynamical variables and the equation of motion contain a 

nonlinear term

The equations can often be expressed in the form

d x ,
. o

where / = 1 , 2 ,  , n (n a 3) and with F  for example of the form

F  = or, + bx2 + c-v^j + + J x n

where a,b,cJ&xQ constants For some choise of the constants, such systems are often chaotic

From historical point of view the development of the study of chaotic systems is a 

recent one, despite the fact that chaotic systems are deterministic and are described by many 

of the well known equations This is due to the fact that, with the exception of some first 

order equations, nonlinear differential equations are either difficult or impossible to solve 

analitically So, the solution of nonlinear differential equations generally requnes numerical 

methods The first who detected chaos in a nonlinear dynamical system by a numerical study 

was E Lorenz [22]

One of the simplest physical system with a rich and complex behavior, which has been 

intensively analyzed, is the damped dnven pendulum [23], [24] This is a based nonlinear 

model system for different more complicated physical problems (nonlinear oscillators) like

4
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the forced motions of a particle in a two-well potential (such an electron in a plasma) [25], 

[26], the magnetic pendulum [27], or the radio-frequency driven Josephson junctions [11], 

[28]

In the same class of nonlinear dynamical systems is also the motion of a shallow arch 

subjected to horizontal and vertical pulsating loads proposed by Szemplinska-Stupnicka [29] 

and recently explored by Lamarque end Malasoma [30] The aim of our paper is an analitical 

study of the stady states of this system and then a numerical integration of differential 

equation which models the system by using an original method proposed by one of the 

authors [31]

The model and its fixed points. The equation of motion for a particular shallow arch 

subjected to horizontal and vertical pulsating loads is'

X + ax -  0,5( 1 -  2/cosco/ -  x 2)x = /cosco/ (1)

where a is the damping coefficient, / and oi are the amplitude and the circular frequency of 

parametric excitation

To analize the behavior of the system we consider the following system of autonomous 

equations, which is equivalent to the differential equation (1).

X ~ y  '

y  =  - a y  + 0,5(1 -  2fcosz)x -  0 ,5x3 +  /cosz (2)

Z =  CO

We ca.! see that this set of equations (or this flow) describes a dissipative system for 

any a > 0 A system is dissipative if an arbitrary volume V, enclosed by some surface S in

5
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the phase space of the variables of the system, contracts The surface S evolves by having 

each point on it follow an orbit generated by (2) If the system (2) has the general form

£  = P ( 2 ) , 2  » O, = JC, X, » y  , л, -  z)

The statement of divergence theorem is

aF,
dx,

(3 )

and the dissipative system is defined by !ÍZ < 0

In the case of the flow defined by (2)

£ Z  =  -aV  or K(f) = J'(0)<c-“' dt

l e the volume element contracts exponentially in time for a > 0

If the parametric excitation is swiched off (f=  0), the system (2) becomes

* = V
у  » - a y  + й,5лг -  0,5.т3

and from F(2) = 0, we find the following fixed points of the system (5)

*(0,0), 0), £(1,0)

If f  & 0, from (2) one finds the fixed points (the steady states)

( 1 ,0, 0), f j - l + l v / l  - 8/, 0,0 !, [-_! -_i /F - 8 / ,  о, 0
2 2

- (  1 1
2 2

with the obvious condition of reality of them f  & 1

(4 )

(5 )

(6) 

(7)

The stability of the steady states. First we investigate the stability of the fixed points 

(6) For £,(0,0), the matrix of stability is
о l 

0,5 -ci

and the characteristic equation

6
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The eigenvalues of (8) are

-X l 
-0,5 - a - X

1К г"  ■^\-a± 'ía1 + 2

(8 )

(9 )

and we have X, > 0 and Xj < 0 for any a > 0 Thus the origin (x = 0) is a saddle fixed point

For the fixed points jÇ(-1,0) and Y3(t,0), the characteristic equation is
- X  l 
-I  - a - X

0

with the eigenvalues'

К г "  l ( - a ± ^ / a 2- 4  ) ( 10)

In this case X, < 0 and Xj < 0 for any a a 2 If X12 has the form X, 2 - X' ± /X" we 

observe that X1 < 0 for any a > 0 Thus x = -1 and x = 1 are stable fixed points, or stable 

equilibrium

The stability of the fixed points (7) is investigated by the same method One finds for 

x = 1, the characteristic equation
- X  1 0  

-1 - f  - a - X  0 = 0
0 0 -X

with the eigenvalues

X ,  “  0 ,  K i -  l U ± \ / « 2 - 4 ( l + / ) )

1 a2
If -1 s / s  Xj is real and negative, also if l, Xj is real and negative If

a2 1-  1 < / s  X23~ X± iA with X < 0 for a > 0 Thus x = 1 remains a stable fixed point in 

the presence of the parametric excitation (/VO)

For the fixed points x = _i(-l + \/l - 8/) and x - i .( - l  - / i  - 8/ ) ,  the eigenvalues of 

the characteristic equations are

7
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Ч з " Т ■a ± U** 8 / -  1 ± 3 Л - 8 / Г

with X2> 0 and Xj < 0, respectively X2 < 0 and X3 > 0 We conclude that for 0 < /  < _!_ these
8

fixed points are unstables

But the system has, beside the steady states, also the other important behaviors like 

limit cycles with different periods, which form a cascade of period doubling cumulating m 

chaos, as the amplitude of parametric excitation is used as a control paramater We observed 

tb s  benhavior by numerical investigation of (2) for different values of f  ш and a being 

constants

The numerical study. We have performed a numerical investigation of equation (1), 

or of equivalent set of equations (2), by using a new method of integration based on local 

linearization iterative ( L L I )  This method realises, with remarcable performances, the 

numerical approximation of the solutions through the segments of straight, considered in the 

neighbourhood of a pivot moment With this method the relative errors cumulated was smaller 

than 0,1%, for sufficient large characteristic time intervals Also, in the same domain of 

errors, the computing time is smaller than those spent with usual fourth order Runge-Kutta 

method

By fixing the parameters at the following values a = 1,5, ш = 8, except the amplitude 

of parametric excitation/ which was used as a control parameter, we have constructed the 

projections of the trajectories in the phase space for a wide range of the control parametei 

Thus, for f  = 0, when the parametric excitation is awiched off, we found the stable

8
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equilibrium x  = -1 and x = 1 Because the trajectory goes to one or another fixed point, for 

different initial conditions, we drew the basins of attraction of these coexisting stable 

solutions Figure 1 ahows the basins of attraction in the phase space region defined by -20 

£ ï s 20, and -20 s: y  s  20 The basin of equilibrium point x = -\ is colored in white, while 

that of x  = 1 is in black In Figure 2 we present two projections in XOY and XOZ planes of 

the trajectoiy in this case 

With parametric excitation {fa0), the focus x=l 

remain a solution of equation (1) This point is 

numerically found to be a stable equilibrium 

state until the amplitude /  is / “29,28, when a 

limit cycle is created The projections in XOY < - 2 0 ,  - 2 0  >

plane of the trajectories with/=5 and/=20 are

shown in Figures 3 and 4 Figure 5 shows two Fig 1

projections in XOY and YOZ planes of the trajectory when/=29,28. When/ =  29,29713 we 

can see, from Figure 6, that a cycle limit is created In Figuie 7 a and b we present the cycle 

limit for/ =  32 in two projections on XOY and ZOX planes This penod-1 limit cycle is also 

stable until amplitude / i s  /  -  45,5 when a period-2 motion is created (see Figure 8) At /  = 

47,5 we can see, from Figure 9, that a penod-4 motion is generated As / increases further, 

a period doubling cascade followed by chaos is clearly visible We presents this in Figures 

10-12 for f -  4 7 ,7 ,/=  48 and/ =  55 At / =  65 a new penod-1 limit cycle is created (see 

Figure 13), and the same scenano of penod doubling cascade followed by chaos is visible 

We have earned out extensive numencal simulation and we found the same behavioi foi

9
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different values of/  Figures 14-16 show some particular trajectories

D a n p , c o e f . = 1 . 5 0 0 0 0 0 Q Q 0 0 E + 0 0
A n p  l i t u d e  = ü  . Ö O O O Q O O O O O E +0(3 
C i r e . f r a q . — © . O Ö O Q Q O Q Q O O E + O Q

X  i n  i t = - l .O O O O O O O O O O E + O O  
Y  i n  i t — 2 . O O O O O O O O O O E + O O  
Z i n i t =  O . O O O O O O O O O O E + O O  
U  S c a l e =  3  . O O O O O O O O O O E + p . t  
H  S c a l e =  3 . 0 0 0 0 0 0 0 0 0 0 E + 0 1

F ig  2
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X  C t >

V

7
«1

+•

zct >

Datip . c o e f  . 
ftnp1 i t u d e  = 
Ci r c » f r e q .

= I .5 Ö Ü Q O O Q O O O E + O Ü
О . O O O O O O O O O O E + O O  
= 8 . O O O O O O O O O O E + O O

X  ins t = - l . O O O O O O O O O O E  + O O  
Y  i n i t =  2  . O O O O O O O O O O E + O O  
Z  i n i t =  О . O O O O O O O O O O E + O O  
U  S c a l e s  1 . O O O O O O O O O O E  + 0 1  
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x c t  >

Y ( t  )

D a m p . c o e f  
A n p 1 i t u d e  
C  i r c  . freci

= 1 . 5 0 0 Q 0 0 0 0 0 0 E + 0 0  
5  . O Q O O Ü O O O O Ü E + O O  
= 8  . O O O Q O Q O O O O E + O Q

X  i n i t = - l  . O O O O O O O O O O E + O O  
Y  initr: 2  . O O O O O O O O O O E + O O  
Z  i n i t =  O  , O O O O O O O O O O E + O O  
U  S c a l e r  2 . 5 0 0 0 0 0 0 Q 0 Ü E + 0 1  
H  S c a l e =  2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1

Fig-V
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X ( t  )

Y <  t )

V

D a n p , c o e f .  
A m p l i t u d e  = 
C i r c .  freci.

= 1 . 5 0 0 0 0 0 0 0 0 0 E + 0 0  
2  .O O Q O O O O O O O E + O l  
= 8  . O O O O O Q O O G O E + O O

X  i n ţ t = - l . O O O O O O O O O O E + O O  
V  i n ! t =  2 . O O O O O Q O Q O O E + O O  
Z  i n i t =  О . O O Q O G O O O O O E + O O  
U  S c a l e =  2 . 5 0 0 0 0 0 0 0 0 0 E + 0 I  
H  S c a l e =  2 . 5 0 0 0 0 0 0 0 0 0 E + 0 1

Fig.5
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D a n p . c o e f . = 1 . 5 0 Q 0 0 0 0 0 0 0 E + 0 0
ftn p 1 i t u d e  = 2 . 9 2 8 0 G 0 0 0 0 0 E  + 0 1  
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X  i n i t = - l . O O O O O O O O O O E + Q O  
Y  i n  i t — 2 . 0 0 0 0 0 0 0 0 0 0 E + 0 0  
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Fig 6
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Fig 11
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Conclusions. This work investigated the nonlinear dynamics of a mechanical sy s i t . 

with cubic nonlinearity and parametric excitation, by using the L L  I technique We 1mm 

constructed different trajectories m the phase space as the amplitude of parametric excitation 

was used as a control parameter and shown that the system exhibits different chaotic 

behaviors The route to chaos is shown to be via period-doubling bifurcations
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MASSIVE VECTOR, TENSOR AND SPIN-3/2 
PARTICLES GRAVITATIONALLY SCATTERED 

ON SCHWARZSCHILD BACKROUND

D. ŢAŢOMER, D. RADU, O. MUIALACHE’

Received 15 101993

ABSTRACT. - Using the S-matnx formalism and Feynman’s diagram-technique, the 
gravitational scattering of the minimally coupled vector, tensor and spin-3 /2 (Ranta-Schwinger) 
particles on Schwarzscluld background is studied for any value of the scattering angle

We mention that accordingly to our knowledge the previous works in this branch 
dealed only with the small angle cases As it has been shown, in the small angle approximation 
and ultra relativistic case, the differential cross-sections coincide with those corresponding to 
the photons, neutrinos, massless Rarita-Schwmger particles, graviunos and gravitons, i e , the 
gravitational particle scattering is spm independent, in agreement with many autors’ results, 
obtained by other means

As particularly interesting result, we point out that the differential cross-section for 
scattering of the vector particles m the backward direction and ultrarelativistic case is finite and 
the hehcity is not conserved, while, for tensor and spin-3/2 particles m the same case the 
differential cross-section is clearly unlimited

In this paper, using the 5-matnx formalism and Gupta’s linear approximation [1]

f i s  g» - vT - ky* (1)

where g ,,v, Tfv and y*4 are the metric tensor, the Minkowski tensor - diag (+1, -1, -1, -1) -and 

the tensor of the weak gravitational field, respectively, g = det gM< and к = \j\6nG (in natural 

umts, G being the Newton constant), the scattering of the massive l, 2 and 3/2 spin particles 

in the external gravitational field described by Schwarzschild metric is' studied Also we 

discuss the differential backward-cross-section as an important particular case

In order to obtain the first-order interaction Lagrangians between the gravitational and

"  "AI 1 Cuza" University, DejHirtnwnt of Phwtcs, 6600 lossy, Romania
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the massive vector, tensor and Ranta-Schwinger fields we use the principle of minimal 

coupling [2] According to this principle, for vector and tensor fields, we must add to the 

expression of the gravitational field Lagrangian the complex massive vector and tensor field 

Lagrangians written in the curved space [3, 4]

a,«,“ 4 4  m V u5vX) (2)

SL„= 4 4  " '2Ф̂ ФрР) ■ (3)

It is easy to see that for the vector field we consideied the Proca formalism Here 

Giv= в  - ßtlv (В being the covanant denvative of the vector field function) is the tensor 

of the massive vector field Concerning the tensor field we must emphasize that we followed 

a Schwinger’s idea [5] using the third rank tensor

W -  V.v- V *  ’ (4)

where фртЛ is the covanant denvative of the tensor field function We note in passing that a

remarcable analogy between the massive tensor and hneanzed (weak) gravitational fields is 

revealed by this Lagrangian’s choice In the case of the Ranta-Schwinger field, besides 

pnnciple of minimal coupling, we also used the "vierbein” formalism [6], so that, the 

Lagrangian of this system can be written as follows

' f - g g 1" 4 ( ф1.уо̂ ~ ф/ уи 0  + "'ФА (5)

where

'4Ч&* (6)

12
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*2 ■ j ' f - s  + (7)

^  being the usual derivative of the Rariţa-Schwinger field function

The above expression for Slj and have been obtained inserting the expression of the

covariant of the spin-vectors:’

VlL " ’I'v.r Г/I’v . tv7 , “ 4 V  i'vfp - (8)

where Гц are the Fock-Ivanenko spin coefficients of the affine connection [7] As it is known 

they have the following expression:

( 9 )

where y11 are the generalized Dţrac matrices [8,9],

f  = L11 (а) у (a), = LJa)y(a), (10)

Y(a) being the usual Dirac matrices. The expression for yXji is

Yíji“ Yx,n" УрГхм (11)

In relations (10) /-“(a) and Ljia) are the "vierbein" coefficients satisfying the following 

constraints

L 4 « )iv(a) » £MV, ^(a)L(a) = gMV (12)

Since all aur considerations refer only to the ftrst-order approximation we give below the 

"limarized" relations for the quantities which appear in calculations [4,7]

(13)

V + 4 »

у £ ~ ^$ .У , h'T’- ^ r f ' y ,  y ~ v :

(14)

( 1 5 )

33
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l.k(h^+  ЛД- Ахрц,) (the Chnstoffel symbols) 

Yi '= Yx + j  k\ hl  . *Yp* X|i (17)

(1 6 )

It is very simply to show that the äü2 term in (5) has no contribution in the first-order 

approximation Indeed we have

££«№) -  - ^ / ( yY ^ Y V V " 0. ( 18)

where the well known anticommutation rules have been used

{y\ yv} ” Y*'Yv+Yv'i'*' = 20)-v (19)

Taking into account the previous considerations the first-order interaction Lagrangian between 

the weak gravitational and the massive Ranta-Schwinger fields leads

Passing to the flat space

SÍ2(*) -

- 4 4 ^VxY>v- - t o ţ f /
(2 0 )

x° = t, x J ,  (j = 1,2,3) -» X , 0=1,2,3), x4 = it, (21)

ym _» ,Y(ii y°-> y4 , r T ^  -0^, (22)

the first-order interaction Lagrangians between the gravitational and massive vector, tensor 

and Ranta-Schwinger fields, respectively, are

SŰÍ*) “

и , 54>>., ] v ,-

Mv ■ p> V У M l * h

(23)

( 11)

34
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where:

+ 4 v (V ,+ Avpji“

££®(fc) - I  * ( “ - J *'"ÍW«>’ ■

U 4S V - _i ó VH* îiv "T Mv̂ao

G а В - В  \ Н , ш Ф \ + Ф\ -  ф 1»jív * v j i  j í ,v  * jrvX 'vX,n т  pX,v “ pv,X *

(25)

(26)

(27)

йц v and ф^л being the usual derivatives of the vector and tensor field functions, respectively 

Also we have taken advantage of the Rarita-Schwinger field equation ,

УрФсцр“ "'»’Pa (28)

and its adjoint

According to the standard quantum field theory the parts of the (23), (24) and (25) 

Lagrangians-casted into the normal form - which describe the interaction of the massive 

vector, tensor and 3/2rspin particles, respectively, with gravity are [4]

v [ç e .g(*)] -  -4 g; w(x) g£’(x) C W  *m (29)

m[sí L -„(*)] = £(Ф£p(*) [з -Фх2,,(*) - ф'^м]+ =

1 [ф £,«(*) + фЦ,М + Ф^дМ] + ф” аМ [ф2.уМ + Ф £_>.(*) - 3 Фь,а(х)] -

- 2т Ч^(*)ФЙ(*)Х М - к{ [ф^М + & )  - Ф$(*)] > (30)

* [ф&(*> + ф{£,М -фйм(*)]

35



+Ц ф£  w +О * )  ] ф£?м  [ с * м +О * )  -  C W  ] + 

+фГ м [ф̂ м +*í2vM -ФЙмм] ['‘, : '.w +C w - C w ] }

Л ^ . г(х)] » ^ [ iK lM Y p Ä )  - № ) Y M< t w ] <  W -

-  ~ £ т $ ,Л р ^ < Х )  у " ‘ (х)
4

D ŢAŢ0M1R, D RADU, O MIHALACHE

(31)

The processes are descnbed by the following Feynman’s diagram type, where p  and (r) and 

also p' and (s) are the four-momenta and polarization indices (r,s = 1 to 2-s+l, where s is the 

spin of the particle) of the initial and final particles, and q is the four momentum of the 

virtual graviton

Fig 1 The wavy line represents a graviton 

The solid lines repiesent either vector, 

tensor or spm-3/2 quanta

Using the S-matrix formalism we deduced the Feynman-type rules for diagrams in the 

external gravitational field (descnbed by Schwarzschild metnc) which allowed us to calculate 

the matnx element <p/ |S|p> in the mentioned approximation 

Thus we find that [4]

»>“' (<7 ) = 6 . 5 , -  JLöMv 4 ^ (32)

у"Лд) = (<f) (33)

K > 7) - » A - 4 V у Т т (34)

y T m  - «а*<ijya'tâ) ; (' “ i/-ï* ) (35)

Taking into account the Founer transform of the static external gravitational potential

36
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у шт 1 ,-iit кМ _ íPx кМ (36)
(2л)м J 4я |* | (2я)м |? |2

(where М  is the mass of the central body that creates the gravitational field and |j?| is the

distance to this centre), the matrix elements in the external field approximation, corresponding

to the diagram in fig 1 are respectively

-  < p ' \ S \ p >  -------- [ - ^ { [ ^ ' V V - 2 ^ ‘ ) р ! ] [ е ^ ( р ) Р11- e ? < P ' ) p a ]

2 (2л)2/ЛЯ,

(óv.Öa. -  - i \ aj + »‘ 4*’V  ' ) eir)( / ) ôv.Ôa,}ö (p ' - p - p ) i P q  = F ( p ' , p ) 6 ( P q ■Po) (37)

J \ч\2 (2л)’/ Po Po

+ (p' )/L(сь (/>X + (p)pv + c£(p)py) + e“ (p‘)/;'(e^(/fy>v + (p)^ -

- le i ï i f t P j  -2 /H Je|̂ )(^ ')e,v(p01ô|Jlô ^ - [ ( n ^ V / И ' +e$(P')pl ~ e£(P')pL ) *

K («p,V )/\ + e$(P)Py - е£(р)р„) - J > n 2e ^ ( p ' ) e ^ ( p )  ] + [ t ó V ' W  + e*vV ' )/>.' "

- ‘ " tf 'W  V  j ô , v)ô„yj -

-  ‘■oí'V' ) (в р Л Д Х  + e,A (P)pv -  e£(P)P,  ) ( ^ p . -  - i ö,„ jÖ w + |ôY. 0„. -  i .  Öv„j X

X fiw-  ( б ,0 , - ^ 5  V ^ W / T ' - /? -* )  </39 -  P { p ' ,p ) b U h ) ( IK)

17
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S % > -  < P ' \ S \ 1 »  -  — —
4 w f Î 7 o } m

+ i u « ( P ' Y i up u « ( P ) \ - K <  *  т й ^ { р ' ) и ? ( р )  ] à ( p ' - p - q ) ) d \ j ( 19)

= F ( ,p ' ,p ) b ( p ó  - P j ,

where ef\p), е£\Ю, и£\р),[йУ(.р) ~ и*)ш(рн4] and p0 on the one hand, and 

e^ip '), e^\p ' ), u^Xp'), [«^(p') = wmw‘(p ')Y4] and pó on the other hand are the vectors, tensors, 

spin-vectors and the energy of the initial and final particles, respectively, and<y0 = - рй~ о

states for the energy conservation law We have denoted by the common notations m,p and 

p0 the charactenstical quantities (the mass, 4-momentum and the energy) for the all three 

fields respectively

The differential cross-section is given by the well known expression

d o  = (2я)2 < £  \ F ( p ' , p ) \ 1 > ,4> ft d Q , (40)
f*P

where dQ = 2jc sin0 d0, 0 being the scattenng angle In order to evaluate the differential 

cross-section we must find the expression for < £  \ F ( p ‘ ,  р ) \ г > , ц. For \ F ( p ' , p ) \ ! we get fiom
fsp

(37), (38) and (39) relations respectively

k 2M
\ F l p ' . P ) \ 2

\ F ( p ' , p ) \ 2 '

8(2n)2P0PJ s n f l

k 2M

\ F ( j > ' ,p ) \ 2

where 1 is given by

8 (2 jt)V 0p 2sin2l

кгтМ

[q „ c, ( p ' , p ) } 7 

[о,'.л р ' /')f

(41)

( 1

16(2n)2ft(ft2 - m ' l W l

I -  2 1 у , pn I m

il l  4 '

IS
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Then, the expression < E  \H p ' ,p)\1>,jp for vector, tensor and respectively Ranta-Schwinger
S*p

fields are.

< E \Fip',P)\1>ifjp

< E  \F(P'.P)\2fjp

isp
k2M

8(b t)2/>0(fl,, - » i 2)siri,. |

кгМ
8(2Jt)V0(po - /w 2)sm2. |

< E  lF(P/.P)l2>- “
/4P кV

k2mM
\ 6 ( 2 л ) 2р 0(ро -  m 2 )sm2̂ .

1 , < 
I t
4

(45)

>

(46)

I«2V )/«.mü0I2 -

(47)
k2mM

16(2x)2p0(p f-m 2) sin2̂ (iS 0 -)-

where E  6«« > E  Ô.L and E  Qr-s are the polarization sums for the vector, tensor and Ranta-
pot pol

Schwinger fields and because they have a long enough expressions we prefer not to give then 

here

In order to evaluate the polarization sums we take into account that the polarization vectors, 

tensors and spin-vectors, respectively, satisfy the relations [5, 10]

E  e> ? \ p ) (p> “ n ,v  = 1 to 4 (48)

E L P = E (p) - 4 (rf.|Âvp + W  ~ О“ "

™ I 2(w
R 1 l , , 2
о  - __ Y Y * _____ (Y  P -У  P ) + ________/■> PI" j  l>l'v J  ‘MM*' ^ î ' l | , v ( 5 0)
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where d^ is given by d^- 0^+ ü ï f l

After a labonous calculus, for the differential cross-section of the massive vector, tensor and 

Ranta-Schwinger particles one obtains the following expressions, respectively

d a

\
k 2M

2
d Q

16я < ssin4—
2

A 2 / \
1 +v2 2 ,0 2 20-  — Sin — -  Sin —

3 2 [v5 2 /

d a

\2
V M d Q
16л: 40sin4

2

V1 +V2 0-  _ i. sm2_
V2 2 45(1

:____ sin4 _  f 9 ( 31
-V 2 ) 4 2

(51)

-  108v2 + 146V4 -  92v4 + 23vs) + 48v2(7 -  18v2+ 19v4 -  8v6 ) sin2 0 (52)

-  24v4(5 -  6v2 -  l lv 4)sm4̂  -  192v6( 1 + v2)sin6̂  + 128v8sm8

2 ( \
d a  « k 2M f 1 +v2

116« J 4Ö { s in _ l 2v2 J
2

1 [v2( 15 -  41v2 + 5v4 + 21 Ve) sin2— +
36v4( l - v 2)2 2

(53)

+ 4v4( 3 - 6v2 -  5v4 ) sm4̂ . + 8v6 ( 3 +v2 )sin4 ] } ,

where we denoted by v the J£L ratio
Po

We shall notice that in the small angle appioximation the polarization sums become

E Ql
po]

3 p *
Ÿ

1 + V2

E e l  - 5P*
( î 

1 Л V2

(54)

(55)
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I -V
(56)

fjûl
Taking into account the previous relations, the differential cross-sections in the small angle 

approximation become

d a _

/ \ 
k 4 l

2
d Q

/ \ 
1 + V2

(1 6 л ] sin4— 2v2
d o ,. (57)

l e , they are the differential cross-sections of Rutherford type As we can see from (51), (52) 

and (53) the expression for d oм  is contained by these relations as a first term Since this 

term (l e d a Iluäi ) is quite the differential cross-section for the massive scalar particles (for 

instance the scalar mesons) we can interpret the second term in the (51), (52) and (53) 

relations as being the spin contribution of the vector, tensor and Ranta-Schwingei particles, 

respectively

A particular interest is presented by the back-scattering limit case In this special lim.t case 

we have worked out respectively

d o '

/ \ 
k 2M

2 / \ 
1 +v2

2
2 2 -  v2

l i e * ] ( 2 v 2 j 3 v2
d Q '

d o '
Ÿ

k'M
16л

d Q '
180v4(l-v 2)'

X (45 -810v2 ► 5067V* 9228v6 + 5475v* -  522v'" + ?29v'2)

k>M
16л

9 - 6v2 + 5v4 
36v'(l -  v!)

d Q ,

where d o ’  *■ d o i and d Q '  » 2лdB

In the ultrarel'tivistic case (v -* 1) we get from (58)

<h'"' - 1 IGKtf {[I in 
d Q '  1

(58)

( W )

(60)

illi ,
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i .e , in the back-scattenng and ultrarelativistic case, the differential cross-section iia.. for the
dQm

vector field only (!) is constant (and non-zero), which means that in this case the helicity of 

the particles is not conserved, in agreement yvith [11].

Finally it’s worthwhile to pomt out that in the small angle approximation, the differential 

cross-sections for scattering in Schwarzschild field of massive scalar, vector, spinor, Rarita^ 

Schwinger and tensor particles have the same form and in ultrarelativistic case they coincide 

with those corresponding to the neutrinos, photons, gravitons and gravitinos, î e , -the 

gravitational particle scattering in this limit case is spin-independent [12, 13), in agreement 

with many authors’ results, obtained by other means [14]
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FOURTH ORDER TORSION L-TENSOR FORMULAS 
FOR ANHARMONIC FORCE CONSTANT TRANSFORMATION

Т.Л. ШШ'

Received IS  12 1993

ABSTRAG Г. - New fourth order analytical torsion /.-tensors are reported, which complete 
previously published third order expressions The formulas up to the third order are used in 
molecular normal mode analysis calculations for the nonlinear transformation of the force 
constants from internal coordinates to normal coordinates Sample calculations are presented

1. Introduction. Although, due to the advances in computet techniques, most of the 

computational effort of molecular normal mode analysis applications has been tiansferred to 

numerical methods, for latge problems it may be still preferable to use analytical formulas 

for the /-tensors involved in the transformation of the force constants from internal- to normal 

coordinates, instead of numerically deriving the internal coordinates with respect to the normal 

coordinates, according to the definition of the /.-tensors

/.-tensors formulas for all elementary internal valence coordinates are available The 

torsional coordinates, however, require an especially delicate mathematical treatment, and give 

rise to the most complicated expressions Formulas foi planar equilibrium configurations [1], 

and more recently, general foimulas [2] have been reported Alternative torsion /.-tensor 

formulas have been presented in [3] (hereafter referred to as Paper I), which, in contrast to 

the analytical results of [2], are more compact, implying scalar operations with tugonometnc 

functions instead of cumbersome vector operations

"tíabeytíolvai" Univvt sitv, P acuity o f  Physics, 3400 Clnj-Napocn, Romania
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It is the purpose of this paper to present new fourth order torsion I-tensors, which 

complete the set reported m Paper I Due to the complexity of the calculations, extensive use 

was made of the symbolic computation package Mathemaltca. The expressions up to the third 

order are equivalent to those of Paper I Results for methanol and hydrazine, obtained by the 

numerical implementation of these expressions, are presented and compared with similar 

results from the literature

2. Equations. The Taylor expansion of the potential energy with respect in terms of 

curvilinear internal displacement coordinates may be written as [1]

I Y f ^ R ,  + l y  F  . R , R , R . + - L T  F  . . R  R , R . R . +rt Z - /  Ij I j  s  JL-é tjk  i J  к  r jA ijk l I j  к I
2  I J  24- i .J .k . l

(1)

where the force constants F IJt F  k and F  u are the 2nd, 3rd and 4th derivatives of the potential 

energy to the coordinates R,, referred to the equilibrium configuration of the molecule In 

order to perform a normal mode analysis, the vibrational-rotational Hamiltonian is, Imwei, 

conveniently expressed in terms of the normal coordinates Qr

2  r ^  r, 3,1
'Q,Q,Q,+4z E  ФrmQ,Q.Q,Q.-

2 4  r s t,u
t )

where k = 4K2c2<aţ

The internal coordinates R, can be expiessed in tenus ol n o m i a l  l o n i d i n n i i  s i ' 

nonlinear transformation
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R, - E L>Qr+ EW ö, + E R "‘QrQ,Q,+ (3 )

where the elements of the Z-tensor, L,r, L", L"‘, , have to be interpreted as first-, second-, and 

third order derivatives of the internal coordinate R, with respect to normal coordinates

The formulas for the transformation of the force constants from internal-, to normal 

coordinates (including only L-tensors up to the third order) may be readily obtained by 

substituting (3) in (1), and comparing the result with (2)

К  = E Wij

<T = E V - W + E ^ (W + W  + £,'V)лл* и

ф"“ = E

+ E p j w +o / v +
I , M

+

+ L'%" + i " y + C V + a; ,u/./)

As stated above, it is only the case of torsional coordinates we are dealing with in 

what follows The torsion coordinate involves four atoms If the atoms a, b, c, and d are 

linked by the bond vectors r, = ab, rj -  be and rk = cd, the torsion cooidinate x is defined 

as the dihedral angle between the planes abc and bed The torsion "displacement" coordinate 

Ryb which is actually used as a normal coordinate, may then be defined as the difference
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between the torsion coordinate and the corresponding equilibrium value x„

RIJt -  X -  r t »  a r c c o s
(e^ej) (ejxek) 

Sln<Py 0»)

where e„ ef  ek are the unit vectors of the three bonds

The torsion JL-tensor may be set up, as already pointed out, from the denvatives of the 

torsion displacement coordinate with respect to the normal coordinates The relations for the 

first four orders are

,  OR...r r „ V* /
Ж  ‘

a2«
iß iß

àQ/10, 4ß ■Iß à'R,

dQ'dQM
L’iß ы

üQrü<QadQ'dQu (5)

In ordei to avoid the complications implied by repeatedly deriving the mixed veetoi 

product from the expression of the torsion displacement given by (4), we tiansfonn /ÿ  

making use of the well-known Lagrange identity

(a * b ) ‘(c * d)  =  (а -с)(Ь ч!)  -  (b-c.)(a-il)

Relating the obtained scalar products of the unit vectois to the angles defined by them

V е , ”  - “ И 1 , , .  e / e ,  "  - c o s i |>j A ,  «  с о ь ф , *

the torsion displacement coordinate becomes

R . =  a r c c o s•ß
С̂ОЬфуСОвф̂  - СОвфд'

(ft)втфувтф^

As one may notice, the angle ф,А between the non-adjacent bonds / and к appears in the abi" < 

relation, as well

In performing the operations required to derive the expressions of the torsion /,
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tensors, it is useful to keep in mind the definition of the first order angle bending /.-tensor

( 7 )

u;;k - s 's ‘ + s;ks;k.

u 3Qr

which, coming from the derivatives of the angles ф̂ , ф;* and ф,ь respectively, will enter in 

the expression of all torsion /-tensor

In order to simplify the expressions of the torsion /.-tensors, we define the following 

auxiliary tensors

S '  - L ' l s n  1фу, (8)

T,jk = S '  совфу + SJkсобФ̂  , (9)

(10)

У ' ' /  -  S J S J S J c o s ^  + S j'S jS jœ s^  (11)

T,'k, U'jl and V'k are obviously symmetric with respect to the index pairs " if  and "jk"

The formulas for the torsion /-tensors yielded by Mathematwa (according to the 

definitions (5)) are obtained employing a rather elaborate set of expression manipulation rules, 

which allow for massive simplification of the relations, use being made of the expressions of 

the already determined lower order tensors Here are the resulting formulas for the first order 

/-tensor

L lk sin<)> lk
Z J* = 'l',jk cort, + csci' L‘JC0%  + z,;cot<t»(j ( 12)

the second order tensor

Z//* “ ~ L , j J  ,jk ~ cotx ( L IJkL IJk + I/yt )

LjkSy !;jSJk
51пф/у simţî  йтф^тф— — (Z* созф  ̂- T’jkятфjk)

(11)
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the third order tensor

A'ijk ^ i j k ^ i j k ^ t j k  ^  ^ i j k ^ i j k  u iJ k KJijk  •-‘i jk 1 Ijk

- cotYi[i,;*A;*7'J* + w k + a ; a ;í  + i . ‘kL ; ; k -  r ™ ]

a:•«cy, 2co{ty IJL j kS lj S lj  + 2 c o l f y Sß S Jk + .
вшф̂ мпф̂

созфм(^7',;4+1(;7',;) + sí̂ íA(l,;/J(; - г,;?;; - щ;)

( 14)

and finally, the fourth order A-tensor

Ajt = Aa(A/*Aa + LIJkLiJk + LIJkLIJk) + A/*( АлАд + LljkLIJk j

+ Ai as+( A/W* a;* - а;г ) a;+a,; a;+a;* +а* ц
. [ r r r j » l » u  г гж ţ tu ţ rl ţ au Ï ru f  3t _  ’ r T t,u  

+  C °lY e [ ^ / / ^ ( /* ^ / / * ^ 4 /*  -  L y frL y b  L t y L y k  “  ^ I jk ^ i jk  u tjk ^ t jk

~ LykLfjk “  LykLiJk “  LlJkLijk -[1цкЬук + LiJkLiJk + ЬокЬукУТук

- 2 (1 + 2  cos2$ J  s js js js ;;  - 2(1 + 2 coŝ J s ä ' ^ s;

I j k ^ l j k ^ l j k  L‘lJkL‘IJ k U  tjk  ^ у к ^ у к и  !jk \  ^ t j k ' l j k  ^ t j k r  Ijk  L‘<Jk ‘-‘t jk  y  Ijk

+ cscr {-2(1 + 2cos2фу )cscф A iSJS ,j S ,]  -  2(1 + 2cos2ф^)e sc$JkL ,j S / kSj'kSß

U k

вшфувтф^
/  г  I  r  Í  r  H f  U r p  8 r p  I j  I r p  t  r p  U j  J  r p  I r p  U

/А У ^ I k ^ i k ^ i k  “  L ik  1 i j k 1 tjk  “  L tk 1 t j k 1 ijk  ~  L ik  l l j k l  ijk

■ L"k u iJk -  L i ’k u -  L ‘k и  i ß  )+и » ( - а д  - а ; а га ;» - а ; а ; а;

+ а;*?;;//;; + г,; и,; + + к 'п 1) ( 1 5 )

As it is apparent from Eqs (12-15), all torsion L-tensor elements depend on the angle 

bending tensor elements L,j, and on the torsion A-tensor elements of lower order It should

18



FOURTH ORDER TORSION L-TENSOR FORMULAS

also be emphasized the explicit dependence of the torsion L-tensors on the equilibrium value 

of the torsion displacement coordinate тв only through the factors cot xe and cos t„

Another point worth discussing is the appearance of the "angle bending" /.-tensor 

elements, L[k, corresponding to the angle ф,4 defined by the non-adjacent bond vectors The 

significance of the mentioned elements may be regarded as purely mathematical, and for their 

computation the formulas for usual angle bending may be employed [1]

3. Sample calculations. We present in what follows fundamental frequency results for 

two sample cases involving torsional coordinates methanol and hydrazine In both cases there 

have been used only L-tensors up to the third order

The harmonic frequencies and normal coordinates have been calculated by the Wilson 

F-G method The anharmonicity correcUon is accomplished by employing the approach of 

Hoy, Mills and Strey [1] (briefly discussed in section 2) embedded in an original FORTRAN 

77 computer code for general normal mode analysis, run both under the UNIX and DOS 

operating systems

The geometry and internal coordinates used to describe methanol are those of [4] The 

force constants are taken from the same reference, where all cubic force constants of the type 

Fijk, with I, j  and к all different, and all quartic force constants other than the diagonal 

stretching ones are neglected It should be noted that the calculations reported in [4] are 

performed strictly numerically, no use being made of analytical /.-tensor formulas

Table r shows the computed fundamental frequencies of [4], the ones computed bv 

means of our /,-tensor formulas, along with the observed frequencies reported in [5] One may
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notice the fair agreement between our frequency values and those of [4] Both sets oi 

computed frequencies exhibit the same overestimating tendency as compared to the 

experimental values, however, the overall better agreement of our results (with a smaller 

maximum relative error of 6 7%) is obvious Exceptions are x2 (C-H bond stretching) and r tJ 

(C-O-H angle bending), for which the errors are small anyway For the three torsion modes 

of methanol (xl0, xu and x12) our relative errors are significantly smaller

Table L Fundamental vibration frequencies of methanol v“'J are the experimental values of [5], v ’ ,ire 
the calculated values of [4] and v" are the frequencies computed m tlus work (in cm'1, the corresponding rd,in\ e 
errors being expressed in %)

V<*B v’ (v’-vob')/v’ v”

A’

V ! 3682 3730 13 3728 1 2

2999 3009 03 3011 04

V 3 2844 2919 26 2865 07

1478 1611 83 1583 6 6

V 5 1455 1571 74 1559 67

1334 1391 4 1 1364 22

V 7 1075 1113 3 5 1080 0 5

V8 1034 1046 1 1 1 39 05

A"

V , 2970 2988 06 3006 l 2

v,o 1465 1583 75 1537 4 7

V „ 1145 1234 72 1190 3  8

V ,2 271 262 34 2oi 1 0
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All relevant data for the hydrazine molecule (geometry, internal coordinates and force 

constants) are taken from [2] Table II shows besides the calculated frequencies of [2] and 

of the present work, experimental data of [6] One should again notice the fair agreement 

between the two sets of computed frequencies The discrepancies between our frequencies and 

those of [2] (with maxima for the t7 N-N stretcing mode and x n antisymmetric NH2 wagging 

mode) are probably due less accurate force constants listed m [2] and used in our calculations, 

than the ones actually used to produce the frequencies of [2]

Table Ц. Fundamental vibration fiequencies of hydrazine v01“ are experimental data, v’ are computed values 
of [2], and v" are tlie frequencies computed in this work (in cm'1, the corresponding relative errors being 
expressed in %)

V* (v’-v^ /v ' v’ (v'-v^/v"

A

vi 3390a 3413 07 3397 02

V2 3300 3297

v3 1628” 1659 19 1671 26

v4 1324° 1344 15 1361 27

V5 1098b 1121 20 1119 1 9

V« 780b 840 7 1 843 75

V7 377d 398 53 350 -7 7

В

V8 3398" 3402 0 1 3440 .1 2

V, 3297" 3287 -0 3 3331 10

V,0 1587b 1645 3.5 1655 4 1

v ll 1283° 1320 28 1318 2 6

VI2 937f 1045 10 3 1058 114

■16].bm , c l8 ] ,'[1 0 |,r [llJ

s I



T A  BEU

4. Conclusions. New torsion /.-tensor formulas up to the fourth order are presented, 

which, in contrast to some previous analytical results, are more compact, implying scalai 

operations with trigonometric functions instead of cumbersome vector operations The 

numencal results which have been subject to comparison, although affected by the employed 

set of force constants and the adopted numencal strategy, compare favourably with one 

another and with expenmental data fiom the literature
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ABSTRACT. - The linear theory of excitation of electrostatic lower hybrid waves into a warm 
magnetized plasma by a warm relativistic electron beam is presented It is found dial 
electrostatic lower hybrid waves can be excited by Cherenkov resonance The frequencies and 
growth rates for excited waves are calculated

1. Introduction. Absorbtion of a lower hybrid waves seems to be a very efficient 

method for heating ions in a plasma [1,2] In recent years, considerable attention has been 

focused on theoretical and experimental studies of lower hybrid waves for piasma'heating and 

current generation in tokamaks These waves have been succesfully employed to heat 

electrons and to drive plasma current in a number of tokamaks [3-8]

On the other hand, has been demonstrated that lower hybrid waves generated by 

auroral electrons can produce transversally accelerated ions in lonosfenc plasmas [9, 10]

In the space physics context a great attention has been accorded to the lowei hybrid 

drift instability generated by density and magnetic field inhomogenities [11, 12] The lower 

hybnd wave can be also excited by an electromagnetic pump wave [13] and by electron 

beams The linear theory of the lower hybrid waves excited by a nonielativistic electron beam 

streaming through a cold plasma along the magnetic field has been discussed in detail by 

Papadopoulos and Palmadesso [14] The relativistic election beam temperature effects on this

University of  CIuj-Nnpoca, Faculty o f  Physics, 3-100 Clui-NajKica, Romania
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instability has been studied in [15]. In the present paper we demonstrate that such waves can 

be generated by a warm relativistic electron beam into a warm magnetized plasma

In our model a warm relativistic electron beam with density nob and a velocity 

streams through a plasma with warm electrons and cold ions along a magnetic field ßo The 

unperturbed plasma density is considered to be nop »  nob Because we are interested with 

lower hybrid waves excitation we will study the almost perpendicular piopagation of plasma 

waves to the magnetic field

2. Dispersion equation. The general dispersion equation for longitudinal waves can 

be written as [19]

eMsin20 + e3Jcos20 + 2e13cos0sin0 = 0 (1)

where ey (i j  = 1,3) are the dielectric tensor components of the system and 0 repiesenls the 

angle between the wave vectoi К and the direction of the external magnetic field Bo (One 

assumes that the wave vector К lies in the xOz-plane and Oz-axis is oriented parallel to the 

external magnetic field)

The dielectric tensor can be expressed by means of the conductivity tensor a  in the 

following way [19]

- 4л;/ (2)

We will use the expressions calculated in [17] for the conductivity tensor components 

of the warm relativistic electron beam and the expressions calculated in [J6] for the 

conductivity tensor components of the warm plasma with temperature anizotiopy Considering 

cold plasma ions and using relation (2) we can write the dielectric tensor components under
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the form-

e -  1
(O2 - «0?, C0J 1-E«

К 1',.
• Z ( s  )

■V»2'4"(Xt)Pл П

« ,.--£< 80 E"
A ß .)  t±, 

К T
r

I II  -1

Yo Я

OCT 0 Г
+ n

X /(*„.)+- E
Y 0  »

0 3  Y „ A ß )
Q„

where the following notations have been used

P„ =  1  -  Z ( j  . )  -  _ i i  T ( j  .  )
v f c v  4  T  41ГГ14 i |i

e ,=  " h r Z(i"‘) +vii
1 - l4 П*«)

шу 2j.+ _ 1 1 ^ Т ( ,„ Ь) 0)c * |4

and

A ß )  = e-;7n(X)

/„(X) are the Bessel functions of the first kind of imaginary argument with

for the plasma and
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\

h - K °
—2 2 vx4 Yo (10)

for the beam

The quantity w ,̂ represents the electron plasma frequency and top, the ion plasma 

frequency, while toa and шст are the electron and ion cyclotron frequencies, respectively The 

perpendicular and parallel mean square velocity for beam electrons have been defined by the 

following relations [18].

тч  “ »‘x 'b (11)

Т\ъ “ m.4°‘b (12)

where T±b and l\h are the perpendicular and parallel beam temperature, respectively 

Yo “ ( 1 - v l l c f  is the usual relativistic factor and t| = noh inop « 1.

In the expressions (3)-(7) we used the plasma dispers in functions [18]

Z ( Q  - ( 2 * ) - ”  ,  ( 1 3 )

and

H s n) -  { í n y ' A í ^ f P - l d t  (14)

with

for the plasma and
Vv„

(15)

(0 -  ß  V -  no) hО се ’о
кЛ ь

(16)

for the beam

The perpendicular and parallel mean square velocity for the plasma electrons have 

been defined by the relations [16]

71. L.i,< (17)
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where K , and Tu are the perpendicular and parallel electron plasma temperature, 

respectively

Since we will be interested with almost perpendicular wave propagation with respect 

to plasma return current direction, in expressions (3)-(5) we neglected plasma return current 

effects

Substituting the expressions (30-(5) in (10 and taking into account that [18]

T ( 4 n )  =  1  +  snZ( (18)

the electrostatic dispersion relation becomes

o) = 1 Oip,COS20 M p , s i n 2 e

1 An(\)Z(s„')x

« c a  T,ее I«

“  lev. T±t 
, *  ' •  /

x 4  TT=r Í1 + £  z (Ä„i ) x
Y o  k V | 4  l

W CD  T.hr« et \b 3

(19)

3. Excitation of lower hybrid waves. For electrostatic waves with mc, «  ш «  оз„ 

and cose й m jm , some simplification of equation (19) is possible because snt » 1 Using the 

asymptotic values of Z(sni) [18]

2 ( 0
_1_ _ 1
Sn. S*,

+ ; л
___e ~ sL

N  2

and neglecting the higher order terms, the dispersion equation (19) reduces to

D ( / r , o 3 )  »  1  - " Á f a  ) c o s 2 0  - 0 1 £ / t n ( L )  

ОЗ2 or h2"
no3 ,  T.

1L +
k vu „ о з - л о э е ,  T±t

(20)

+ /
2 * 4 ^ . Y »  * 4

(21)
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* Z ( 0
/

S .  +
m ú ta

4 'nb к  V,. Y2 \b 'О M .

Now, taking into account that for lowei hybrid waves we can use for A n( \ )  the 

expression [19]

A(X)Л 4 t ' 2|n||n|!
(22)

and we finally have the dispersion relation in the form

£>(£» = 1- “ fi - “Ccos30 + “il+/
N 2  к г кху \ .

_ h
J » 2 “2Y» * v,j

1 +XX(VZ(s„4)
Kv iiY0 ^

(23)

With the purpose to investigate this dispersion equation, we will follow the usually 

applied procedure in plasma physics [19] According to this, when Im i d  «  Re cd, the excited 

wave frequencies can be calculated from the equation

Re D{U,m)  = 0 (24)

and the corresponding growth rates from the relation

ImiD = - _________ I___
dKeD(lc,(ok)lda)i

where = Re ш( К)

(25)

Wnting the Z(snb) function under the form [18]

Z (\b
,, (

« -exp - - A i exp T
2 ) [i l 2 i l 2 J

(26)

and taking into account that in Re£)(Æ» the contribution of the beam terms are of order q, 

we obtain for the excited wave frequencies the expression
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where

with

2CO* -
1 + a ‘

[<4‘+ ml. “ s’e) (27)

Í. Vo кЧ]ь
i +E W

■KeZfcJ L  + Т»)
1 4 )u

(28)

Ш*о
“я/+ u£,cosJe 

1 * tonhal
(29)

The growth rate for the instability can be found from (24) using for D{K,со) the

expression (23)

Taking into account that Im Z(snb) with н # 0 are small compared with Im Z(snb), we 

obtain for Im m the following expression

Inuo •= fa  <
2m к 1 1 + a 2 Av

И»
Wbl +

-  4 h )  ш 2 °v *'
щ~гФГш

1 - 3  3KVU'to

(30)

The fastest growing instability of the lower hybrid wave is then obtained when

to ^ Ä '-F  (31)

with the beam electron speed just a little faster than the phase velocity of the wave in the 

beam direction This is necessary to assure Im ш > 0

The first factor in the bracket caracterizes the damping of excited waves due to plasma 

electrons
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4. Conclusions. The above results show that a warm relativistic electron beam can 

excite lower hybrid waves in warm magnetized plasma These waves can be excited by 

Cherenkov resonance when We calculated the frequencies and growth rate for

excited waves The obtained growth rate expression contains also the damping effects due to 

the plasma electrons [first term m the bracket of expresion (30)] on the excited waves When 

the Chereakov resonance condition is satisfied the damping term becomes small compared 

with the term which is responsible for the qrowth of the wave amplitudes [the second .term 

in the bracket of expression (30)] Thus it results an instability for the lower hybrid waves.

Another important conclusion can be also drawn for beam electron temperature effect 

The expression which was derived for the growth rate shows that parallel beam temperature 

has an stabilizing effect on the instability.

R E F E R E N C E S

I Porkoláb M , Nucl Fusion 12, 329 (1972)
2. Allen G R et al., Phys Rev Lett 41, 1045 (1978)
3 Fisch N J , Rev Mod Phys. 59, 175 (1987)
4 Bell RE et a l, Phys Rev: Lett 60, 1294 (1988)
5 Yamamoto T et a l, Phys Rev, Lett 63, 1148 (1989)
6 Nemoto M et a l, Phys Rev Lett 67, 70 (1991)
7. Fisch N J , Rax J M , Phys Rev Lett. 69, 612 (1992)
8. Maekawa T éta l, Phys Rev Lett 70,2561 (1993)
9 Chang T, Coppi B , Geophys Rev Lett 8, 1253 (1981)

10 Kintner PM et a l, Phys Rev Lett 68, 2448 (1992).
II Huba J D , Papadopoulos K , Phys Fluids 21, 121 (1978)
12 Huba J D , Gladd N T , Papadopoulos K , J Geophys Res, 83, 5217 (1978)
13 Hasegawa A, Chen L, Phys Fluids 19, 1321 (1975)
14 Papadopoulos K , Palmadesso P , Phys Fluids 19, 605 (1976)
15 Karácsony J , Rev Roum Phys 29,705 (1984)
16 Alexandrov A F , Bogdankevic L S , Ruhadze A a , Osnovy Electrodinamiki Plasmy, Moskva, 1978
17 Karácsony J , Sclmger V , Bull Math Soc Sei Malh R S R , 24 363 (1980)
18 Bludman S A , Watson K M , Rosenbluth M N , Phys Fluids 3, 747 (1960)
19 Akhie/cr A 1. Stepanov K N , Akhiezer I A , Polovm R V . Sitcnko A G , Elektrodinamika Pla/ni), 

Nauka, Moskva, 1974

60



STUDIA UNIV BABEŞ-BOLYAI, PHYSICA, XXXVIII, 2, 1993

ANALYSIS OF THE PHYSICAL CHARACTERISTICS 
OF A DUSTY PLASMA I. THE GRAIN CHARGES 

AND THEIR EFFECTS

Speranţa COLDEA'

Received 5 091993

ABSTRACT. - The change of a dust m a plasma is not a fixed one, depending on the 
characteristics of the plasma, on other phenomena as secondary and field emission, 
photoemission, etc By supposing the grains being at rest in a Maxwellian plasma, an analysis 
for (he properties of gram charges in a dusty plasma is made The corresponding effects are 
shortly discussed In the second part of the paper other effects of the electrostatics of dusty 
plasmas will be analysed

1. Introduction. A dusty plasma can be defined as a plasma with a phase of solid 

objects (grains or dusty particles), that usually exist in laboratory plasmas, planetary and 

cosmic plasmas For the understanding of the ionosphere properties and of the consequences 

for earth atmospheric pollution, a modem knowledge of the dusty plasmas characteristics is 

needed Generally, the method of study such plasmas characteristics is based on the theory 

of the composite plasma dynamics (kinetic model or fluid model) Experimentally, the 

Ionospheric Radar Scatter Technique is used, based on the analysis of the statistical properties 

of radar returns from ionosphere Measurements of physical properties of dusty plasma m 

ionosphere or planetary ring (magnetosphere) are also made by satellites The conclusion of 

the experiments is that the present of dust may change the structure and properties of the 

plasma The present paper deals with the study of fundamental properties of a dusty plasma 

with impurities, that are electrically charged A short analysis of the grain charging and of the

"llabej-Bolvai" Umveivtv, Faculty aj fVivs/c.s, 3-100 Cluj-Napoca, Romania



S COLDEA

corresponding effects in a dusty plasma is given, based on the fundamental equations of such 

a plasma and on some quantitative considerations

2. The basic equations. Firstly we shall present the equations that descnbe the 

charging of dust grains m a plasma, process driven by plasma currents, photoelectron and 

secondary emission currents [l]-[7] The basic equations for all thesse currents in the case of 

a number of grams in a plasma comparatively with those of a single grain in plasma or in 

vacuum will be presented

By considering that a grain is at rest in a Maxwellian plasma with electron and ion 

temperatures Tc and T, (Tc ~ T,) and by neglecting the other charging effects, the potential of 

the grain <j> is obtained to be negative ( if Flow, «  Flowe ) The currents to the surface of the 

gram are [l]-[3], [7]:

4 я а 2п e_ e

" ( 2

4 n a 2ntZe

(2jtß,M(),/:

•exp(eß,<j>)

•(l-ß,Ze<tO

( 1)

(2)

where ß «■ l ikr and a is the grain radius, me, m( being the electron and ion mass and Tc, T, 

the corresponding temperatures, <j> is the grain surface potential

If ф > 0 then ;,-exp(-eZß^ ) and / ~ ( l - ) The equilibrium potential is found

from the condition.

/, + / , - о (3)

and it is independent of plasma density

Because the charging time is nonzero and it is propoitional to l /« a specific
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gyrophase drift motion of gram in plasma takes place

The secondary and photo-emissions determine a positive current to the grain Two 

cases could be discussed

(a) If ф < 0, all the released electrons by secondary emission escape and the 

corresponding electron current is of the form

1tec 3  7 Ó  - л
kT«

1/2

■ ] F
'  Ea '

2 k  in
•)

5 K J
tо

•e TTS (4)

where

' E
AkT 16 k 1 T.

1__ •  j  du • и 5 •  e x p

f r? 2 \ ‘\E  • w 4
- w + //

A k T
\ • l \

(5)

and ôm is a material parameter of value 0 5 < 6m < 30 and Em is the value 

£ „ ( Ô J  e  ( 0  1 - 2 ) k eV

(b) If ф > 0, several electrons are reabsorbed in the secondary emission process and 

then we have
Í ь-т \M ( V

/ м - 3  7 6 „ « ,  _______ I _  • 1  +  l £  - e x p  - Î Ï .  —  -  _ L  -F' (x)  ( 6 )
вес  me  ^  i . ' r  c  J .  ' T'  T 1 v '  V '

kTe
\a ( \ 

1 + * c x p
_  е ф

{ \ 1  
1  _  1

Ткт kT k T T
4 ’ ' /

where x
A kT

T~  104AT. В
\m  

e0

ТГ
and

f '  = x 1 jilu-iE- , {-хиг*и)

The photoelectrons flow is of the following form [9]

=  л а г,К  ' i f  ф  <  0

I  =  л л ’ ^ е х р

/ \ 
2ф
Tf./ /

i/ф  > 0

(7)

(8 )
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where T, is the temperature of photoelectrons ( У ~ l eV)  and К » ц-х is the flow of photons 

(t| being the photoefficiency of value G (0 1 - 1))

When a grain of a = 1ц m in a plasma of '/)■= le i '  is taken, and the plasma and 

secondary emission currents are considered, three steady states are possible (if ll(jUl = 0), the 

midie one is unstable and the other two ones stable From some considerations that we don’t 

introduce here it could be seen that this behaviour leads to a coagulation of dust grains effect

[6], that will be discussed elsewhere

The case of a moving grain in plasma can be also assumed, the corresponding electron 

and ion currents being given by
2  \ j l я  a 2ene

1 R F
еМН<Ф,Ф) ( 9 )

and

Jt =  л  a 2n:Ze \  + T,h, _ 2Ze$
2 (I2 "Mi2

\

« u F
+ e x p “  --

W\Jn r 2
{ ‘ “-‘ I

( 10)

‘гкт)where Tt h ~ is the ion thermal velocity and ш is tire grain velocity Becauseco « Tlhf,
m ‘

the gram may be considered at rest and I„ is the same as (1) From the equilibrium condition 

I» + Ii ~ 0 the potential Ф » <ţ> (a>) could be obtained

At this point a qualitative discussion must be made the capacitance of a gram in 

vacuum Ce~ a , if the gram is introduced in a plasma, the potential around it is 

Ф - о . e*p[-.<•(/■ - r?)] w[lere л = _L , r is the distance between grams [3] The effect of this
r ( \ + k a )  Kn

like a sphencal capacitor grain sorrounded by positive sheats (outer conducting shells) is the 

following when r  - xn , the positive shell is pushed closer to gram surface and its capacitance 

increases If grams are m a neutral plasma they become negatively charged and there are
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excess ions in plasma, the condition 1ш * lf at the grain surface is satisfied

3. The effects of grain charge in a dusty plasma. The relation for ion and electron 

densities /i,(r) are given by the Boltzmann factoi.

n,(r) = С,-ехр[-</Дф(г)] (II)

where СД/ = e,i) is taken from the condition jn((F)rf3r a Nt, N, being the total number of "1" 

species, ф - the potential around the grain and q1 is the charge 

The Poisson equation that will be used in this case is 

+ 43tps( F )  = - 4 ji£  >),•<?, =
i

° - 4я ^  [-Р/<//(Ф(>0-ф )1
I |</3г ' - ехр[ -р, ( ?(( ф ( г ' )  -  ф)J

with pt(r) being the charge density on the grain After using the method of expansion of 

electric potential in Р,<?,(Ф - ФКФ « 1), we obtain to the lower order the relation

У2ф - к Ц  H nqt(F) = -4n£Wl‘ql
k 2 . _  ‘ _ ( 1 3 )

-  У  j d 3r'(<b  - ф )  - * 2Ф

where

к  = 4 n ^ n ^ q r ß ,  ( H )
/

and

= у  j t P r -п ^ Г )  ( 1 5 )

with V - the volume of integration, ф being the averaged value of <j> over V 

The final Poisson equation is gauge invariant

У г(ф -  ф) -  А Д ф -  ф) + 4 я р д  Г )  = - 4 л £ )  ТГ <у( ( 1 6 )
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It can be observed that the currents on the grain are driven by the difference^ - ф ), 

The solution of the last equation could be obtained under the following form if a neutral 

grams-plasma system (6 (< 0) - Qp(> 0), with N grains of same radius a and charge Q, is 

considered'

ф -ф  e ф( 0  +4т5^"'*9' ( 17)

where ф(/0 is the solution of the boundary condition

V ^ ( » 0  - * 2ф ( П  + 4 i t p f ( f )  = 0  ( 1 8 )

that could be written as an integral equation using the Green’s theorem

Ф(>0 J L  Г  [dr!
4л j J J

e xp (-/ t| r-r 'l)  .
\ r - r

-  5  r  . x/t e^p(~~k \ )
\rr T \ r - r

(19)

The center of l "'-grain is choosen as the origin of the system and only the 1th tem ^ (r)  

of the above sum is considered, The grain surface potential is Ф (a) and the electnc field - Уф ( f  )

is the same over the grain surface From Gauss’ theorem it can be obtained

(r, r )
\ r ] - r \  a ‘

By integrating the equation (19) the following result is obtained

(2 0 )

ф(г) -  S í  exp ( - k r ) ^ ka2 - . ^ S ± al  +
Y r  2 k a

exp(-fcr)[exp(-fca)(1 + k a )  -  ехр(Ла)(1 -  k a ) ]
(21)

Furter the other grains ( j и i) are considered and the collective effects between grains 

may be taken into account and then the potential Ф(г) is given aftei integration of eq (19), 

for any distribution function
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E / O Ï . Ç >  “ N \ d ' r / (2 2 )

If f  = 1, this condition is of the form 4лЛ3/3 = N,  that defines a distance R  ~ L  In
2

this case the potential is

Ф (г)  -  j - e x p [ - f c ( r - i j ) J -  
r

1 + 2 i tNk '3 exp(-kR) ( 1  +k R ) (e xp (2 k r )  -  1 )

1  +ka -  2nNk '3exp ( -kR) -  [ (  1  +  Д г я )  — (  1  - ka ) ex p (2 k a ) ]

(23)

and then

Ф(г) - ф - ф(г) - —  4л‘Ы9---- _ (24)
' 1 _ ^ a 3N

For equilibrium the condition It + » 0 is imposed, and in above equation the currents

aie given by the eq ( 1) - (2), with the и , it ф(а) -» ф and n * ii,, i t-  He = - 2 - -------—------

The ion charge is taken as unity and pr° ß, Then the equilibnum grain chaige is deduced

from the equation

1 -ер[ф(я)-ф]
\m  -  m

m
V 4

^•ехр[ер(ф(я)-ф] (25)

A dimensionless parameter A(N) that contains the dependence of ф on grain and 

plasma parameters is introduced, defined by

4jcY-
A ( N )

Q ( N )

(Ф(а)-Ф)
4 n a 3N

(26)

with the aim to write the equilibrium charge equation (23) as follows



S ÇOLDEA

/ \ 1/2

m'/

a) " ï ] [ l  -еР(ф(в) -Ф)Л(Л0] -

[l + ер(ф(я)  -ф ) -Л (Ло] ' ехр[ер(ф(о)  - ф  )]
(27)

It can be seen that A(N) a  N If the ratio 9 ^ .  of grain charges (for a number o f ^  

grains in plasma) and the charge of a single grain in the considered plasma are introduced, 

this ratio is

Q(N) _ Ф(я)-Ф .C(N)
б(°) [Ф («)-Ф к. ^

• (28)

where Ф__< i but
1Ф(«)"Ф1 -о

£ W > i
C(0)

As an example the F-ring of the Saturn, that contains a dusty plasma, may be 

considered The specific parameters are in this case a = 1pm, R = 0,2 cm, T = 10 pmeV, 

n = 100 cm3 (0 + ions) and XD = 166 cm The result for the value of capacitance ratio is

C(-N) = 10009 and [Ф (g) ~цФ 1 = 2 7 io-1
c (°) [Ф («)-Ф к.

From the presented analysis two conclusions could be deduced for the present state 

of the considered problem

a) The grain charge, under the given conditions, is not so large as we could expect if 

the plasma tempeiature T = 10 eV is taken Q(N) = 2 70243 ‘1 O'4 Q(0)

b) The corresponding electromagnetic forces are smaller in the considered example, 

for the evaluated smaller grain charge

The same discussion could be made for dense dusty plasmas [9] and also for high
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dust-grain density by using the same kind of analysis

The other effects on a charged grain in a dusty plasma, as drag on a moving grain, the 

motion of such a dust and coagulation of gram in plasma will be discussed in the second part 

of the paper
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ABSTRACT. - The plasma collective effects are included to analyse the process of the plasma 
drag on a cliarged dust gram movmg through a plasma, due to Coulomb collisions The 
conclusion of the analyUcal discussion is that the forces among the ions modify the gram 
influence on the ions trajectories, which is the source of the collective effects and that the drag 
on a grain is mdependent of the presence or absence of plasma particles movmg faster than 
the dust

1. Introduction. The effects of a charged particle on the grains in a dusty plasma can 

be considered from two points of view

(a) the effects of electnc and magnetic forces on the dynamics of the grams in the 

plasma, and

(b) the effects of the grain charge on the properties of a plasma waves propagation, 

instabilities and new modes

In the case (a) the electromagnetic force should be added to the gravitational or 

radiation pressure forces and the orbits of the grains in plasma could be altered 

The equation of motion of a grain is of the form [l]-[2]

where Fh i s  fhe gravitational force and F  is the radiation pressure Such a theory is called 

gravito-electrodynamics [l]-[2] The plasma physics is modified by the presence of some

( 1)
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charged dusty particles

DeDending on the consideied particulai phenomenon that is discussed two kinds of 

theories could be used

(I) the dust-grain can be taken as another plasma component (heavy ions) and then the 

known results of many-component plasma theory could be applied

(II) the grains could be considered as external fixed impurities, acting as local and 

strong perturbations for plasma particles

Grains moving through the plasma could be also considered

For a dusty plasma, without the case when the gram radius а(ц) £ 1 and when it 

contains very low frequency oscillation modes, the gram dynamics can be neglected with 

respect to the plasma ion electron dynamics The following simple physical model for a dusty 

plasma can be taken into account a nonneutral plasma (nt * u.) m the presence of a 

distiibution of fixed charged centers that determines a stationary potential distribution of the 

system, being the solution of the Poisson equation

where f a0(r, u) « = i,eji are the distribution functions of the plasma components in the presence 

of grains and the charge density of the grain pe is given as

Рв(г) is a given function and does not change the plasma response in the presence of a wave 

or of any other perturbation

This is the simplest model for a dusty plasma, but othei more complex physical 

models are used, such as the spherical capacitor model, where the spherical symmetry

(2)

р г ( г )  =  r - £ ^ ó ( F - / ? p ) (3)
P
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assumption is made and for which the nearest neighbor approximation is not needed Other 

two models are those of impermeable grams and of permeable grains in a plasma, the last 

being artificial because it was consideied that plasma permeates the grain and the system is 

overall neutral

The collective effects could be included or not in the theory of dusty plasmas In this 

second part of the paper [3] the collective effects in the plasma drag process on a charged 

gram are analysed We take into account only the effects of electric forces due to ion 

Coulomb collisions on the grains in the plasma

2 . Collective effects on a dust grain in the case of drag process. A chaiged grain 

interacts with the other charged dusty plasma particles The collective effects occur because 

there are forces among the plasma particles that are altered by the presence of a grain charge 

The inclusion of collective effects requires the use of the Vlasov - Maxwell equations 

Usually a linearization is needed, giving an inexact solution

A more complex collective effect, the drag on a grain in a dusty plasma, when the 

grains move through the plasma, is analysed in the paper, the collective effects between the 

plasma ions exist due to their interaction and are considered here The interaction of the 

grains among themselves is not considered The charging curents could be calculated, the 

factor by which the grain charge and the electromagnetic force on such a particle are altered 

by the presence of the other grains in a dusty plasma may be also evaluated The plasma is 

considered as a perturbed reservoir (with n,, because some charges are given to the 

grains) The velocity distribution of such a plasma is a Maxwellian one and the plasma has
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an average potential Ф, the difference Ф (a) - ф, where Ф(я) is the grain surface potential 

determines the ion and electron currents to a grain [l]-[2], all the other charging processes 

are neglected here It is considered that ß, = (V An analysis could be made by considering a 

gauge-invariant Poisson equation

The solution of this equation can be given for the different earlier considered models 

The detailed theory of the motion of a charged gram in a plasma and of the collecüve effects 

on such a grain is not given here The analysis for the electrostatics of a dusty plasma, with 

the study only of the drag on a dust gram moving in the plasma is made

The drag force on a moving grain in a plasma is a phenomenon due to direct ions 

impact and to the grain-ion collisions and is defined as the product of the acceleration of 

grains (of velocity v0) and of the grain mass mg) eg  wg-»(v0) (we will adopt the 

Chandrasekhar approximation of finite mg) The direct ion impact diag is given by an 

equation of the form [4], if the collective effects are neglected

Щ  (a) - Ф) - *2(Ф (о) - ф ) + 4я • p„(Г) = na ■ % (4)

\[ic- a
(5)

where mu2 = 2kTl

There are two cases that may be taken into consideration

(0 If (o s a  the grain is moving slowly and in this case.

Fы =  - 2 ^ t  n^a  1mlaui (6)

and

(n) if ш & a  the grain is moving faster and then

/'(rf= л/i (7)
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The assumption that the dusty grains do not interact is made The collective effects among 

the ions could be or not considered, the foice among the ions modifies the grain influence on 

the ion trajectory It is necessary to linearize the ion distribution by assuming that b /s  y, e g 

the force is slightly changed in the presence of a grain chaige, that means to not consider the 

smallness of scattering angles This is the same as expanding the product of grain and ion 

charges in Qe, this product being proportional to the grain-ion coupling

The expressions for Fld in the case of no large scattenng angles (for the limit of small 

product Qe) can be given under the following form

that is the expression given by eq (5) if f(v) is taken as a Maxwellian distribution and for the 

case of large scattenng angles is given by the relation [5]

where the impact parameters are b ^  = and bmln = b

With the aun to include all effects discussed above, the equations given for the drag 

force in the considered approximations are coupled and it is possible to give a more realistic 

result The difference between the eqs (8) and (9) is a measure of the errors that appear due 

to linearization of the Vlasov-Maxwell equations, if the impact parameters satisfy the 

condition a s  b s Xn This correction is used together with the drag foice obtained with the 

inclusion of col'ective effects in the set of Vlasov-Maxwell equations (for a £ b £ °°)

(8)

( 9 )

( 10)
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where К(,К,ш) is the plasma dispersion function [6] Only foi the condition b > XD (the 

scattering angles are small) a correction is not needed Then for a =s b £ Xn the collective 

effects are not so important and only the grain charge imposes the ion trajectory and not the 

other ions

A possibility to find the radial motion velocity of dust in a magnetosphenc (planetary) 

plasma (the migration motion), that is due to the drag effect, appears as the result of the 

earlier made analysis The rotating plasma gives then to a gram a laige circular orbit added 

to its angular momentum motion Inside of syncrotronous radius a dust grain overtakes the 

plasma and falls towards any considered planet Usually the ions are not influenced by the 

othei neighbours (ions) are describe hypeibolic orbits. The forces among ions modify the 

gram influence on the ion trajectories, this fact being the source of the collective effects

The conclusion of this short analysis is that we can choose some particulai data for 

a given plasma, as the density n, of ions, the tempeiature T„ the Landau wavelength XD, the 

charge Q of the gram and the giain velocity cu, then the force Fld could be evaluated for a 

specific case, this fact giving the possibility to see the correct comportament of the dusty 

grams in a planetary plasma Some numerical evaluations of the drag force in a particular case 

will be done elsewhere
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ABSTRACT. - Rotational and vibrational relaxation of pure liquid pyrrole al temperatures 283, 
293, 303, 313, 333 К and in CS2 solution at 283 К have been studied by Raman bande sliape 
analysis The activation energy for molecular reorientation of pyrrole molecule was detemuned 
The experimental vibrational correlation functions were compared with the Kubo-Rothscluld 
and Oxtoby relations

1. Introduction. Different spectroscopic techniques (Ж, depolarised Rayleigh, Raman, 

NMR) are used for the study of molecular dynamics in condensed phases [1,2]

Rotational relaxation was studied first for the molecules in which vibrational relaxation 

appeared as an additional and often very weak phenomenom

Therefore in order to test the different theories of vibrational relaxation, heavy 

molecules in which vibrational relaxation has an important contribution, should be preferred 

Recently Navarro and al [3] were obtained the IR relaxations from the molecules of 

biological interest

Among the different spectroscopic techniques, Raman Spectroscopy has the advantage 

to sepaiate the contributions of rotational and vibrational relaxation, in the line hope

From the experimental spectra Ivv and Ц,, (the indexes refer to the polarisations of 

incident and scattering light, respectively) we can obtain the isotropic line profil (1„0) which

"liabvi-liolvm" Umvetsily, I'acultv o f  Phvsit?, 3-)00 Clui-iVa/Joco, Rumänin
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offers information only on the vibrational relaxation and anisotropic one (1„и0) from which 

we obtain information about rotational relaxation [4J

0 )

= (2) 

By eliminating the contnbution of the slit width of the spectrometer and by assuming 

a loientzian shape line, we can obtain the real vibrational widths of the line (full widths at 

half maximum, fVvhm)

г = r1 no 1 V

Г . = Г +unl lu  1 to i fi

(3)

(4)

(Г2Я) being the line width of the rotational contribution

Vibrational (x,,) and rotational (т2Я) correlation times are obtained by using

ХИ,2Я =  f  l u (5)

The vibrational (Gr(i)) and rotational (G2R( t )) correlation functions, offer anothei 

possibility to estimate the different relaxation mechanisms

G y ( t )  = j l laa( f o ) ex p ( ia > t ) da )  (6)

< ( 0  “ J"7, e x P ( n , u ) ^ > J G y ( 0  ( 7 )G,

The main purpose of the present work is the Raman study of vibrational and rotational 

relaxations for ring breathing vibration (1144 cm-1, A,, p -  0 05) of liquid pyrrole and carbon 

disulfide solutions and to compaie the expenmental correlation function with theoretical 

Kubo-Rothschild and Oxtoby equations

2. Experimental. Raman spectrum was excited with 488 nm line (0 3-0 4 w) of а \r
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laser type DLA 120-1 the radiation being passed beforehand through a Glann-Thomson prism 

The scattered light collected at 90° was analysed with a double monoclu omator GDM 1000 

and Iyi, and components were obtained by a 90° rotation of the polaroid situated in the 

gathering optics

One of the Raman spectra in liquid pyrrole is shown in figure 1

_i---------------------------------------------- r
woo w avenum ber/cm -1

Figure I l Vy and I vll Raman spectra for vnllB(A,) mode of liquid pyrrole at 283K, slit width of 0 6 cm'1 The 
intensity are expressed m arbitrary units

The monochromator slit width was set at 0 6-0 8 cm"1 (fwhm) for both scattering 

components The ratio between the slit width and apparent band width of lvv component was 

0 1 , so that the finite slit width effect on the determinated Г11й and r nnjjo values could be 

neglected In r̂der to avoid a weak asymmetry of the band, /,,, and /,„ spectra were 

measured at even,' 0,4 cm"1 on the high wave number side of the band A distance of 5 5 half­
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widths fiош the peak center was used in ordei to insuie a flat base line

Fourier tiansforms of and 1ашго spectia weie deconvoluted with the triangle slit 

function (obtained with Ar‘ plasma lasei lines) The experimental vibiational second momentЛ/,1' 

was obtained by using the fonnula [5]

where and S(u>) are the normalised isotropic Raman spectra and experimental triangle 

slit function lespectively

The pyrrole was purified by distilation and used immediately Solvent of "Merk" 

uvasol type was used without purification Only CS2 was utilised because in other solvents 

(like CC14, C2H5OH, CHSCN) the modification of the coloui solution during the mllumination 

with the laser light was noticed

During the measurements the temperature was constant within ± 0 5 К

3. Results and disscution. The Raman band parameters obtained for v mode of 

puie liquid pyrrole using the relations (1-5) and neglecting the influence of slit width, are 

summarized for different temperatures in table 1

In the limit of the experimental errois ± 0 5  cm' 1 there is a coincidence of both 

scattering components

The tv values calculated from the slope of In Gv(t) are very close to values obtained 

from Tv without slit correction The computation of t ?)) from (lie slope ol In G,,,(t) is veiv 

difficult because G2K(t) oscillate after 1 5 ps

Fig 2 presents vibiational and rotational coirelation functions on log.uulimic scale at

( 8)

so
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303 К for pure liquid pyrrole °-

Fmm x2R values (see table 1) is evident that
- 0.2 -

the reonentational contnbution to the band shape 

increases with temperature, as expected On the -ot- 

other hand, in the limit of experimental errors the
- 0i-

vibrational correlation times xv are temperature ^

independent Fig 2 Vibrational, reonentational correlation
functions of v^glA,) mode for pure liquid pyrrole 
for T = 283 К

Table 1 Raman line parameters for vmig mode pure liquid pyrrole at several temperatures (line width (fwhm) 
correlation time т

T/K Scaltenng component Г/cm'1 T/PS T2K/pS

K . 57
283

ÛJQSO 70
1 8 8 1

56
293

74
1 9 5 9

1̂80 57
303

77
1 8 5 3

i» 56
313

ÛllSO 80
1 9 44

I|bO 57
333

«̂uubo 84
1 8 3 9

Assuming an Arrhenius type relationship for temperature dependence of the rotational 

correlation time [6]

т 1Н = A  e\p ( k tl I R T )  4 = c o n s t ( l > )

The activation energy F.a foi the reorientation of pyuole molecule is estimated to be
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9 5 KJ/mol (fig 3)

We will use the values in order to

conclude about the relativ importance of

different relaxation mechanism For all the

temperatures studied the vibrational

relaxation is the most important mechanism

in forming the bande shape

In order to understand the evolution of relaxation times and the interactions between

pyrrole molecules and solvents, the experimental vibrational (Gv) and rotational (G2R)

correlation functions were determined for different concentrations of pyrrole in the carbon

disulfide solutions Fig 4 presents the rotational and vibrational correlations functions for

pyrrole in CS2 at concentrations (molar fractions m.f) 0 72, 0 46, 0 22
о___________ 1

In solution at short times Gv decays fastei

Fig 3 The logarithm of the reonentational correlation 
times (t2k) for vm,8(A,) mode vs 1/T

than G^, and therefore the vibrational relaxation is 

the main mechanism, responsable for the band 

shape broadening A parabolic character of the 

vibrational correlations functions (Fig 2 and 4) is

- 0.2

-04-

-0j6-

Tb2B3K
jyt>072mf

p0.22mf

noticed at short times and the function becomes w>,
Fig 4 Vibrational and reorientational correlation

almost linear in logarithmic scale at long time This functions of vniltl mode of pyrrole CSj solution 

character corresponds respectively to lorentzian function in the central section of the line and 

to a gaussian in the wings In this situation we can apply the relation (4) even the profile is 

not a pure lorentzian shape
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The application of the vibrational dephasing theory developed by Kubo and Rothschild

[7] suplies some additional informations concenrng the vibrational ielaxation processes of thev. 

mode in pyrrole According to this theory the vibrational correlations functions is expressed 

by

G,(0 = ex^[-<to2(0)> {-i< [exp(-lhc) - t 1 + v } ]  ( 10)

This vibrational correlation function is essentially determined by a measurement of 

vibrational second moment Л// (in cm'2), which gives the mean-sequare frequency 

displacement of the instantaneous vibrational frequency <o0 + ш(/)

<<u2(0)> = 4я2с2М/ [/is-2] (11)

and the modulation time tc, which chaiacterizes tlie correlation decay of the stochastic 

perturbation of co(/)

<ui(f) ca (0) > /<<o2(0) > » e x p  ( - / l x ( ) (12)

Two typical situations are distinguished, depending on whether,

<Ш2(0)>ШТС< 1 о/ > 1 (13)

the processes which modulate o>(/) are either "fast" or "slow"

Equation (10) describes the vibrational dephasing piocess and the two limiting cases 

can be examinated For extremely low modulation (tc -» °°) or for short times (i<xc ) eq ( 10) 

leads to a gaussian vibrational function

0 , л 0  -  eYp[~ < <ч3(0 )  > r 2/2 ] ( 1 4 )

The half width corresponding to a gaussian spectrum being

-  (  2  In  2  )'n < ru 2 (  0  ) >v4 k ( ( I S )

For a very fast modulation ( t c - >  o) or foi long times (/ >xt ) eq (10) becomes a simple

Hi
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exponential relaxation function

Gy(t) = ех/|[-<<1)!(0)>-сс /

The half width for a lorentzian spectrum being

( 16)

Г(. = <о>2(0 )> т с/л (17)

Another expression for relation (12) has been proposed by Oxtoby [8]

< ш ( О ш ( 0 ) > / < ш 2 ( 0 ) >  =  s e c 3 i 2 ( / / r c )  ( 1 8 )

which gives the correlation function

GpIO = ex/i[-<cű2(0)>Tcln6osA(//ic )] (19)

Theoretical equationas (10) and (19) were applied to our experimental correlations 

functions The expenmental second moments M*, obtained from isotropic Raman spectra 

(eq 8) were used to calculate <co2(0)> (eq 1 1 )

The theoretical vibrational correlations functions were computed according to 

eq (10,19) by inserting expenmental <w2(0)> and adjusting tc for the besi agreement between 

the theoretical and expenmental correlation functions

Table 2 present the application of Kubo-Rothschild’s and Oxtoby’s equations to vnng 

mode of pyrrole pure liquid at different temperatures and for solutions at 283K

Table 2 Application of Kubo-Rotschild’s and Oxtoby’s equations lo vnw inode pyrolle pure liquid and solutions

System T
(K)

Oxtoby Kubo-Rotschild r\
(cm1)

c\p<ш2(0)>
(ps'2)

exp

4
(PS)
Ox

<о)2(0)>ш

Ox

rf -  r"
(cm1)

Ox

r?
(cm1)

Ox

■Ce­
ps

KR

<ш2(0)>1/2
*тс
KR

r?
(cm1)
KR

285 1 14 041 0 43 13 3 4 9 0 44 0 4b 5 3 5 6
pure 293 0 97 0 48 0 47 12 3 49 0 52 0 51 5 3 5 У

pyrolle 303 0 65 071 0 57 10 0 48 0 80 0 64 5 5 5 7
313 0 90 0 70 0 66 11 8 6 6 0 84 0 79 8 02 5 6

8-1
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SoluUon 
m f.
0 72 283 0 94 0 46 0 44 12 1 45 0 50 0 48 49 50
0 46 283 0 92 041 0 39 119 40 0 43 041 42 48
0 22 283 0 72 0 52 0 44 89 37 0 56 0 47 42 44

With experimental vibrational second moment <ш2(0)>г̂ ,Г^ (eq 15) and г£ (eq 17) 

were calculated These values were compared with the experimental Г"" = r iio

Inspection of table 2 shows that r£ values are very close to r"p which implies an 

important contribution of lorentzian part in the band shape

The tc values for pure liquid pyrrole are 0 4-0 8 ps and increase as the temperature 

is raised Thus the correlation decay of stochastic perturbation is slow at high temperatures 

At high temperatures a polymenzation of pyrrole molecules take probably place In general, 

for solution, xc values decrease with dilution due to the decrease of the velocity of fluctuation 

The vibrational second moment <ш2(0)> decrease with increasing dilution It is known 

that an increase in the <ш2(0)> appears in the systems where the oscillators interact strongly 

with the neighboring molecules This means that in our case the interaction between pyriole 

molecule and surrounding molecules is larger in concentrated solution than in diluted one, as 

expected, CS2 molecule being nonpolar molecule

In condensed phase at low concentration the mam mechanism of vibiational relaxation 

is the phase relaxation (vibrational dephasing) [9] In addition to the above mentioned 

mechanism, in concentrated solution, two other mechanisms may contribute to the broadening 

of the isotropic Raman spectia resonance energy exchange [10] and concentration fluctuation

[ 11]

These theories predict a concentration dependence of the line widths of the 1 , -
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type From table 2 we noticed a decrease of 

r v(exp) values with dilution Fig 5 present, this 

linear dependence By extrapolating c 1'2 -* o, the 

line width due to pure dephasing for CS2 solution 

to be 3 2 cm'1.

From relation (13) and inspection of table 2 Fig 5 The experimental isotropic Raman line
widths (ftvlun) vs square root of mole fraction 

we observe that Kubo product <ш2(0)>1/2 xc is car̂ on disulfide solution

approximately similar for both equation (10,19) and its value for different temperatures in

pure liquid pyrrole 0 43 - 0 7 indicate an intermediate modulation regime for vibrational

dephasing xnng mode of pyrrole The fact that the Kubo product values are ~ 0 4 in dilution

is an indication that there is a faster modulation regime than in pure liquid

In fig 6 the experimental vibrational correlation function is compared with the 

theoretical Kubo-Rothschild’s and Oxtoby’s correlation functions for pure liquid pyrrole and 

dilutied m CS2

Particulary for short times, the Oxtoby equation fits better than Kubo-Rothschild 

equation the experimental data

4. Conclusions. The results obtained indicate that for the entire time scale studied, the 

vibrational relaxation is the most important mechanism for vnng vibrational mode of pure 

pyrrole and in CS2 solution From Arrhenius type dependence of x2R vs 1/T, an activation 

eneigy of 9 5KJ/mol for pyrrole molecule was determined

S(>
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Fig 6 Experimental vibrational correlation functions fitted with Kubo and Oxloby equations 
a-purre liquid
b-caibon disulfide solutions
To simplify the figure only one temperature for pure and CS2 solution are presented To simplify the figure only 
one temperature for pure and CS2 solution are presented

A pure dephasing line width of 3 2 cm' 1 was obtained from the linear dependence

r v(exp) vs C ,/2

A better fit with the experimental date is obtained using the Oxtoby equaton instead 

of Kubo-Rothschid equation The Kubo product corresponds to an intermediate modulation 

regime In diluted solutions this regime is faster than in pure liquid pyrrole 

To simplify the figure only one temperature foi pure and CS2 solution arc presented

K7
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ABSTRACT. - We have build a method, tor measuring the excitation function, based on the 
analysis of the transmuted spectrum of the fast neutrons generated by 24lAm-9Be isotopic 
source and using a spectrometer with recoil protons and pulse - shape discrimination We have 
demonstrated lliat, in case of l5N nucleus as target, acceptable values of the total cross sections 
can be obtained by means of this method

1 Introduction. In the field of nuclear reactions induced by fast neutions, a lot of 

interest is concentrated on the problems which refer to the mechanism of the fast neutrons 

interaction with the nucleus, and on the information that can be inferred about the nuclear 

structure from these interactions

Analysing the experimental data from a statistic point of view, we may observ that the 

nucleus of the stable isotopes with little natural abundance are of a special interest These 

nucleus been less research subject, but, because of the more unstable nuclear structure, they 

have a spectacular behaviour during the nuclear processes

2. Experimental. The experimental methodology for measuring total cross sections 

is presented Lately, there have been used "white” neutron sources, based on cyclotrons, liniar 

accelerators or tandem generators, to measute excitation functions a,(E) We used for the fust 

time the 24IAm-Tle source spectrum It should be mentioned that these kind of measurements 

can be realised only with a fast neutrons spectrometer and the use of the Am-Ве source needs 

a good n-у discrimination

The probability of interaction between the fast neutrons and the nucleus is

"liabeş-Iiolyai" Umwi.sitv. bantin' al Phvsu s, J 100 Cluj-h'apoca, Romanţa
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characterized by the cross section oT and is defined in the following way [ 1 ]
d NaT - ___

T N n d
where dN is the number of interactions between the neutrons and the target nucleus, N is the 

neutrons number that fall on 1 cm2 of target area, n is the nucleus concentration per target 

volume unit of pure element and d is the target thichness In the case of a molecular target 

the relation ( 1) became much complex like in relation (16)

When using a thick target, the density of the flux changes with thickness "x" In order 

to find out the number of the neutrons penetrating the target, one should give the differential 

equation of the layer fullfilling the following requirement for a given thin layer haveing a 

thickness dx at a depth X in the sample the following equation is valid
dN = -N(x)n о, dx

The solution of the equation (2) has this form
N(x) = N0 exp (-л aT x)

where N0 is the initial neutron flux This means that, for finding out the cross section of the 

neutrons interaction with the nucleus is sufficient to measure in one experiment the decrease 

of the neutrons flux N(d)/N0, during the penetration of the target

ат^ - Ш
rtd

This formula can be turned into another one containing more accesible experimental 

parameters In this way
»r  /  ™

Sd AJV'
V

— , V N'

It results the next formula

A l n - ^  
N(d)

,, mN. c — 
A S

where N(d) is the number of the neutrons which aie left after the penetration of the target, 

A is the atomic mass of the target isotope, NA is the Avogadro’s numbei, c is the isotopical 

concentration, m is the mass of the pure element and S is the tiansversa! section of the target

The relation N/N0=T is called transmission factoi
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If we have the possibility to venfy the energy of the neutrons with a neutron 

spectrometer, then we can measure the total cross sections corresponding to already known 

values of the neutrons energy

Measurements are done through the transmission method, by mans of the so-called 

"good geometry arrangement" We place the sample in the way of a collimated bundle of 

monoenergetic neutrons We measure N0 and N in order to be able to calculate T [2]

If we want to extract an excitation function having the following form a,=f(E j, then 

we registei the spectrum of neutrons, measunng both with and without sample, on the whole 

energy field, and we calculate, by means of the formula (6), ctt for every value of the energy 

of the spectrum

Our purpose was to determine the excitation function for 15N For that purpose we 

used a sample of 15NH415N 03 (double marked), enriched by isotopes up to the concentration 

of 98,5% in 15N

In order to measure the cioss sections, we use an 241Am-9Be souice of neutrons of lCi, 

generating 106n/s, enclosed in a collimator of borate parafine, a fast neutron spectiometer with 

stilbene crystals and a pulse-shape discrimination circuit (fig 1), studied in [3-8]

To extract the latelly scattered neutrons, we used a beam stopper The common 

methods is to put a long metal bai (of Fe, Cu, or Pb) in the place of the sample, through 

which the neutrons cannot enter Then, the transmission factor corrected by the background 

is

r . f f - N b
»0 ~*b

where Nb is the laterally scattered neutrons intensity, which arrives in the deiector

We have performed preliminary studies on the 12C nucleu using the spectrum of the 

Am-Ве source, for inif roving the measurement method of the total cross section at fast 

neutrons and we obtained the excitation function of l2C nucleus This shows broader and 

thicker resonances The purpose of these measuiements was to see if we could collect nuclear 

data in a 10" n/s total pencil (the Am-Ве soutce gives )06 n/s in 4л) Another purpose was 

to estimate the neutions spectrometer lesolution depending on resonances separation

We collimated the neutions source with a borated paialine collimator and we placed
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a neutron detector to 0,5 ш distance of the collimator A grafit sample with m/s=3,78 g/cm2 

was placed in the middle, between the detector and the collimator We registered the incident 

neutron spectra ^ ( E J  and the transmitted spectra N(EJ in 2 hours each other, to have a good 

statistic We made the calibration of the multichannel analyser’s channels in protons energies 

and operated the neutron spectrometer with stilbene in the same conditions, but with the gate 

in anţicoincidance, this means opposite to the neutron signal of the pulse-shape discrimination 

circuit (fig 1) Using the method of calibration in electronic energies with

Fig 1 The scheme of neutron spectrometer vvilh n-у discnimniilion 1-The P S D input, Il Spectrometric input, 
Л,В identical output, C -double discrimination, D - simple discrimination
1 The Am-Ве source in borated parafine collimator, 2 Stilbene scintilation crystal 20\30 mm, 3 

Fotomiiltiplicator ф { 1'). 4 The PSD сагой!, 5 The charge preamplifier type 1141 FAN, 6 Power source with 
cadre lur NIM modules type SI 614, 7 Miser rev er soi type NE 4618 8 lançai gale (I) type 1183 FAN, 9 
Encigy analyser type NE 4664, 10 High voilage power supply type 1135, 11 Speciromcinc amplifier type NE 
4698,12 Linear gale (111 type 1183 FAN, 13 Multichannel analyser 1CA-70 It Pnntcr 15 PolenUomclnc 
recorder
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Y sources, these have been turned m proton energies with a luminosity function having the 

next form L(Ep)=C,EpC2

Fig 2 The transmission neutrons of the 211 Am-^Be source neutrons through carbon
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The data-were transferred in one computer CORAL 4021 that was working in tandem 

with a multichannel analyser ICA-70 Using a program named SPEC-N, we obtained the 

incident neutron spectrum N0(E„), and in a caibon sample tiansmitted neutrons spectrum N(E„) 

(fig 2)

Using the relation (6), we calculated point by point, the values of the function a,(E) 

and in order to find the transmission factor T, we divided the two spectras Fig 3 shows the 

results, in comparation with the results obtained in [9] In conclusion, we have

a After the calibration of the Am-Ве source spectmm with gamma sources, (without 

contrail by the monoenergetics neutrons), theie are appeanng deviation from the real energy 

of the neutrons until 0,5MeV This is illustrated by the position of the carbon’s resonances 

b The absolute values of the cross section are not in accordance with the data given 

in literature [9], these have the tendency to be systematically less in the two neutron peaks 

region and systematically greater where we have less neutrons

The "good geometry" condition requiie that the value of the transmission factor to be 

cc 0,5 for each energetics group So, in order to determine the excitation function, we can’t 

use the continuous spectrum the way it’s shaped in fig 3, so only by measuring the 

transmission factor in the eneigy region

Also, introducing a set of changed values set (I i,Ei) in the SPEC-N progiam, we 
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Fig 3 The contmous line - the results indicated by [10J The broken line - the measurements effectued on the 
Am-Ве source

adjusted the luminosity function L(Ep) depending on the shift established comparatively with 

the carbon’s resonances In that way, we used the carbon resonances for the recalibration of 

the neutron spectrometer, we obtained for a stilbene crystal with 3 cm diametei and 2 cm 

thickness

£(£p =0,184 £р1жм4

With this measurement technique, perfected on the PC nucleus, we obtained dm 'n
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correct values of the excitation function (using an Am-Ве source) (fig 4)

By using fig 4, we can study the resolution of our neution spectrometer with the

stilbene crystal By the way this spectrometer solves the carbon resonances at 2,08 MeV or

2,45 MeV, you can see that the equipment (built and perfected in our laboratory) has a 

resolution of 0,2 MeV, we can estimate the equipment measurement en or,by using the results 

from the fig 4, too 10%

3 Total cross section determination of 15N In oidei to calculate the total cioss 

section of 15N, we measured the initial neutronic spectrum of the 141Am-9Be source and the 

spectrum transmitted through the sample double marked with 14N (enriched at 98,5% in l5N)

%
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In order to verify the contribution of the oxygen and hydrogen of the NH4N 03 sample, we 

also registered the spectrum transmitted through the natural sample, having the same mass and 

containing 14N, as well as the spectrum of the laterally scattered neutrons (fig 5)

It is true that the curves of fig 5 are close, but, as a result of our experience with the 

program SPEC-N, we found that the difference was stell therte, because the sample marked 

with l5N absorbs more intensive the neutrons than the natural sample

Knowing these curves, the excitation function of l4N, as well as the major isotopical 

concentration C15N, CUN and respectively, the minor isotopical concentration C15№ C14N of the 

15N and 14N from the sample, we are able to calculate the microscopic cross section of l5N 

for the maximal values of the spectrum in fig 5, where we had a better statistics

The macroscopic cross section of the chemical compound NtfyNOj, can be defined in 

accord with [3], in the following way

4 E » )  “  n t s v  a i s J E n >  +  nu a„  ( £ „ )  +  « о  ° o  0 У  +  nm  

where n, is the concentration of the l nucleus in 1 cm3, n,’ is the concentration of the minor

isotope, and o,-(En) is the cross section according to the value En of the neutrons 

From the relations (3) and (9), we can obtain the next relation

W  - 1  l n «
' n d N(E}

We can extract the neutron background, which is exactely the spectrum measured with the 

beam stopper, using the relation (7)

В Д  - 1d N(En) - N0(EJ
If we couple the relations (9) and (11), then we will obtain a relation for the microscopic
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We need to know the excitation functions of the oxygen, hydrogen and nitrogen - 14 (minor 

in this sample on this energetic domain) and the nucleus numbers in one volume unit nH, n0 

and n’14N

But the utilisation of relation (12) is not the most comfortable way to measure the 

cross section of the 15N with minimum error Therefore, we made a measurement in the same 

conditions on one natural sample NH4N 03, having the same mass and geometrical form (the 

natural isotopical concentration of 15N is 0,37%). We wrote for this sample a similar relation 

to (12) After that, we made the differences of the two relations

1  A L ( £ )  -  Л Г . ( Ю

°i5Ä >  - < w £„ )+ %  ° " v -
d  П Ш  N 15№  -  N J - E *>

1 b W  - В Д )  . f « “ ? Ц 0 ,Е)dnm W14W (£) - NJE) U 14„  nj

( -

_ 14 15
*0 **0 nlbV
i v i  " i  s n '  " m  " i s ty

Because we worked with samples having the same mass, we can prove that

-------- f~ \  °я<£р) “ 0,03 aJEJ
”isw7

( i t  w ill be  neglected)

'<W  = 0,06 o0( iy
’ n 14 

»0
15 .

-  _ÜL_

‘r tMW n l5 AT

Relation (13) becomes

(l - - (l - £ " )  *
V Ь14ДГ'  4 '•'lsw 7

+ _ J _  i„ w l w  _ _ l _ to w  - *w>
^  ” l3N ^15V  "  В Д  ^  ” lW  ^ 1 4 л № ^  "

УЧ
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In that way, knowing the microscopic cross section of UN, we can find the microscopic cross 

section of 15N If we consider that the thicknesses of the sample are the same, using formula 

(2) we can turn relation (15) into another one, more useful

(l - 1 ^ )  " f1 - ~ )  a y jß )  +

+ 1
m "  C 1JW NlM(En - Nb(En)n. — —

A s

1 ^  jy,(£J - З Д ,)
C1W - В Д )

where Nb(En) represented the spectium measured by means of the beam stopper, N 14N(En) is 

the spectrum transmitted through the natural sample, and A15N and A14N are the respective 

isotopical masses

We have made the calculation with relation (16), using the spectras from fig 5 We 

found out that the only sure values are those from the region of the two intense groups of the 

neutrons This value is fulfiels the "good geometry" condition for the tiansmission factor

The values obtained by, using formula (16) were placed over the excitation function 

given by [11, 12], our points being maiked by + Regarding the order of magnitude the results 

proved to be in accordance with the results given by [1 1 , 12 ) (fig 6)

100
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ABSTRACT. - The influence of the inelting temperature on the redox equilibrium of uranium 
ions in the 0 93Na2B̂ Or O 05 Al2O3-0 02UO3 glass was studied usmg optical spectroscopy The 
obtamed optical data prove that increasing melting temperature determine the reduction of the 

ions to U41, ions in the studied glass

1. Introduction. Since glass is used to immobilization cf nuclear waste [1 ,2] the study 

of glasses containing radionuclides becomes important Uranium is one of the important 

radionuclides that appears in nuclear wastes As was previously reported[3,4] uranium ions 

appear in oxide glasses in different valence state, such as U'6, U f5 and U"4 The study of redox 

equilibrium between these valence states is of considerable interest

This paper presents the results of a spectroscopic investigation of the influence of the 

melting temperature on the redox equilibrium of uranium ions in the 0 93Na2B4O7-0 05 A120 3- 

0 02UO3 glass

2. Experimental Method. Samples were prepared using reagent grade borax 

Na2B40 7 IOHjO, A120 , ("Reactivul" Romania) and uranyl nitrate U 02(N03)26H20  

("Chemapol" Czechoslovakia) First a borax glass was obtained by melting borax at I000“C 

for 30 minutes U 03 was obtained by thermal decomposition of the uianyl nitrate Than, 

adequate amounts of Na2B40 7(powdered glass), UO,and AI20 3 were melted to obtain the

Technical Umvci \ity of (  'htj-Napocn, 3-100 Chtj-Napoca, Romania
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0 93Na2B4O7-0 05A120 3-0 02UO3 glass The samples were prepared using five different melting 

temperatuies, namely 800, 900, 1000, 1100  and 1200°C The melts were equilibrated at these 

temperatures for 2 hours Glass samples were obtained as slabs (20x8x3 mm) by pouring the 

melts in a stainless steel piece having an appropriate grove

Optical absorption spectra for the visible and UV region(10,000-30,000cm'1) were 

recorded using a Specord UV-VIS(Germany) spectrometer To obtain the optical spectra the 

glass slabs were polished on two opposite sides

3. Results and Discussion. All the samples containing U 03 were yellow This suggests 

the presence of uranium ions mainly as U6h, probably in U 022+(uranyl) foim

The 0 02UO3 content of the studied samples permits to obtain optical absoiption spectra 

with well resolved spectral features A representative absorption spectrum of the 

0 93Na2B4O7-0 05A120 3-0 02UO3 glass for the UV and visible region is presented in figuie 1 

(spectrum 1 )

Pig 1 Optical spcciraofO 93NiijB,07-() 05А170 3-0 02UO, (curve DandO 1ЛЫагВ,0,-<> 05AI,O, (curve 2) glasses
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Spectrum 2 in this figure corresponds to the basic 0 93Na2B4O7-0 05Al2O3 glass The 

comparison of the two spectra proves that the spectral features exhibit by spectrum 2 belong 

to the uranium ions The spectroscopic features evidentiated by this spectrum are charactenstic
1 I

for oxide glasses containing uranium ions[3,4]

The most important features of the 0 93Na2B4O7-0 05A120 3-0 02UO3 glass appear at about 

16,000cm'‘( assigned to U44 ions), 20,700cm'‘( assigned mainly to U6+ ions), 23,200cm'‘( 

assigned mainly to U4' ions), and from 24,100cm"1( assigned to U6f ions) The assignements 

were made according to some previously reported data concerning some borosilicate and 

borate glasses[3,4] We note that the positions of the absorption bands belonging to the U4+ 

and U64 ions observed for the 0 93Na2B4O7-0 05A120 3-0 02UO3 glass are close to those 

reported for other borate and borosilicate glasses This suggests the fact that the coordination 

sites of uranium valence states seem to be independent of glass composition

The vai lation of the melting temperature generates some changes of the spectral features 

These changes are shown in figure 2

Fig 2 Changes produced ш (he optical spectra оГ the 0 93Na;B,O7-0 05А170 3-0 02UO-, glass by increasing the 
melting temperature ( 1 for 800”C, 2 for 90()°C, 3 for 100()“C, 4 for 1 !00°C and 5 for 120(V'C)
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Thus increasing melting temperature generates the increase of the bands from 16,000 and 

23,200cm'1 and the decrease of the shoulder ftom 20,700спг‘ These changes indicate an 

increase of the amount of U'4 ions in the samples with increasing the melting temperature 

The increase of the melting temperature of the samples-seem to determine the reduction of 

the uiamum ions according to the equation

4U6t(melt) + 402'(melt)= 4U14 + 20,(gas) (l)

It is possible that this process implies not only IT 6 and U t4 ions but also U3' ions ai d follows 

a two step process, according to the equations

4U6'(melt) -+ 20 2'(melt)= 4U '3(melt) + 0 2(gas) (2)

4 i r 3(melt) + 20 2'(melt) = 4UH(melt) ь 0 2(gas) (3)

Oui spectroscopic data did not permit to evidenţiate the piesence of U5' ions However we 

do not exclude the possibility of appeaience of U3' ions, but we estimate that the 5+ valence 

state is probably less stable in the studied glass than 6+ and 4+ ones

4. Conclusions. An optical spectroscopic investigation was made on the 

0 93No2B40 7-0 05Al?0 3-0 02UO3 glass in order to study the influence of the melting 

temperature on the redox equilibrium of the uranium ions The obtained data indicate that the 

increasing melting temperatures determine the reduction of the U6' ions to U4‘ ions
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