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STUDIA UNIV BABES-BOLYAI PHYSICA, XXXVIIL, 1 1993

MEDIUM SI1ZE NORMAL CIRCLE BOUNDED HOMOGENEOUS
MAGNETIC FIELD SINGLE FOCUSING MASS SPECTOMETER
WITH IMPROVED RESOLUTION

P.ARDELEAN', F.DUNCA', C.CUNA’, D.ICANOVICH", A.PAMULA’, CARDELEAN", LMALZ’

Recerved 10.04 1993

ABSTRACT. - A 90° deflection normal circle sector homogeneous mapnetic field mass

speclrometer was constructed and tested The instrument was desigoed for a mean 10n path

radiss of 100 nun The mass spectrometer mamn parts are descrtbed A peak half height

resotution of 1570 was cbtained at an son current of 0 16x10 ' A for a final accelerating sht

of 002 mm For a slit 0 03 mm wide the resolution was 1410 while the ion current increased

10 0 85x10'* A The nstrument was operated at even higher infensities, currents of 0 9x10 '

A being collected with resoluttons over 200, the final accelerating slit width being set to 0 5

mm

1. Introduction. The mass spectrometer was designed for tsotopic concentration
analysis It can be used for gases and volatile liquids, by covening the mass range from 1 to
200 mass umts

The design with circular boundaries, normal beam entry and exit was found to be the
most appropnate for our purposes An 1on marn path radius of 100 mm was selected to satisfy

both resolutton and sensitivity requirements stmultaneously without excesstve mstrument size

and weight ncrease

2. Description The main parts of the mass spectrometer (Fig 1) are the sample inlet

system (IS) with 1ts own vacuum system, the ion source (S), the analyzer (A), the detection

" Institute aof Isotopic and Alolecular Technology, P O Box 700, 3400 Cluy-Napoca, Romania

 Fechnical Univessity, Depar tment of Automatisation and Computers, 3400 Cly-Napoca, Romania



P ARDLLEAN et al

system (D) and the main vacuum system

The sample introduction system s a standard one, aliowmg the simultaneous
attachment of two samples The valves ensure the se—paranon of the two tntroduction ways,
and the separate introduction of the samples 1nto the expanding container These valves also
allow the evacuation of the introduction system after the end of the analysis

From the contatner, the sample to be analysed is admitted by a capillary tube nto the

101 sQurce

To mawn 7 ampl
VR oYU
SysTem

1S f
i

7o vacuum
syslem

Fig 1 A schematic diagram of the mass spectometer

The introduction system 1s evacuated by a 4m*h rotary pump
The 1on source of the mass spectrometer was derived from the modified Nier design
[1] It consists (Fig 1) from an 10mzation chamber (IC) with the electron gun (EG) and ton

repetier (IR), the half plates (HP), the cylindrical lens (CL), the z deflectors (ZD) and the

final 1on beam accelerating slit (A8) The electrodes weie manufactured fiom nonmagnetic



MEDIUM SIZE NORMAL CIRCLE

stamnless steel, and are aligned by ceramic spacers and supported by a system of iron rods
The electrons are collected by an electron collector (EC) housed in the 1onisation chamber,
the collector field being screened by a shield with a shit for the electrons

The energy of the iomzing electrons produced by a rhenium filament 1s usually of 60-
100 eV [2] The value of the ionizing current measured on the electron collector (EC) 1s
stabilized on the range 10-70 pA

An auxthary collimating magnetic field of 100 Oe ensutes the electronic beam
focusing To this value must be added a small component due to the stray field of the masn
analyzer

The optimum potential of the repeller relfated to the 10nization chamber was established
expenimentally to be around +18 V to maximize the resolution and keeping a good
sensitivity

The analyzer is a 90° normal circle homogeneous magnetic sector field The mean ion
path curvature radius 18 of 100 mm The second order focusing properties of this design
allowed us to obtain s good resoluno;'n for a relattvely small curvature radius

In this respect 1t was possible to use a radwus of 160 mm, and to keep the instrument
global size between lhimits acceptable for usual research work |3] The magnetic sector
position can be regulated by a screw and it was accwmatelly located between the 10n source
final slit and the collector, accounting for the fringing field effects [4, 5] The magnetic sector
1s provided with magnetic screens

The magnetic arcuit of "C" type design was made from Annco 1ron with the coil on
the central yoke section

The 10n collection system consists of a grounded vanable shit, an antidynatron shit and

5
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a Faraday cage connecled to an electrometer amplifier

The main vacuum system consisting of a PYDIF-04-100 type ol diffuston pump,
provided with a liquid mitrogen cod trap designed especially for the efficient retention of the
o1l vapours permited to obtain a pressure under 10 torr in the absence of the sample

The vacuum valves are electrically acted by the control and protection unit which
closes them and disconects the heater of the diffusion pump, the high voltage unit and also

the electron gun supply n case of vacuum system fatlure

-
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Fig 2 The mass spectrum of the Kr oblained for a final sht width of 0 3 mum
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3. Experimental results and discussion. The measurements were performed on the
isotopic peaks of Kripton i3y using a large 0 5 mm wide final accelerating st a resolution
R, of 210 at 50 % peak height (Fig 2) was obtained at m/e = 80 to m/e = 86 the ton current
sntensity being 09x10™ A The intensity of the 1onizing current was 25 jA

An accelerating voltage of 2 1 kV was applied on the ion source

To calculate the resolution at peak half helght from the mass spectrum the following
formula was used

R, = myL/(nAl) (1)
where m,, 18 the average value of the masses m,, = (m, + m,)/2 1n u, Al 15 the width of the
greatest peak at half height in mm, L 1s the distance on the spectrum between the peak
centroids also in mm, n 1s the distance between the m, and m, in mass umts(u)

A resolution R, as peak half height of 350 for a final ion beam accelerating sht of 0 25
mm at an ion current intensity of 0 7x10"° A was measured The resolution increased to 840
at an ton current ntensity of 1 5%10™" A for an accelerating slit of 007 mm

In the case of a final ion source sht reduced to 003 mm (Fig 3) the value of the
resolution was 1410 at an 10n current tntensity of 0 85x107* A

The best resolution 1570 was reached for an accelerating slit width of 0 02 mm at a
current of 0 16x10™"2 A (Fig 4)

The theoretical peak half herght resolution can be estimated with the formula

R =[s/C+AU IU+AU U241 1 | @
where s 15 the width of the final source slit, C the 1on main path radius, eAU, the difference
between the energies of the 1ons formed at the same pont of the source at different instants,
produced by high voltage short time 1nstabtlities or notse, in our case 1x10™ of the value of

7
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Fig 3 The mass spectram of the Kr for a final ton source slit of ¢ 03 min
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Fig 4 The mass spectmn for a final son source st width of 002 mm

the 1on accelerating voltage U, eAlU, the beam energy spread duce to the thickuess of the
iomzation reglon, typically 0 § eV, Al, the instabdity or noise of the imagnet current supply,
i our case also 1¥10™ and ¢ the 10n electric positive charge

In fig S two R, = f(s) curves are given for instabihties of 1x10™ and 2> 107

tespectively  The open dots are the values obtained expenmentaly, quite close by the
p y pe p q Yy |



MEDIUM SIZE NORMAL CIRCLE

theoretical values
As it can be seen, for wider final ton accelerating slits the resolutions practically
comcide with the theorettcal values indicating a good focusing of the 1on beam The s1ze of

the fon-optical cbject is equal or 1 the case of 0 5 mm slit a little bit thinner than the width

of the final accelerating sht

0 e S LU A I S R
0 W 02 03 04 05 5"

Fig 5, The calculated resolutton R, = £(5) 1 - calculated for an instabstity of 1%10°, 2 - for an instabilty of
24107 o - the data obtained from spectra (R)

It 15 also possible that the beam energy spread caused by theulomzauo'n region
thickness 1s smaller than the value 0 5 ¢V usually {tssumed, and this could also be responsible
for the good resolution obtarned

For 0 07 mm, 003 mm and 0 02 mm final accelerating sht widths the experimental
resolution 1s close to the theoretical values indicating that the focusing properties of the ton

source ustng cylindrical lenses enabled to deliver a well focused 1on beam
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The position of the analyzer sector, as well as the position of the magnetic screens 13
quite critical and any small displacement affects the instrument resolutton
Acknowledgements, The authors thank Prof Dr V Giecu, Ds, N Palibroda and Dr

D Ursu for helpful discussions
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ELECTRON IMPACT FRAGMENTATION OF SOME
THIONIC-DIOXAPHOSPHORINAN-ARYLSULPHONAMIDIC DERIVATIVES

M.CULEA" N.PALIBRODA’, S.NICOARA”, 0.COZAR™, LOPREAN", LFENESAN"™
Rucerved 1911 1993

ABSTRACT. - The mass spectra and the fragmentation patways oblained by electron impact

of Phenyl- (1), 2-p-methyl- (2), 2-p-fluorine- (3), 2-p-chlonne- (4), 2-p-bromide- (5), and 2-p-

methoxi- (6) -phentlsulphonamido-2-thion0-5, Sdumethyl-1,3,2-dioxaphosphonnanes are

presented. Accurate mass measurements and metasiable transitions detection for compound (1)

were used to elucidate the proposed fragmentation reactions

Intreduction. Organophosphorus compounds ere widely used as pesticides,
therapeutic and plastifying agents, due to their structure and biological potential Their
thtodenvatives were increasingly studied lately /1-8/

The articles on the mass spectrometry of these compounds outhline that the
fragmentation mechanisms depend on the nature of the atoms bonded to the P atom /7/

The atm of this work 18 to interprete the mass spectra and the fragmentations under
70 eV electron impact of some {(1)-(6)]2-arylsulphonamido-2-thiono-5, 5-dimethyl-1,3,2-

dioxaphosphoninanes which contain the P=S and P-N bonds /7/ Their structural formula 1s

presented in Fig 1

Experimental. The compounds (1)-(6) were symhesnzqd at the Chemustry Institute

" Institute of Isotopie and Molecular Technology, 3400 Chy-Napoca, Romania
™ Techucal University, Depar tment of Physics, 3400 Clu-Napoca, Romanta
™ “Babey-Bolyar” University, Faculty of Phystes, 3400 Chy-Napaca, Romania

" Instinte of Chemisiry, 3400 Chy-Napoca, Romaa



M CULEA et al 7

/ /F’_— NH'——“SOZ R
Cl_lB )
A . B
TR =H 4 R=C
2.R =CHg 5.R=B
3R<F 6. R=0CH;

Flg 1 Buuciural formula of the campounds (1)-(6)

from Cluj-Napoca, Romanta, by a substitution reaction between 2-chlorine-2-thiono3, 5-
dimethyl-1,3,2-dioxaphosphorinane  and  the sodwn galts, of the cofresponding
arylsulphonamides /7/

Measurcments weie made using a MAT 311 mass spectrometer with inverse Nigp.
Johnson geometry Standard operabing condittons were 70 eV electron energy, 100 pA
emission cujrent; 150°C 10n source temperatuie and 700 resolvmg'power

The direct tnlet system was used at the optimum evaporation temperatures 85°C (1),
95°C (2), B0°C (3), 100°C (4), 120°C (5) and 125°C (6)

Metastable transitions, tegistered by the 4V and MIKE techniques /9,10/,
confirmed the fiagmentations for compound (1} High resolution measurements were used in

the peak matching mode, to deternune the accurate chemical formulae of the 10s /9/

Results and discussion. The 70 eV elections impact mass spectrum of compound (1)

1s shown 1n Fig 2

12
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Fig 2 Mass spectnua of compound (1)
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Table 1 presents the main fragment 10ns in the mass spectra of compounds (1)-(6) and

Fig 3-5 show the proposed fragmentations together with the structures of the 1ons

lon (1) m/e(%) [(2)mie(%)[(3) mle(36)[(4) mie(%)|(5)mie(%) {B) mie(%)
m»pgmﬁ] 321(4) 33B2%) 338(4) 355(2) 395(1) £ I7)
G+R) | 252(100) | 271(100) | 275(100) 291(160) 335(100) | 287(100)
szsé‘ 1+R) | 242(2.5) 256(2) 260(2) 276(2) 320(1.5) 76
c(207+R) | 208(1.5) 222(1) 2260 24(1.5) 285(1.5) 238(0.5)
d{223+R) | 224(9) 236(9) 242(8) 258(8) 3080 2540
a(201+R) | 202(1.5) 216 22009 23E(1) zai(l 232(-)
f(171+R) | 172(8) 186(12) 190(6) 208(4) i&?&.ﬂ mP(5)
a{189+R) | 19000 204(4) 208(10) 224(8) 258(8 220(4)
h(188+F) | 189(6D) 203(36) 207(85) 22300 20(44) 219(25)
i70+R) | 1710103 185(14) 109(8) e 240(5) 20(21)
i(154+R) | 185(8) 168(9) 173(8) 165(8) RGN 185(20)
k{Z24+R) | 225(1.5) 239(3) 243(2 ST 303N 2B5(0.h)
{223+R) | 224(1D) 238(3) 242(1) 255 3024 254(2)
m{133+R) [ 194(7) S0 | 2126) TTRE) 2ol 24
n(166) 165(3) 165(2) 165(4) TEEE) | j‘;'du[ 185(4)
a{133) 133(3) 133225 133(4) 1334 3,%,1 -l 133(.5)
p{140+R) | 141(13) 155(12) 158(18) Tes{11.5) 2%&@4 17116
g{T24+R) | 126(7) 139(8) 143(7). 1B5(7) 20355 [P
f92+F) | 9327 107(21) 111(30} 127249 17120 &
s{7/a+R) | 77(50) §1(48) 45(46) ATER) wisgm
W{165+RY | 156(4 ) 170(3) 174(4) 186{2} TH) 4
v{235+R) | 236(8) Z50(3) 254(3) 270(35 34 5.9)]
w(133+R) | 140(46) 154(23) 168(38) 174(20) 218l 772}
2{203+R) | 204(%) 219(1.5) 222(5) 23602 |282(3) 234(2

Table 1 Mass spectral data for compounds (13-(6)

In all cases, M" produces low intensity peaks (<2%) and eliminates the neutal

molecule SO, as reported 1n stmtlar studies /3,4,11,12/, giving the basc peaks at tons g (See

Fig 3 ) Afterwards, like other dioxaphosphonnanes /8/, 1ons a foose vne CH, group, leading

to 1ons b and, consequently, to the stiuctures ¢ or ¢ The latter 1ons accur by the ehmination

of the neutral molecules H,S or H,Q, 1espectively, processes already encountered for

thiophiosphororganic molecules containing O /4,12-15/

lons a may also loose the radical C;H; and torm the structure ¢ 1 Fig 3 This
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fragmentation ts produced by the cleavage of the dioxaphosphonnanic cycle (part A of the
molecule 1n Fig 1 ), which s a frequent process 1n the organophosphorus compounds with this
kind of heterocycle /1,8,16,17/

fons e may eliminate the neutral molecule CH,0, by the P-O bond fission, as reported
in likely situations /12,15/

The ions W are produced from the structure f by the elimunation of the § atom,
subsequent to the P=S double bond fission, process confirmed by the metastable transitions
and mentioned in other thtophosphororgame compounds /1,157,

Undecrgoing a rearrangement process by a five membered transition state, as proposed
by Edmundson /8/, 1ons a loose the radical C,;H, and produce ions g, in Fig. 3

The cleavage of the dioxaphosphorinanic cycle in 1ons « and the elimnination of the
radical C,;H, probably leads to the structure 4. Reacticns of this kind were formesly reporied
/8,19,20/ ‘

lons A conduct to 1ons 7, by loosing one OH side group, dS found for symtlar cases
13,18/

Metastable detections confirmed that 1ons /i eliminate a neutral H,0O molecule to
produce tons / or & neutral H,8 molecule to form ions j, processes frequently observed in
organic compounds containing O and S /4,12-14,21/ |

These results concerning the dioxaphosphonnamc cycle cleavage, present an obvious
stmilanty to those already reported /8/

Figure 4 proposes other fragmentations pathways for 1ons ¢ They may loose 8, to form
scarcely observed tons &, or loose the radical SH and produce important IOI;S J This s
oppostte to the results mentioned in the literature, on the A type (;f compounds /8/, but an

16
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Fig 4 Reactions starting with the loss of the SO, group prior to the chmunation of neutral radicals or atoms
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explanation could be given by considening the increased acidic featuse of the amydic proton,
in our compounds (1)-(6) This does not yet exclude the Edmundson’s conclusion /8/ that a
methylenic proton from the cycle gives its contribution to the SH elimination

Metastables detection prooved that 1ons | loose CH,0, as already reported /15,19/, to
form ions m (See Fig 4)

Finally, producing 1ons n, the tons a may elininate the frahnents NH and CH,R,
other simultaneus losses of more fragments, being sometunes observed /22,23/ Subsequently,
1ons # form the ions o, by breaking the double P=8 boud, as Edmundson also reported The
abundances of tons n and o are ten imes lower for cur substances than other data on the A
type of compounds /8/ This difference 1s the different ways that the = electrons distnbute
between the P=S and the P-N bonds, tnside the molecular 1on M*, which 15 an aromatic anude
in this case (Fig | ) and an alyphatic amide in the literature

Figure 5 presents an other fragmentation scheme for the molecular tons M*  They
undergo simple fission of the N-S bond and form 10ns p which subsequently may loose’ one
O atom, to gtve 1ons ¢, SO, to produce the structure r, or $O,, to form ions s These
eliminations are common for organics contaning SO,, /3,4,11/

The simple fission of the P-N bond, frequently encountered in phosphororganics with
N /22/, produces the 10ns 4, from the molecular 1ons

The dioxaphosphorinanic cycle may undergo cleavage even in the molecular 1ons,
producing the structure v in Fag 5

Ions v eliminate SO, to forn 1ons fwhich subsequently loose one S atom and produce
ions w

The 10ns z may result fiom v, by the elimination of the S atom and further conduct

18
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fig 5 Reactions starting by simple fission or rearmangeawent of the molecular 1on M’
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to 1ons w, by loosing the SO, group Metastable measurements indicated the reaction f— w,
aswellasz = w

In all spectra, tmportant tons at m/e 77, 56, 55 and 51 are present due to the
fragmentation of the aryl group

Ions at m/e 69, also important n all spectrs, result from the fisston of the
hetherocyclic part of ‘the molecular i1on M' and consist of the fragment having the following

elemental formula C;H,

Conclusions. These compounds mainly pursuit fragmentation by the cleavage of both
the arylsulphonamidic and the dioxaphosphonnanic sides of the molecules

All six substances show low molecular ions { <3% ) The base peaks, i alf spectra,
are given by ions 4, formed from M' which loose 80,

‘Th‘a fragmen@s a undergo rearrangement reactions involving H transfer inside the
dioxaphosphorinanic cycle as well as fromn this cycle to the S atom, subsequemtly eliminating
CH,, CH,, C,H, and CH, (neutral 1adicals)

During the fission reactions, the following groups are also eliminated: SOZ;H;,O, H,S,
CH,0 (nguual molecules) and O, S, SH, OH, SO, NH, CH,R, C.H,O (neutral atoms or

fadicals)

20
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RAMAN SPECTROSCOPIC STUDY OF THE STRUCTURE
OF B,0,-L1,0-CuO GLASSES

T. ILIESCY, S. SIMON, I. ARDELEAN and N. MARTON’
Received 1008 1993

ABSTRACT. - The influence of the melting tempenature (1273 K and 1573 K) and of the
CuO content on the network structure tn the (1-x){28,0, L0 xCuO glasses with 0 s x = 0 05
mol % is 1nvestigated by Raman speciroscopy At melung temperature 1573 K the glass
neiwork 1s broken in a larger mede like than at temperature 1273 K Cooper oxide acts as
modifier 1n ithism borate glasses in which are present six membered berate rings with two
BO, tetrahedra, chain type metaborate group, orteborate, ptroborate and fiee BO, units

Intveduction. The most common glasses are formed by nuxing glass forming oxides
(S10,, B,0,;, P,0,) with modifier metal oxide {1] The oxygen from the metal oxide becomes
part of the covalent glass network by creating new structural units Reman spectroscopy 1s a
powerful and efficient too! for resolving the structuie of local arrangements i glasses

Raman spectra of binary lithium borate glasses were investigated at different lithium
oxide concentraton by many authors {2,3] In the Raman spectra of B0, glasses there is a
specific strang band at 807 cm™ assigned to the boroxol nngs in which boron atom is three
coordinated {2] The addition of alkali oxide L1,0 to B,0, determines the appearance in the
Raman spectra of a new band about 780 cm™ Bril {4] assigned this peak to the formation of
six membered borate rings containing onc BO, tetrahedron (boton atom 1s four coordinated)
The proportion of boroxol and borate nngs depends on the L1,0 content At a ratio R > 033
of L1,0 and B,0; concentration there present only borate nags

By combimng the Raman scattering study and NMR 1nvestigations, structural groups
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RAMAN SPECTROSCOPIC STUDY

present 1n borate glasses have been clearly 1dentified [S] Fig 1 shows the several structural
groups present tn this glasses

At low R values R = 0 25 it was found [6] that the introduction in the hthium borate
glasses of the copper oxide determine diastically changes in the glass structure The nsing of
the CuO content determines the decrease of boroxo! rings number and the increasing of the
number of six membered borate rings {6}

The siructure of the lithium borate glasses with gadolinum oxide content ts
pronouncedly influenced by the melting tex.nperature of the sample {7)

The aim of this paper is to observe the t;tmctural changes of lithium borate glasses
with lurge R value (R = 0 5) at different melting temperatures (1273, 1573 K) and different

copper oxide concentration

Experimental. The glasses were obtained by melting of boric acid, lithium carbonate
and copper oxide mixturc m the desired proportion at the indicated temperatures The
parallelipiped shaped samples weire obtained by pouring of melts in stainless steel forms The
Raman spectia have recorded on GDM 1000 monochromator instrument equiped with 1LA-1
argon 10n laser, the emussion line at 488 mm was used with a incident power of about 0 5W

A 90" geometry and a spectral shit width of 3-4 ¢cm™ were used to collect the scatteied
light The spectra were recorded without polanzer tn the gatheuing optics The measurements

were carned out al room temperature

Results. The Raman spectra of hthium borate glasses with copper oxide content
obtained at the melting temperatures 1273 and 1573 X are presented in fig 2 and 3,
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In the Raman spectra of the glass system (1-x) [2B,0, 1.1,0] xCuO obtained at melting

temperature 1273 K (fig 2) there ar¢ present intense bands at 472 and 762 o "and weak
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bands at 652, 890, 972 and 1452 cm™ The weak band at 652 cm™, which 15 present as a
shoulder 1n low frequency side of the 762 cm™ band for x = 0, increases 1n intensity at large
copper oxide concentration The same increasing 1s observed for 472 cm™ band For the other
bands 1s not observed a sigmficant change in intensity Note that the position of the bands is
not modified at different x values From the glasses with x > 0 05 the Raman spectra are very
difficult to be obtaned From these spectra we observe the absence of 805 cm™ band which
was present at low R values (0 25 - 033) [6] In the Raman spectra of the glass system

(1-x)[2B,0, L1,0} xCuO obtained at melting 1573 K we see the intense band 467 cm™ which
changes 1ts posttion to low frequency side at large x values and 757, 987, 1012 and 1430 cm™
bands with unchanged position at different x values At x = 0 05 a shoulder at 530 cm™ 18

observed

Discussion. From the absence of 807 cm™ band in the Raman spectia of (1-x)
{2B,0; L1,0] xCuO glass system we conclude that boroxol rings are not present 1n our system
for all x values and both melting temperatures The Raman peak at 782 cm™ which 1s present
distinctly 1n the spectra of the sample obtained at 1273 K with x = 0, can be assigned to six
membered borate rings with two BO, tetrahedra For six membered borate nngs with one BO,
tetrahedron 780 ¢m™ band and 1ts constant position 1n the spectrom [4,6), 18 specific

Based on the Raman spectra of crystalline Li,0 B,0; which contains chamn of
metaborate tons, Konynedik and Stevels [8] assoctayed the bands at _ 720 and 1470 cm™
with the presence of a shoulder at 717 cm™ and of the very bioad band centered at 1452 cm™
1s an indicaton that at x = 0 the chain type metaborate untts are present n our system From
the spectia presented n fig 2 we observe that chain type metaborate umits are present at all
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x values and their concentration are practicaily unchanged at different » values For pure B,0O,
the band at 470 cm™ was assigned to ring bending mode of the boroxol rings [9]. In our
system tho bending made is probably due of a free BO, unit or onq that is attached very
weakly to a ring type strugture From the rising in intensity of this band at large x values (fig
2) we conclude abou‘t the break of the glass network with increasing copper oxide
concentration

On the basis of comparison with the specira of crystalline analogs {10] the band at 972 |
cm” can be assigned to the stretch of orthoborate uniis. The bands at 890 and 652 om*
indicate the presence of [;ywbor@t@ and methaborate units, respectively. The band at 762 em™
is asymmeirical in the 10\:1 frequency gidé because of the presence of the bands at 717 and
652 cm This asymmetry became more pronounced with increasing copper oxide
concentration From the fact that the intensity of the band at 1452 cm™ is not changed, we
suppose that this asymmetry is determined by the increasing 1n intensity etther of 652 cm’™
band or of the wing of 4‘72 cm™ band This means the increasing either of metaborate unit
number or of the free BO, umit number at large COppér oxide concentration By ‘comparmg
the Raman spectra obtained from the samples prepared at 1573 K (fig 3) with those obtained
from the samples prepared at 1273 K, we can observe a shift to the low freﬁuency side of
some bands, from 472 to 467 cm™, 762 to 755 cm™, 1452 to 1447 cm™ and to high frequency
stde of the other bands, from 890 to 907 cm™ and §72 to 1005 cm™ The band at 467 cm™
18 more 1ntense than one 472 cm™ band This means that nsing of the melting temperature of
the glass determines the break of regular borate groups The same situation was Qbéewed n
the lithium borate glasses with gadolinium oxide content obtained at 1273 and 1473 K [7]

The shift of the band at 762 cm™ to 755 cm™ positton confirms our supposition about
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the presence of two BO, tetrahedra in the six membered borate rnings

The shoulder at 530 cm™ developed at x = 0 03-0 05 values can be associated with the
presence of BO, tetrahedra in well defined, yet interconnected borate arrangemnent, confirmng
the 1dea that copper oxide acts as modifier in lithtum borate glasses

Conclusions In the glass system (1-x)[2B,0, L1,0] xCuO there are not diastical
changes in the network structure as copper oxide 1s added In this glass system there are
present six membered borate rings, with two BO, tetrahedra,chain type metaborate groups,
ortoborate, pyroboraie, metaborate and BO, units Rusing of the melting temperature from

1275 to 1573 K determines a stronger break of network and the increase of free BO, units
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Figure caption
Fig | Borate group and specific Raman peak observed in several borate compunds Dotted hine through the
oxygen tons indicate that these are of the bndging type (from ref [3] and [5])

Fig 2 Raman spcum of the glass system (I1-x){2B,0, Li,Of xCuO Malung temperature 1273 K
Fig 3 Raman spectra of the glass systemn (1-x)[2B,0; L1,0] xCuO Melting temperature 1573 K
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COMPARATION OF INTERACTION ENERGIES FOR METHANE
USING BUCKINGHAM AND LENNARD-JONES POTENTIALS

G. V. DAMIAN’

Recerved 1011 1993

ABSTRACT. One of the most imposiant problem tn molecular dynamics simulation is the

choice the good force field parameters for mtermolecular interaction The Buckingham and

Lennard-Jones interaction potentials sensibibity, was comparated using some C-C, C-H and H-

H potential parameters for methane dumers The new Buckingam potential parameters was

obteined by fiting with quantum calculations in fourth-order Moller-Plesset perturbation

method

Introduction. The requirements on the interaction potential and its parameters (also
known as the force field) depend on the area of application and the type of data one 1s
interested in When the focus of the simulation is on the low energy conformations only, a
force field giving the proper potential minima will be considered reliable The some force
field constdered highly unrealiable when thermodynamic or dynamic data are being
simulated These types of data also require a correct shape of the potential well near its
(local) minumum, thenmodinamical data are determined by the phase space denstty function,
dynanucal data by the spatial derivative of the potential function

For biomolecular applications the potential 15 1n general divided into a part describing
the interaction between covalently bonded atoms (atoms separated by up to 3 covalent bonds)
and a part describing the remaining part of the interaction (nonbonded interaction, 1 ¢ Van

der Vaals and Coulomb potential)

In the molecular dynamics (MD) simulation, the nonbonded atom-atom 1nteractions

" "Rabey-Bolyai" University, Faculty of Physics, 3400 Chy-Napoca, Romania
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of carbon and hydrogen are important to descrnibe the time evolution of simulated moleculat
system The atom-atom nonbonded interaction encrgy can be described as
E =E +E+E

where

E, 1s the total atom-atom interaction energy

E, 1s the repulsion term of interaction energy

E, 1s the dispersion term of interaction energy

E_ 1s the coulombic term of interaction energy and wish for nonpolar molecules

The empinical representation of the iniermolecular interaction eneigy of nonpolas
molecules 1s a sum of pairwise additive atom-atom 1nteraction energy terms with each term
being the sum of several energy component

Two type of atom-atom tteraction potyential are frequently used to describe the total
nonbonded interaction energy of nonpolar fluid, the Lennard-Jones and Buckingham

mteraction potential

Results and Discussion. Intermolecular interaction energies of nonpolar methane
dimer were compaiated using Buckingham and Lennard-Jones nonbonded interaction
potential The tnttial configuratton of molecules has been choice thus to coriespond to the
dimer configuration for which intennolecular interaction energies was calculated by the fouth-
order Moller-Plesset perturbation method using the 6-311(2d,2p) basts set /1/

In order to investigate the sensitivity of the atom-atom 1nteraction energy to respect
the type of nonbonded interaction potential, were used three sets of parameters

‘T he interaction energies using some type of potential and parameters are ploted 1n fig,
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! and fig 2
a. Lennard-jones interaction potential

The general form of Lennard-Jones interaction energy 15

C12 Cﬂ -
-~ o i,
EU=EE’J=E[T—__6’ tg =1 natoms )
J iy rU I‘U N

wheie 1 is the atom-atom distance
The following sets of parameters were used
al. Gromes parameters /2/

C(kcal A Co(keal A%
c-C 6250000 2121 52

a2. Proposed by H.J.C.Berendsen /3/

C'*(kcal A"?) Ci(kcal A®)
C-C 476746 21 440 689
C-H 57904 695 104 705
H-H 9902 173 26 076

a3. Q.8.Randall et al. /4/

C'*(kcal A'?) Cé(kcal A%
C-C 3401262 2406 42
C-H 412242 57118
H-H 70461 142 705

b. Buckinghsm interaction potential.
The Buckingham potential are given by
Ly =3 B, =Y Be % -4 r" )
N iJ
with r, the atom-atom distance
The parameters used are

bi. MM3 parameters /5/;
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A(kcal ) B(kcal A™) C(kcal A®)
Cc-C 4968 294 280 22"
C-H 4232 337 ’ 105 34

H-H 3580 370 5206
b2. Dauchez et al. /6/;

A(kcal) B(kcal A™) C(kcal A%

c-C 83630 360 568 0
CH. 8766 367 1250
HH 2654 ‘ 374 273

b3. Parameters obtained by fitting with VP4 /1/ calculation:

A(kcal) B(kcal A™) C(kcal A®)
c-C 3148 2 84 280 225
C-H 2690 326 , 105 344
H-H 2332 ' 370 52057

Plotting the interaction eneigies to respect the C-C distances, for two configurations
1t can see that, the repulsive term of Lennard-Jones potential 1s strong dependent by the
spatial onentattons of moecules having only two adjustable parameters to descube small

changes in 1nteraction process

Conclusions In this paper, the nonbonded 1interaction energy for two methane
configuration molecules was calcutated using Buckingham and Lennard-Jones potential
functions with the parameters used 1n molecular dynamics simulations The new Buckingham
potential parameters was obteined by fiting with ab-inttto quantum calculations ‘The
corespondence between our calculations and Moller-Plesset perturbation method are plese;ncd

in fig 3
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A RF GENERATOR FOR CAPACITIVELY COUPLED PLASMA
AT ATMOSPHERIC PRESSURE

S. . ANGHEL"

Recerved 15 06.1993

ARSTRACT. - A radiofrequency gencrator for mamtaining a capacitively coupled plasma is

presented. The plasma can be opsrated at low tadiofrequency powers (100 - 500 W), argon or

a miature of argon and air at atmospheric pressure being the plasma gas Data rofernng to the

osclllator structuse, the theoretical troatment of the subject and the first experimentat sesults

aro presented This plasma can be uced as speciral source for emission specirometrio

determunations in lquid or solid samples

1. Introduction. The realization of the spectral sources based on the radiofrequency
(rf) plasmas 13 one of the most important progresses tn the atomic spectrometry domain in the
last twenty years Among these scurces a distinct class is represented by the rf plasmas at
atmosphenc pressure named inductively coupled plasma (ICP) and capacitively coupled
plasma (CCP)

Altough CCP was discovered in 1928 [1], the most attention has been accorded of ICF
tll four years ago because of its extremely good performances as spectral source Its
disadvantages (raised consumption of plasma gas and rf power, difficulty of solid samples
analysts, great price) have determined the reappraisement of CCP as spectral source After
Biddrdu et al [2], Cnstescu and Giurgea [3] and Mavrodineanu and Hughes [4] who have
tested the possibility to use as spectral source of CCP, Blades et al [5-7] and Sturgeon et al

[8-10] have tmproved and developed them (n various forms

Because the informations about radiofrequency generators are summary and

* "Babes-Bolyar" Unmiversity, Faculty of Physics, 3400 Chy-Napoca, Romania
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incomplete, we have developed a research ditection for study and achieve of generators for
maintaining of rf plasmas at atmospheric pressure The starting point of our wotks have been
the informations of Boumans et al [12], the first results being related 1n the papers {13] and
{14] )

This paper presents the obtained results afler the research work with a viev to achieve
a rf generator capsble of stnking and mamtaming o CCP at atmosphernic pressuie The
discharge gas 1s argon or a mixture of aigon and air The plasma can be sustained at rf

powers tanging from 100 to 500W and an oscillating {ieyuency about 22MHz,

HE

a

C
~|
C D
u%\ , /PS
AT _L( ~aerosol
7~ C4
_ L
H j
Cq | 7#C2
L

Fig 1 - The dagram of the oscillator T-oscillating triode L,C,,, LC,, L,,C,, - ff filter cells R C, - automatic
negative group C, - coupling condenser 1., - suppressing coil C|,C, - condensers of the oscitlating cirewt 1 -
coil of the osctllating ctreunt C,,, C,,, C,, - parasitic capacities of the oscitlator tube P-sharp electiode 1-annulat

countercleciode C-quariz tabe D-rf plasma (CCP) S-system fot agrosol intioduction
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2. Execution of the rf generator. For obtaining a generator capable to maintain a rf
CCP at atmosphenc pressure 1n various gaseous media we have cammed out a number of
expenimental assemblages using diffeient diagrams of oscillators Finaly, a Colpitts oscillator
type, the diagram of which 1s shown 1n Eig 1, has been chosen This type of oscillator very
easy enter in oscillation, hasn’t the tendency to osciilate at high parasite frequencies, can be
used untif 150MHz and has a good transfer efficiency (50-60%) of the rf power towards the
discharge

This generator has some charactenstics resulting from the puirpose it has been
accomplished for (using of the plasma as spectral source) The condensers of the oscillating
circuit are variable and with air as dielectric, making possible to obtatn a high radiefrequency
voltage between the ends of the coil L and a good adjustment of the load impedance (the
plasma) to that of the generator The plasma 18 stnking by a Tesla cod on the sharp platinum
tip of a cilindncal brass ptece (8mm od and 60mm in length) conected at the hgh of
potential end of the coil L It 1s placed nto a qua;rtz tube C (15mm 1d, 18mm od and
100mm 1n length) sustained by the sample introduction system S, which 1s made of teflon
(PTFE) and assures a laminar flow of the aerosol (the liquid sample pneumatic nebulized)
through the tube The carmer gas (Ar or Ar and air) which 15 the plasma support gas too, has
a tlow rate of 1,5 Vmin At a distance of 45mm from plahnum tip, the quartz tube 1s
surrounded by an annular counterelectrode I conected at the ground clamp It represents the
second electrode of the discharge but the plasma 1sn-t touching 1t 1t assures the symmetry of
the electromagnetic field lines, therefore the symmetry of the dischaige Both the coil L and

the prece P are water-cooled
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3. Calculation of the oscillator parameters. For the rf generator presented in Fig |
we shall determine the electrical parameters of which depends 1ts good function, namely the
osciffation frequency, the condition of starting the oscillattons and the negative 1esistance
effect introduced through the active element (the electronic tube)

In the absence of the plasma the equivalent diagram of the circutt shown in Fig 1 1s
presented 1n Fig 2, in which p and R, are the amplification coefficient and the internaf

resistance of the trode, r 18 the loss

l.
resitance of the coil L and C, 1s the capacity l] 2

L
of the condenser formed by the sustainin

) C3Cits
electrode of the plasma and the annular r
counterelectrode For the actual values of C——~
TCol g

circuit elements the impedances of the
capacttors C,, C,, and C, are very small and

Fig 2 - The equivalent diagram of the oscillator
oL, >> HaC, (w 1s the angular frequency

of the oscillator) Also C,; = C,

By means of Kirchhoff’s theorems and employing complex values, we obtain

I=1+1 M
U = IR 4 2
= +
h, = IR o @
I POV S J ')
JjoC, =2 jmifz

Solving the above system and taking into account that U = -1 /jwC,, we obtamn the

equation
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1+y
wC, jwl ~ +0C Rr
z( YR - 1Yy

G
ClRI 2
-joC, R,+r+..6_ -o’C/LR;{=0
2

From the condition that the real and the reactive parts of the equation (4) should be

zero we obtain the equations

1+p
ol - +@CRr =0 (5)
G
CR
R +r+ %J - ’C\LR =0 6)

From the equation (6) we get the oscillaton frequency
1

S 1+ (7)
C'lCz -R: (’1461
2:1\ Lm

I’ the coil L of the oscillaung circuit has a good quality, then r << R, and
rIR:C,(C + ) « 1 and the oscillation frequency can be calculated with the help of the

following relationship

./z;u—m
2x L

®)

that represents just the proper oscillation frequency of the oscillaung circutt of the oscillator
From the relatton (5) and expression of the oscillation frequency (8), we obtain the

condition of starting the oscillations

C C +C
o T,‘% + lL LRy )
that, under conditions of small losses of the coil L, becomes
C2
(L (10)

For calculation of the negative resistance effect introduced through the oscillating
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~

tnode, this 1s represented as an equivalent current generator If the internal resistance of the
tnode 18 very great and the loss resistance of the coil 13 very small, we obtain the equivalent

diagrams from Fig 3a and b, in which S 1s the slope of the triode and ¢ has the formula

g=Sl_fg[zwL+E,‘—Cr) (i1)

SU
Eg =g == C]

| C
L L T 1
a) b)

Fig 3 - The equivalent diagram for calculation of the negative resistance effect

Replacing the expression of U = -LljwC, in equatton {11} we obtain

L1
: S[t: Tu‘é‘]’ “

The equation (12) can be writlen ¢ = R,/ , in which R, represents the negative resistance
effect introduced by the triode Expressing the inductance L from equation (8) and replacing

it in the equation (12) we obtain

S
,C,C,
One can observe that the size of the negative rezistance effect depends both of the

R = -

n

(13)

parameters of the oscillating tnode and the values of the circuit elements

4. Influence of the plasma on the oscillater parameters. In case on the sustaining

electrode 18 striking a if CCP the equivalent diagram from Fig 2 becomes that fiom Fig 4a
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}1 ’I,I, , b
Lo==
Ri L S T R = ||z
Ci3 P

l MU C4 MUg

a) b)

Fig 4 - The equivalent diagram of the oscillator and 1f plasma

In this diagram R, 13 the plasma resistance, C, 1s the plasma capacity and C, s the
capacity between the plasma and the annular counterelectrode The presence of the condenser
C, tn this equivalent diagram can be explained through the unhomogeneous distributton of the
posttive and negative electric charges nside the plasma Because of less mobility of the
positive fons 1t will extst a posttive charge excess m the neighbourhood of the sutaining tip
of the plasma and a negattvo charge excess n the upper part of the plasma This represents
a condenser whose capacity 15 C, Applying the theorem of the dipole tiansfiguration upon

the diagram from Fix 4a we obtain the equivalent diagram from Fig 4b, m which

cy
Rl =R |1+ 7 (14)
nf )
and
c,C
C=C +C+ 20 (15)
SR eAY ol

Using the same catculation method as 1n the previous chapter we obtain the foltowing

formula for oscillation frequency

/ .
S= ! s il +r R +R, G (16)
CC“-_ rR'r C+C,
m oL o
C4C 45
N 2




$ D ANGHEL

For the actual values of the circurt elements we have C; << C, and C, >> C, (the
plasma 1s very near of the counterelectrode), tharefore one can approximate thatC « C, + C,

and R, « R, Thus, the expresston of oscillating frequency becomes
R4 R C
S ! j-Jl+r N (17)
(€,+C,)C, RR C+G+C,
7 3 V ARLEEE St
C+CrG,

Also, because r << R, and the capactties C,, C, and C,, and resistances R, and R, have
respectively the same order of magnitude, the expression of the oscillation frequency can be

written

(C+C)HC,
T GAC,
One can obscrve that tn tho absence of the plasma (C, = 0) the expression of
osctllation frequency 1s the same with that from expression (8), and the presence of the
plasma must determine a diminution of the osciilation {requency

At this oscillation frequency we obtain the following expression for the condttion of

starting the oscillations

G, RY ¢ rc»C
= S FE AN 19
" Tﬂ:( R,,) G 19)

From this relattonship one can observe that when we try to strtke the plasma, 1f the
amplification coefficient of the triode 1s too small then the osaillations tend to put out and the
plasma 1sn’t stniken

The presence of the plasma determines a nse of the active reststence of the oscillating
circutt of the oscilfator which will determune a rise of the total power absorbed by the rf
generator from the source of conttnuous voltage

In previous treating of our subject the contribution of the parasitic capacities of the
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tnterrupted lines 1n

Fig 1) and of the

grid capaci-ty, Cg, on Ri 1 i Cag

—— -1
electrical parameters . CGC
of the oscillator uld l 1
H -—g A

have begn neglected _L L 4 Cz:’: IC gc

Taking them into

Fig.5 - The complete equivalent diagram of the osctlator
account, the

equivalent diagram of the oscillator becomes that from Fig,5
Applying the iheorem of the dipol transfiguration and the star-tniangle transformation

of the circuit between A B and C points we obtain

l the equivalent diagram shown in Fig 6
C1+ Cp+ L
C4+C Such, the oscillation frequency of the
ac’ AC L
T ( osciflator will be
A Can
+
) BCT r
S ! (20)
Fig 6 - The cquivoatent osailfating circunt ol Lle o+ (C‘%‘P” G Gyl
\ @ (’11*(‘2+(*,1+Cu+cac+cnc
n which
Cﬂ C, .
Cop ™ YT ' 21
al Cn (vﬂt‘
Cae ™ '-"—ﬂ——ar-(_!+( T (22)

47



S D ANGHEL

c C i
C, =25 & 23
“ CB + C"S + CE“ ( )
5. Experimental results and conclusions. Ustng this generator we have succeded in
snking and maintaiming a rf CCP at atmosphenc pressure in argon or a mixture of argon and

air The results of the measurements and calculations are synthetic presented tn Table 1

Table 1
E, f f, P, » G,
[Vl {MHz] [MHz] W] (pF]
1260 22 604 22 510 85 055
1416 22 606 22 497 i35 065
1618 22607 22 470 185 087
1888 22 609 22436 275 114

Here E, represents th<e anode supply voltage of the oscillator, f and £, are respectively
the oscillation fiequencies 1n the absence of the plasma and in its presence, P, ts the rf
absorbed power nto the plasma and C, 15 the electncal capacity of the plasma

The oscillation fequency was measured with an E-204 type digital frequency counter
via a cotl inductively coupled with the cotl L of the oscillating cireuit The 1t absorbed power
into the plasma was calculated by making the difference between the power consumption of
the generator tn the presence of the plasma and the power consumplion 1 1ts absence This
method can be used accepting an etror of 1 [0% The capacity of the plasma was calculated
from the relationship (20) 1n which C, 15 the single unknown, all the other values being
measurable or known (thé parasttic capacities inclusively)

Analysing the data showr; im Table 1 the few conclusions can be drawn First, one can

observe that in the absence of the plasma the oscillation fiequency practically isn’t intfluenced

by the anode supply voltage Secondly, the hineat dependence of the power into the plasnia
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on the anode supply voltage 300

(Fig 7) make possible to adjust
it at destred magnitude The § 250

e
duminunon of the oscillating ?;’

£ 200 .
frequency when the power into g—
the plasma rises can be 5150 p
coriclated with the increase of o

100 +
the plasma capacity, C,, thanks
to the increase of the ionization 50 *. L
12 14 6 18 20

degree of the plasma Anodic tension(kV)

Fig 7 - Plasma power dependence upon the anodic tension.
If the plasma is used as & power e P

speotral source its stability is very important It was appreciated through the relative standard
deviation (RSD) calculated for argon emisston line of 347 674mm (Fig 8) 1n accordance with
the formula

RSD = 2 100 (%) (23)

in which o 13 the expenimental standard deviation

(24)
and x 1s the anthmetic average of the net intensities x, for a number of n determinations In
our case n=9 and RSD =+ | 62%, what corresponds with the international standards (RSD
= 5%) for this kind of spectial sources
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This kind of discharge (rf CCP) can be used as spectral source in optical emission

spectroscopy {6-11] and absorbtion emission spectroscopy [5], and as detector for gas

chromatography
[15,16} AtResearch
Center for Analy-
tical Instrumentation
from Cluj-Napoca is
studied tl?e possi-
bility to use the
above deseribed ©f
CCP  as speciral
source for liquid and
solid sample

analysis

) L ] 1 i o 3

30 60 90
Time (sec)

Fig 8 - The tume stability of the emission of the plasma

[
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APPLICATION OF THE SIMULATION METHOD
FOR A GYROTRON AMPLIFIER

Bperanta COLBEA’
Recelved 1 061992

ABSTRACT. - The hetemction between a boam of electrons gyrating in a cylindricel or

circular wave guide and the osclllating etectnic ficld is siudied by the small signa! theory for

this annular electron bzam and be spplying & aumerical simulation method The dispersion

relation for the wlatvisic anmilar layes of electrons in en uniform magnetic field along the

waveguide axis is dons and some preliminar resulis of using a I~timenslonal electromagnetio

relativistic progrem of stmulation for the gyvoron amplifier aro presented, belng compased with

the previous ones

1, Introduction. In tho cose of the gyrotron (an electron cyclotron maser)
electromagnetic radiatton is produced as the result of gyrating of the electrons about a
magnetic field The magnetized beam of relativistic electrons propagates through a waveguide
whose cut-off frequency 15 bellow than the electron-cyclotron frequency w,, < o, The
electron beam has a lhugh transverse energy Coherent emission results from the orbital phase
bunching due to the energy dependent relativistic electron-cyclotron frequency- an 1nteraction
between the oscillating electric field and the rotating electrons takes place and gives rnise to
a sinusotdal energy modulation due (o the change 1n relativistic mass of electrons with energy
This determines an azimuthal modulation which forms a rotating bunch of charges which
emits radiation at the relativistic electron-cyclotron frequency w,

The gyrotron device amplifies radiation based on the phenomenon of cyclotron

resonance wnstabthity Since the free energy for this tnstability consists in the 10tational motion

" “Bubey Bolyar" Umversity, Faculty of Phystcs, 3400 Cluy-Napoca, Romanta
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of electrons the conversion of the eleciron streaming energy to a rotational energy can be
censidered as the classical analog of molecular pumping to produce an energy level
population inversion {a laser).

We will taveaﬂgate‘ in this paper one of the mechanisms which transfer the kinetic
encrgy of the selativistio beam to the field energy of an electromagnetic wave (the output
radiation} The transverse dependence of the clestromegneiic field is assumed to be similar
mﬁgtdmmmmmw&

Sovera} theories of # small signal gyratren dovice have been dene [1}H{5]. Usually a
thin rotating device has beon considered, 63 we consider hese In the case when the axial wave
aumber and beam are k= 0, v, = 0, the TM, and. T, modes are usualy decupled {5] But
If 3 finite axia) wavelength Is introduced the theory of gyrotson includes the generation of
both T™M and TE modes [1}-{2] and the coupling of thess modes by magnetized beam 1n a
wavegutde has been demonstrated [6].

We will give a simple theoretical description of the gyrotron phenomenon in the
second part of the paper and the results of applied particle simulation method for the gyrotron

will be done in the fast part of this paper with a short discussion of the results

2, The Linear Theory for a Gyrotron Amplifier \ﬁNke recall here that the gyrotron
amplifier is a device which penerates an electromagnetic radiation through an interaction of
a relativistic electron beam )encircling an external magnetic field, usually in a cylindrical wave
gulde (of ctrcular cross-section) The equations ‘that describe the constdered system and that

must be integrated are the fluid equations and the Maxwell’s equations
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An annular layer of relativistic electrons is assumed, with a small but finite thickness
&, that rotates in & cylindrical wavegnide The beam bs assumed to be monoenergetic having
the unperturbed velocity ¥, = v, €, + vo €, wheie V= pr o, i; the selativistic azimuthal
velocity and o = ef:g is tha relativistie cyc%n{ran frequency, g being the relativistic
factor of the beam {g = ...7) ?P' a&nd dp = 8, p being the radial position The
beam has an uniform density n, in 8 layer thickness & at 9 radius p = r around the axis

The fluld equations are the rolstvistle Lorentz force equation and the continulty

equation given by the following relations: |

_g; Mol Ve -cB - Spvxn )
y3 ¢
Pt
%’;eraa 0 @

The Maxwell’s equations that we use are the following

1 dB
VXE =~_ " 3
g c di @
and
! JdE
Vxp = .7 _— ! 4
v c di @)

where E, B are the perturbed electrio and magnetic fields The equations (1)-(2) will be
linearized by the perturbation method v = v+ dv, n = a+ bn and the perturbations will
be of the form exp (ik -z + il0 -~ 1w-¢), fora monoenergetlc beam v+ vo= vo
The used form for our case of the Maxwell’s equations 1s the following
3E,

_5{1 =ick B +w B - 4n) N )

35



§ COLDEA

a8

_7}.?5 = ek Ky (6)
and

o8

--gf- = -t By ™

where w, 15 the cut-off frequency of the waveguide
By ntegranng the Maxweli's cquations on tho surfaces dZ = d4-Z, where
d4 = pdadp, within the limiis p=vand p + cas
fmar= - I, {p,-d4 ()
(4
sams boundary cendittans for the ficlds ers obtained

After Hnearising tho eq (1)-(2) the sefations for the perturbed velocities bv,, dvg anddv,
and for the current density J are chiuined sfter some algzbrical calculations The currentJ
13 of the form

4 VG —+ ka — P
J=-endV-gdn-¥=-ell - -Vind¥ ~en 18 +- (v, € +v, &) |8y, (9
E] €3]

The assumption of a small boam density is made in the {irst a;;prommatmn and 1t was
considered that the electromagnenc ficld gtven by the current J can be given by the vacuum
waveguide EM-field {1]

After some standard algebra that is based on the equations {1)-(6) the dispersion

av&t

refation for the resonance case w~+w, k,, v, ;= 0, —— = 0, 1s obtained under the form

g

p
2 o (Yo Ve 1 &
J,= (kL-R)'J,'(k-R);; - _‘;’.g,{% T__c‘*fl . -__)

] e RV, r) Y Gk R = J, Gk oR)-Y, ()] + (10)

v
+ kl-Cz_.%‘l-J,(kl-R)-J,’(ki-r)- Y/ (ko Ry = J/ (K "RY-Y/ (& -r) = 0
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where; ’ . .
L 2y 2k @ ‘
. L Cl 4%3',1‘[ . z v(]z (1 1)
) m, (w?- w) P ap
N v
m% k S (&, )( TR r}%%{w-i]}
and S | T
2; ; Zk\ 6 o .
c-dmefg. Tl a2
mn ) (wz ) )2 ap
Y 1 K, - B+ ¥y, b, w—~& v,
of =gy . e AR S z o~ — = J k ¥
w Sk r){ e T R “)-wt A o 1 ( )

When the beamt 13 nat prasﬁnt N =0 and jn the preseqge of ithe begm n=0, if dwis
the sinﬁ: of tﬁe resonant frequawy wl, Some E@natms of the facters Jyand K ars mado and
the- expressxon for & can be.given For N = 0 the eq (7) has the sx«mghﬁed form
JLE R A (k, -RY = 0 that s the dispersion teiatlon for the TE and TM modes The eq
(7) indicates that the beam couples the TE and T™ mcdea (that is a week-coupling far:
J or J/ )

‘In the considered caseof a ctrcular waveguide the reduced dispersion relation has thew
following form-

JRPLN LN I 7?.(:{1) ok~ w,) = -] (13)

. (I - R .
- where 8 is the thickness of the wavegwide wall, T is the total current and the coupling:constant
T 15 defined ‘a follows =~ - - o
‘ r‘= 33~164-\£fm:0[.1,’(v-m ferw, )1/v,-c . (14)

" ' With the aim to make a numencal analysle. of the g g,yrotron mechanism and to compare

with the theory and expenment the particle stmulation 1s used for the followmg model ‘a
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magnetized relauvi;ti’c e{ffctron bea;p,; of ‘l'ow dqt}sxgy, with a high transverse energy, ‘that
flows by a wavegﬂde with g‘cu'tf-‘&equeﬂcy l;:c(;"smaller than thal electron—cyclotromc
ﬁequeney(wco< +w_ ). 1, o ’ . ‘

A relatiwst&e electremagnetic ivdlmens!oaa} simulation code, with three camponents
veloelty is used, mﬂ&&éefing the gyromm in tﬁa iﬁbmatmy ft’ame An ela&ron beam with the
energy £ = 70keV, .;;. = .5 and the current 7 = 14, ccupied o a T, mode of the
wavegulde of mdlus = 0.5 om s takcn !mo acmuat for cnmparison with some provious
sestdts "ﬁ'xﬁ {ength of the gyrofren s taken as hemg of 10 em aﬂd a wail-loss is considered

r'

&he eut-off frequewy thas may tio vamé

3 Resuits and ‘enne}ﬁsians. Ey this simufaton of 8 ayroiron t'nsta‘bﬂitfy; ;djagnostiqs }
as spatial evolution of the ‘transversc momentum, tho electron pnsiﬁons in the normalized
momenta gpace, the time cvo&uﬂm of the system emd the reéuuon between the mput power
and the output power by the Poyntiag—ﬂux catowatwns can be glven

An adapted l-dxmensxonai elﬁctromagnem eode with thres velaciues (ta the cyhindrical
coordinates and the tabcratory ﬂame} is used to simulate the considered gyrotran amplifier
process The sumplest TEm made of the wawgmde is considered-and wa!lolosaes wuid be or‘
net to ba taken 1ato azcount fora cut~oﬁ‘ fraquency that could be varled The sxmulaﬂon code )
is adapted in the sensc that the transverse deptndxance of the electromagnetic ﬂalds is assumed
to be that of the fundamenml empty waveguMe msde and the trensverse position of the
electrons 18 taken in the point where we have the maximum couphng of the electrons and

fields The electmns are injected at the tnput of the nteraction region (the waveguide) and

!
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are removed »a‘t’ the e;sit An csc;métiag ,extema)i ‘charge in:frqnt éwf, the beam input gives a RF
m;;ut field ‘Th{‘s electron -beam is coupled to, the ’i‘Eo, modﬁ of the ciroular wavaguide of
radius R=0 54cm The dxspcrsion velation gwen by eq (13) is token into acﬁaum 1
~ The fmquency selective ¥osses at the waveguide wall could be s;mu!atﬂd bya raststiveﬁ
term that is defined in Feuriar‘ apace. From caloulations of the mup%ing facfar—t‘ the losses
at the guide wali could be eliminated . g , ) |

We have seen carlte; ihat iixe iinear dtspersian teiﬂﬁen of thﬁ simulated gymmn
instabxlity reducas at the appmxkna&wa ghfea by eq {13). As one :mmease the wall-loss the

gain maxima abave the cut»eﬂ ﬁvaquenoy oA, be ebminated

Tberesu!tsaresllustrmd - .
' . 2.0
by the diagnestics of, the . o . /
i N b ) ) 104 'P, O ns\’l&-}:cié
stmulation, given by some. g L ( %% | % oy
. ‘ ‘ a_>~ . ‘% }3 M 1
. g .. ) o . df ,
sqlef:tfsd graphics The spana% . ok — Py w b
_evolution (along the beam) of - o ‘ .
the trapsverse ° momentum 18 11;h
‘given in Fig 1 (the perticle . - 2> oL
. ¢ . P~
positions ‘1 the:' normalized -0k
transverse momenta space) The, - _20i TR N
Lo ‘ ~20 300 6. 20 360 10 20
diagnostic ' .presents ‘the .. pRIRS RIRS
illustration ' .of electron ’ Flg 1 '

bounching 1n the ‘gyiotron by

the discussed satyi atton mechanism of this dévlce, that is the phase tra];pmg of electrons in
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the unstable mode potential

The Fig. 2 gives the time sl
evoluton of the input and
ontput powers (by calculating -
L 0r
the Poynting flux time f_:é
Q_C.»
evalution) b can be seen that
5
the simulated power is fower INPUT  POWER
A i i i -
m)L o 0’ 300 600 00 100 TIME
NO LOSS
250 1+dB/cm LOSS ‘ Fig2
200 248 /cm LOSS (
‘ . ihan 1n the case of the theoreticel hinear gain
150 In Fig. 3 the gamn as functioa of frequency 1s given,
1 00- 3d8/cm LOSS for a linear evolution and also for the nonlinear case, for the
nonhinear. evolution & maxunum hinear gain of 12 dB was
050
obtained and a corresponding maximum efficiency of ~ 10%
0

3k » 36 31 38 3% 1o calcutate the growth rate of the gyrotron instability
FREQUENCY (GHz) )

‘Fig3 the linear and nonhinear bandwidth can be simutated with the
aim to be compared In Fig 4 the gamn to the wavelength ratio is given as function of the
frequency and the bandwidth can be cbserved If the bandwidth id 3 dB at an input power of

80 W the linear growth was calculated to be 4,5%, compared with the nonlinear value that

13 7% at an 1nput power of 500 W
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We can observe that the

20
simulated gain and efticiency ’
""‘"‘-‘,\
are shghtly hlgher than the ‘\ INEAR GAIN
Ny %eowms IN)
expenimental results [8] but they ) \\/
= 10 N
are 1n agreement with the &
NON—LINEART %-
500 WATTS
classical simulation results {9} GAIN( NI \\
CYTOFF \
[19] : t \
: () A ) )
By taking a more 34 3% 38 40
FREQUENCYIGHzZ)
sophisticated approximation {or
modefy of the gyrotron Fig+

instability and also a more
stretched simulation code some other charactenisucs of the gyrotron devices could be further

obtained and some new phenomena of this gyrotron nteraction could be evidenced

REFERENCES

YY Lau, 1EEE Trans Electron Devices 29, 320 (1982) Phwvs Fluds 27, 2319 (1984)

G Dohler, It } Electron 56, 481 (1984)

P Sprangle, J. Appt Phys, 47, 2935 (1970), Plyvs Rev Lett 43 1932 (1978)

W W Destler, R Kulkann CD Sinffer, 3 Appl Phys S4. 4152 (1983)

M Shoncri, A B Kitsenko, Plasma Pns 10, (y‘)?) (19068), Phyvs. Flds 26 2271 (1983)

A Sommerield, Mechanses of Deformable Bodies, Chapt 1l Ed Academic Press New York (1930)
ChK Bhdsall, A B Langdon Plasma Phy sics Via Computer Simulation, Ed McGrow-Hill, New York
(1985)

RS Syinons, HR Jory, Cyclotion Resonance Devices, m Advances in Electromes and Electron
Physics, C Marton Ed, Academic Press, New York, vol 55 (1981)

% M Caplan, Gyrotron Sunulations, Ed UCLA (1982)

10 1M Dawson, Particic Stmulation ol Plasmas, Rev of Modern Phys 55, 403 (1983)

~ S de o N

=

a






STUDIA UNIV BABES-BOLYAI, PHYSICA, XXXVIL, 1, 1993

THE BRST-BV SYMMETRY IN CLASSICAL MECHANICS
D. JALOBEANU and L. TATARY'
Rocerved 25 05 1993

ABSTRACT. - in this pete we develep a patirintegrl formulaticn of clsseloal wechanics

using BV-versian of the BRET-symaetry. This i ochoved by starung with g zpectal quaitum

version of BV-eotion ¢nd by waking the classioad it b~ 0.

1. Singe its formulation, the path {ntegral formulation of quantum wmechanics bas
turned out of bo one of the most poweful tools for the study of quantum mechanes. The
fquantization of many systems as YM theory, topologtoal quatnum fleld theory or superstnng
theary can hardly be formulated and understood 1n all canomes! formulations of QFT except
the path integral However just a few attempts |1, 2] have been made to give an analogous
path-integral formulation of classtcal mechames In these formulanons 1t was suggested to use
a Dirac 8 function 8(¢ - ¢ ) for the measure which gives weight “one" to the ¢lassical paths
¢, and weight "zero® to all the other paths In this way the measure can be rewntten in the
standard form as the exponent of an action §, which invoives a set of anticommuting ghosts
and which posseses a BRST-symmetry

Mevertheless, 1t would be interesting to see if the classical mechantes can be obtaisied
as the lint i — 0 of the quantum mechamca path integral formulation. In this note we shall
try to formulate the path integral quantum fleld theory 11 such 2 way that the clasaical ltnuth — 0

could be easily achieved

" "Bubes-Bolwai" Untversity, Faculty of Physics, 3400 Cliy-Nagoca, Romanta
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2. Let §) = 8,(¢) be the initial action for an arbitrary classical system, which 15
supposed to be without any gauge symmetry Furthermore, we do not specify the formatism
(Hamiltoman or Lagraungian) since we intend to be as general as possible ’i‘.he flelds¢ = ¢/
ean be of any nature it for sake of simplicity we consider 8 system orly with bosons (even
varighles).

While the quantum genersting funstional has the form

Zouh) = N{Dpep L 15,0) + I )
and gives weight exp{ 0(4»)} to each path, the elassical one coutd be bullt as piving
weight “ane” to the classical paths and we ght "zera” to alt the others. 1 Is given by

2oy N[DREG - yew Ll @
where ‘3"«: is & solution of the classical equation of motion
\ 8S/8¢! =0 . . 3)
and N Is a normahsation constant.

Since ¢, is a solution of ;he equation of motion (3), it is possible to rewrite Z., as

Z.,=N fﬂ¢ﬁ(&3/b¢f )-dot [825/5¢' 0t }l-exp[_j;..iwp } )

The delta function tn (4) ean be represented as ,

‘  o(aS/8¢) = jD?\,exp{iN'%] | )

and the determmam could be convenientely reexpresed as a ﬂmctmnal integral over two
Grassmann vanables c’(x) and ¢’{(x)

det (S, /o /D) = chD” exp{ - 5‘% kY ©)

with S, , = 8’5, /B¢ 0¢*. Inserting (5) and (6) n (4), we can obtamn the ~c!assical

generating functional 1n a form identical to the quantum generating functional (1) 1e
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Z., = fanuxncDEeap[;(Su-«p)] Q)
s where the action § is given by
Y -
g"' 2&"'..._._6(?‘3 - le'So,;g ok (3)

From its construction it 1s elear that tho path mtegral wztt‘: weight § 18 completely
equivalent to the classical mechanios and therc are no quantum fluctuations driving the
classical system away from ifs awn classical paths A remarkable point of the action (8) is
the existence of an wnexpected BRST symmetry [1, 2] This fact canuot be a mere formal
cotncidence but it indicates that somethung prafund (s behunde There should be a kind of
“covariance” between the classical and the quatum regtne te we eould rotate S{(¢) iato
S(¢ . e.0)

In this note we shall {ry to obtain the action (8) by using the standard antibracket-
antifield method of quantization developed by Batalin and Vilkowisky [3], calied BV-method
of quantization (see also [6, 7]} In order to tmplement the BV method for a system without
any gauge symmetry, we shall use a trick due to Alfaro and Damgard {4, 5] and we shall
duphicate all fields ¢ and introduce the "colective fields ¢/" The imual action 13 taken to
be

S,= 867+ @) ©)
and thts new action (s invanant under the gawge transformation
bp/=e  dp = -g, (10)
where e/ are a set of infimtesimal arbitranly funchons
If we want to quantize the theory by using BV-method, we must introduce

- a set of antifields ¢, and ¢,
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- a set of ghosts ¢/ comesponding to &/,
- g set of conjugate ghosts ¢ and a set of Logmozce multipliers B/ which form
together the non-mipimal sectar of the theory and
- g set of antifields corresponding to sl ghosts and Loz wmudddpliers (¢, ¢, B)
The quantum action for our theory § must satisfy the master equation intvoduced by Batalin
and Vilkovisky [3].
5,8y =90 {an
whete (.,.) is the anti-bracket for our theory {3, 6, 71
Dus to the lack of any local symmetry for our sysiem the sclution of the master
equation has a very simple form
S =8¢+ ) v (¢~ )e/+ B (12)
The action S is the generator, through the anti-brackets, of the BRST sytametry
The final t&sk in BV construction is the gauge fixing precess In our cage this prooess
should be a httle: blt noastandard. We shall regc;rd in the sequci @; od @ field and @ as &
fleld That can be.obtained wia a canonieal tranafonnaﬂon {1} The next step is o apply the
standard procedure to fix the gauge [3, 6, 7] The gauge fixed action i3 given by
S, = S(,c’,&/, B, g, 4] = BYIad, ¢ = dy/be,
& = dp/dT!, B = d9/BBY, ¢/ = by/dg)) a3)
For a system without any symmetry we could choose the fesmion function ¥ = O and the
gauge fixed action coincide with the initial classical action 8. However if we want to obtain
the classical limit fi— 0 we could choose

Y = hc’- S, () (14)
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In this way the generating funciianal Z,, can bs written as

Zow™ Zon J‘{Dﬂ;}exp.;;so{gp) (13)

In the elassical humnit the last integral becomes 4 normaligation eonstant and the quantum

generating functional comcide with the clessics} ane

o

=

N e
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THERMODYNAMIC THEORY OF CROSS-POLARIZATION
IN A NMR-MOIST EXPERIMENT

L ARDBELEAN"
Roveiveds 1 03,1993

ABSTRACT, - A medified spin thennodynamic theory of an experiment which provide an
efficlent cross-polanzation even for mismatch Hartman-Hahn candition is developped forS/,,
spin-systems 8§ spin polanzation for a given mismatch is obtaited,

1. Introduction. The intreduction of the cross-polarization technique made is possible
to oveircome the low sensitivity of dilute spins, and provided a means of observing the NMR,
signals of those nucler 1n solids [1] A simple experimental scheme for cross-polarization
between spin spectes | and S involving simultaneous spin locking (SL) of two species has
been firstly proposed by Hartmann and Hahn [2] The maximum of cross-polarization transfer
is ubtained for Hartmann-Hahn match condition

A new cross-polarization expenment has been susgesied by Leviit e1 al. [3] whach
provides an ei’ﬁcneﬁt cross-polanzation even for mismatched Hartmann-Hahs condition They
used a double irradiation scheme for "mismatch optimized 15 transfer” (MOIST) experiment,
This 1esembles to a ‘norrmﬂ Hartmann-Hahn cross-polanzation eacepting the synchronous ()
phase reversal of the two spin loclang r.f fields (Fig 1.)

The phases of the two r . wradiation fields are reversed every 1 ms so that a quast-
equlibriwm 15 anained after each phase shift. As a result of the each CP-process is obtamed

a farger § spin polanzation.

" Techmcod University, Physies Depariment, 3400 Chi-Naporo, Romnia
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In order to design an
effictent  cross-polarization
transfer the understanding of the
spin thermodynamic and
obtaining a CP-spectrum is
essenttal In the following a
modified spin thermodynamic Fig 1 Pulse sequence for CP-MOIST cxperiment. X and X rcpresent
the phascs of the £ spin locking fields
theory 1s developed whose main

features are the important role of the dipolar eneigy for the quasi-equilibrium state and the

existance of constants of motion others that total energy {4]

2. The Hamiltonian We will describe in the following a Sl spin-system, where N
abundant [ spins (strongly coupled among themselves) are coupled to a single S sptn The
coupling to further S spins 1s neglected The sample 1s placed in a large static magnetic field
which 15 assumed to be along the Z axis We discuss only the situation in which we may
neglect the relattve motions of the spins, and all the spin - lattice relaxation times of both spin
species are taken to be infimitely long

For the spin system described above in "doubly rotating” interaction fiame after "m"
phase altermating of the 5 { field and to resonance (Aw, = Aw_ = 0) the Hamiltonian becomes
(3]

H=H+H+Hg+ (1)

Here the Hamiltoman H, + A, describes the Zeeman interaction of the spins-system and 1t 1s
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given by

H,+ Hg = “’u; LD+ o, 8.(-1) @
where w, = y,B,, and w,, = y B, with B,,, B, - rf magnetic field amplitudes and v,, ¥, -
the gyromagnetic ratios The Hamiltonian H,; represents heteronuclear-dipolar mteractior;

Hamultonian between 1 and S spins,

H,= Y b5,(21.8) A3)
%
and H,, 1s homonuclear-dipolar interaction Hamiltoman
| I - -y
Hu”Ed/k[zIﬂIkz'z;(I; A +Ijlk)] @
* -
where .
ﬁl
b= -1ls” 1300, - 1)
32
4xr; .
and
2H2
WY At
d,= - — (3c0s?8, - 1)
4mr,

are heteronuclear and homenuclear coupling constants, with r, , 7, - the internuclear distance, 8, 6,
- the angles between intermnuclear vectors and the static magnetic field All constants are in
angular frequencies units
For a strong tradiation on both channels (w,,d,, w,, 6,) it 15 convenient to wnte the
Hamltonial (1) in a tilted frame rotated about the "Y" axis defined by
A’==exP[’%(E];IU*S,.)]AGXP[“’%(Z’@* Sy)] )
giving '
H™= w0, Y L(-1y + 0, S-1y + ¥ 8,(21.8,) + H} (6)
s -
where L

! 1 l : - - gt
[]111 = ‘32‘1,& [21”]1::' ':,‘(]; Iy + 1k )] 9
% 2
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J

the secular part of the homonuclear-dipolar interaction Hamiltoman, because the nonsecular

part has been neglected for strong I spins 1 f fleld (w,, d)})

3. The spin thermodynamic theory We assume in the following that the initial spin
densty operator o is prepared by an tmitial (1/2), pulse on the I spins, applied to a system in
thermal equihbrium at the fugh lattice temperature T, n the static field B; The ipitiat spin-
density operator n rotating frame becomes

o(0) = (1 -%ﬁ‘%"z{; Jk]/Tr(l) (8)

Defining
hw

434
A ™ S e
N VAT
and neglecting the unity operator therm, the tmtial density operater in the titled rotating frame

13
u’(0) = q, ; I, )
In accordance with modified thermodynamic theory propoged by Lewitt et al [4] afier
a suffictently long time (about | ms) the system evolves to a state of quasi-equilibnum 1
which the observables such as magnetization and dipolar arder~do not change anymore
Analyzing the nature of quasi-equilibiium state we obtained that, after “m"-phase altemating
rt field (z-shufts), the quasi-equilibnum density operator can be represented as the projection

of the vecor (0) onto a two-dimensiorl plane defined by two orthogonal quasi-mvariarts { 0, 05"}

‘They are A
017 4y T4 1+ 81y ‘ (10a)
k

and
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Qz(m) = 412 {N:S:("l)m . E 1]“(_1)"'] + H]][«l
3

(10b)
where
g, = Nay, + o,
, ! N+1
and
Ao
4= i Aw = @, - o,
are the normalization factors Then the quasi-equilibnum density operator becomes
2
o= a, ¥ a0 an
q=1
where the coefficients aq("m are given by recurston relation
) | el
aq(m*l)= a(m) (Qq |Qq ) (12)
(1) A lmed)
with (A | B) = Tr{A B} Substituting (10) and (11} in (13) we obtain
a"V= - g (13a)
a V= - al cos (26%) (13b)
heie fg(0Y = AMAw (N+1)/N with cross-polanzation width h given by
A= M = L
(]kz ' [kz ) 4
where M)’ 15 the second moment of the 1 spin resonance line (4]
For m = 0 the coefficients aq‘o), g =1,2 are
al”= _.__.__.____N P(l4a)
No,+ o
1
a= -___ cos’(6*) (14b)
. Aw
Using Eq (14) m Eq (13) we obtain
a™= -y N (15a)
No,+ o
ai= (-1) (—El_)cosz(()’)-cos"'(ﬂ)‘) (15b)
w

Taking into account these coeffictents 1 Eqs (11) for density operator, after "m"

73



I. ARDELEAN

phase alternating rf field the density operator becomes

o=, % [1 - cos’ (Gk)cos’"(26")]S, +

N cos®(8%) cos™ (26%) I
6
FoT | N 2he (16)

¢ (=1 00 cos? (8% cos (26N HE
Aw
The expected value for S spin polanzation (CP-spectrum) afier CP-MOIST experniment for SI,
spin-gystems 18 given by

(S} = Tr(o'S) = - hoy W 1- cos?(8Y) cos"(20%) ] ')

AKT, N+1"
From Eq (17) we observe that, for a given musmatch (Aw » 0) we obtamn the
increase of polarization amount with number of phase skifis "m”. Also for m =0 in Eq (17)

we find the result (22) from Ref [5]

4, Conclusions The modified spin thermodynamic theory whose main features are the
unportant role of dipolar energy for the quasi-equilibrium state and thq existence of the
motion others than the total energy has been applied to a CP-MOIST experiment for a 81,
system The S spin ioolanzz;tnon has been denved for "m" phase shuifis and a given mismatch

Aw A qualitative agreement with expenmental tesults [4] has been obtained.
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THE RECONSTRUCTION OF THE STATE SPACE
FROM CHAOTIC TIME SERIES

Steliana COPREANY’
Recerved 103 1993

ABSTRBACT. - There are various observationdl evidences that 1 variable stars the temporal

behavior is often an fmregular one A new ingight on this domain can be oblamed with the

methods of nonlincar dynamics The purpose of the paper is to descnbe the method of the
recoustruction of the state space from tme series and then to apply this method to the variable

star Woll-Rayet 16 '

1. Introduction. Chaos 1s the irregular behavior of simple deterministic equations, and
irregular fluctuations are present in both natwal and man-made systems Chaos 15 a new
paradigm for the understanding of complex dynamics and srregular structures, 1n an enormous
range of quite different systems [1] [2] For a physicist confionted with a dynamucal system
that exhibits aperiodic fluctuations, this 1s an appealing notion, because 1t implies that these
fluctuations might be explained in terms of only a few equations of motion If 1t 1s posstble
to model these complicated vanations with simple determimistic equations, then 1t becomes
possible to predict future vanations, at least in the short term

The mathematical properties of nonlinear equations have been studied since the time
of Poincare {3], but the physical implicattons of chaos have been not widely appreciated until
the numencal work of Lorenz [4), which provided researchers with a simple and spectfic

example of chaos

Until recently, the notion of determinism and randomness were seen as opposites and

" "Babey-Bolyai” University, Faculty of Physics, 3400 Chy-Napoca, Komania
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were studied as separate subjects with hittle or no overlap Complicated phenomena so only
stmple phenomena were assumed to result from complicated physics among many degrees of
freedom, and thus they were analyzed as random processes Simple dynamical systems were
assumed to produce simple phenomena were modeled determunistically

Chaos provides a link between determimstic systems and random processes In a
determimstic system, chaotic dynamics can amphify small differences, whieh in the long run
produces unpredictable behavior But, on the other hand, chaos implies that not all random;
looking behavior is the product of complicated physics. Under the influenco of nonlineanty,
only few degrees of freedom are necessary to generate chaotic motion [5] In this case, it is
possible to model the behavior determimstically, and to make short term predictions, that are
far better than those that would be obtained fiom a linsar stochastic model So, chaos m&pliea
that even approximate long-term predictions may be impossible, but that very accurate short-
term predictions may be possible

In this paper we consider the situations in which on try to find a modsl directly from
the expenimental data We are interested 1n time serics which anse from observations of a
supposed deterministtc dynamical system Of course, the dynamics are never stnptly
determintistic due to dynamical noise which perturbs the states of the syst‘em or dus {o
observational noise We will consider those situanions where the dynamical and observational
noise are resonably small and where much of the apparent randomness ig caused by low
dimenstonal chaotic behavior

An important notion in nonlinear dynamics 18 the dimenston of the dynamics, which
indicates the number of irreducible degrees of freedom We have considered that complex

apertodic behavior can result from determimistic phystcal systems with only a few degrees of
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freedom But it 13 also the case that a dissipative dynamical system which has many degrees
of freedom (such a fluid), may settle down, after an mitial transient, to motion 1n which only
a few degrees of freedom are active. The dimension counts the number of degrees of {reedom
necessary to describe this motion, and thus quantifies the difficuly with which the system’s
behavior can be modeled.

' Usually one observes a time series with fewer vanables than are needed to fully
describe the dynawical system Indeed, the time senes in many cases consists only of a
sequence of scalar values Building a dynamtcal model directly from the data involves two
steps the state space reconstruction and the nonlinear function approxamation In this paper
we will consider only the first step of the problém, with an interesting application to the

e

variable stars

2. State space reconstruction. A state s(t) 18 a parameters set, typically a real vector,
which fully describes the system at a fixed instant i ttme t If 1t 18 known with complete
accuracy and if the system 1s strictly determimstic, then the state contains sufficient
mformation to determine the future of the system The goal of state space reconstruction 1s
to use the 1immediat past behavior of the time series to reconstruct the current state of the
system (at least to a level of accuracy permitted by noise) The dynamics is a function f which
maps the current state s(t) to a future state s(t + T) In the case of chaotic behavior the
functional form of f must be nonlipear

There are many situations th which a time senes {x(t}}, t = 1,2, ,N1s belived to be
at least approximately described by a smooth dynamical system f on a d-dimensional manifold
M (for stmphicity 1t 1s often assumed that M = R*) We can reprezent the dynamical syst;am
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by the map f* which relates the initial state 5(0) to n state s(t):
s(1) = S'{s(e)) M
The time variabla t can be either continuous or discrete, and f' s some times called the time -
t map of dynamical system,
In the absence of noise, the time series is related to the dynamical system by
x(1)= h{s(n)} 2
where h is called the measurement function

In the presence of noise, the time series can bo generated by a dynamical system

s(4) = f'[s(e)} + (0

x(1) = h{s()] + &)
where E denotes the obsewational noise, 1} denotes the d}{namical noise, and because the only
observable is {x(,)} then s, f', n, h, zm(i £ must be obtained from the time serles,

For simplicity we will consider the case in the absence of noise (1), (2). The time
series a(1) iy D-dimensional, 5o that h,M ~ R® where D < d The measurement function h is
often a scalar one and it is implicitly assumed D = 1, '

‘The state space reconstruction problem is that of reeieating states when the only
information avatlable is contained in time series, and this problem is necessarily the first step
that must be taken to analyze a time series in terms of dynamycal system’s theory

Typically f and h are both unknown, 8o that we can not hops to reconstruet states in
their onginal form, but we may be able to construct a space that 13 1n some sence equivalent
to the oniginal This state space can be used for qualitative analysis, such as phase 'pm*traits,
ot for quantitattve statistical characterizations

The state space reconstruction was ntroduced into dynamical systems theory
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independently by Packard et al [6] and Takens {7] by the demonstration that it 1s possible
to preserve geometrical invariants, such as the eigenvalues of a fixed point, the fractal
dimenston of an attractor, or the Lyapunov exponents of a trajectory, and can in pnnctple be
estimated from the time series |

The bastc 1dea behind state space reconstruction is that the past and future of time
series contain information about unobserved state vanables that can be used to define a state
at the present time The past and future information contained in the time senies can be
described by the delay vector defined by ‘

X0 = fx(t+om), ,x(0), ,x(1-wm)}) 3)
where- for convenience the samphing time T is assumed uniform Here "+" denotes the
transpose and by convention all states are taken to be column vectors

The dimenston of the delay vector 1s m = 1 + m, + m,, where m, 1s the number of
samples taken from the past and m; the number from the future If m; = O then the

. reconstruction 1s predictive (otherwise is mixed) In this case

x(0) = [x(0), ,x(t-(m -1 @
and m 13 called thé embedding dtmen;won.

Takens studied the global properties of the map that takes the original states(t) to the
delay x(r), and proved that i absence of nose, if m = 2d + 1, then this map genencally
forms an embedding. An embéddmg 1s & smooth one-to-one coordinate transformation with
a smooth mverse So that the reconstructed state space 13 diffeomorphic to the ongal state
space |

Delay vectors are currently the most widely used choice for state space reconstruction,
but tn order to use then 1t 13 necessary to choose the delay parameter © Although Takens
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theorem indicates that this choice ts not unportant, in practice, because of noise, is very
important to choose a good value for T Now there are many theoretical approaches to choose
an optimal T and m (8], [9]

Another method of >state space reconstruction 1s the principal components technique
This is a standard procedure in signal processing, and was {irst apphed to chaotic dynamical
systems by Broomhead and King {10}. The procedure 15 to compute a covanant matrix

C, = <x(t- 1ty x{t-jv)>, o {5)
where |i - j| < m, and < >, denotes a time average, and then computs 18 elgenvatues The
eigenvectors of C, define a new coordinate system, which 13 a rotation of the original delay
coordinate system The eigenvalues are the average 100l mean-square projection of the m-
dimensional delay coordinate time series onto the eigenvectors. Ordering them according to
size, the first eigenvector has the maximum possible projection, the second has the largest
possible projection for any fixed vector orthogonal to the first, anld 80 on

Filtering 1s another procedure that 1s often used in state space reconstruction and ean
be used 1n combination with any reconstruction technique {11] Results of Badii et al [12]
shaw that some type of filtering can tncrease the dimenston of a time series, but recently
Mitschke {13] has shown numericelly that this effect can be corrected if acausal ﬁlters’ﬁr@
used

N

It 1s clear that the method of reconstruction can make a difference in the quality of

4

resulting coordinates, but at this moment it is no clear which method 1s the best [14]

3.Dimension estimation The developement of algontkms for estimating the
dimension of an attractor directly from a time series has been an active field of research over
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the last decade The objective of these algonthms 1s to estmate the fractal dimension of a
hypothesized chaotic attractor in a reconstructed state space If the time sertes 1s deterministic
and of finte dimension, the estimated dumension of the reconstructed attractor should
converge to the chaotic attractor, as the embc;iding dimension 1s increased. i the time series
1s random, the estmated dimension should be equal to the embedding one

Historically, the first numerical algorithms was based an a "box-counting” principle
[15], but this was found impractical in many situations [16] The most used way to compute
dimension is the method developed by Grassberger and Pracaccia {17] The method defines
a correlation integral C(m,N,1), which is an average of the powntwise mass functions
B(x.m,N,1) at each pomnt x in the reconstructed state space Here m 1s the dimension of the
embedding space, N 15 the number of points, B(x,m,N, 1) 1s the fracton of potnts whithin
a distance 1 of the point x The asymptotic scaling of C(m,N,1) ~ 1° for sma!l 1 defines the
correlation dimension d

There are also the ather approaches for estimating dimension [18] and even recently
was proposed an electrontc instrument for measunng the potntwise correlation dimension from

tume sertes, called "dimensiometer" {19]

4. Applications A vanety of time senies have been analyzed with nonlinear meth_ods,
exposed briefly by us, 1n & wide class of domatns such as fluid flows {20}, sunspots [22],
mechanical vibrations [21], 1ce ages [23], measles eprdemics [24), electrodydynamical
convection [25], white dwarf star {26}, magnetoencephalograms from human brain [27], etc
We also have investigated the time senes from the vanable stai Wolf-Rayet 16 (WR16) with
the same methods [28] The complexity of the Fousier spectrum (Fig 1) obtaned tn this case
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could indicate a nonhinear dynamics
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The basic consideration 13 that the stars with regular light curves and vanables
fiequencies might be agsociated with noniinear dissipative systems. A vanable star, as a
dissipative oscilator, can have a rich dynamics extibiting quastperiodic or even chaetic
behaviors 1t 15 known that a dissipative system do not remember thelr initial conditions It
has a gieat sensitivity to the mutial conditions and an intrinsic unpredictability in the long
term By using a statistical description of the states of the system, the trajectories in the phase

space (the state space), as the tume evolves, will converge and remain in a given 1egton of this
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space This invanant subset of the phase space 1s the attractor of the system Its dimension
15 a very ugeful tool to obtain informations on the dynamics of the system For tnstance, if
the dimension d 1s d = 1, the sj,'stem exhubits self-sustained periodic oscillations, if d == 2 the
oscillations of the system are quasiperiodic with two incommensurate frequencies, and if d
15 non-integer the system exhibits a chaotic oscillation It 18 also very important to know the
mimmal dimension of the state within which the attractor is embedded, because this defines
the muumum number of variables that must be considered in the desciption of the system’s
dynanics

In the case of varlable star that we have investigated the dynamical system is known
only through a stngle observable x(t), its magnitude, and the series s actually the hight cuive
{29}, mndicated i Fig 2

'!*:ox the phase space reconstructton we have used the nme delay method (the
embedding theorem [30]) a m dimensional portrait of the system, topologically equivalent
to the one constructed from the physical varables 13 given by the set

A= [ X X =] x(), x,(t+), x;,(t+27), |, %, (tHm-1)T)}}
wh;:re © 13 the delay time

This allowed us to draw the projection of the pilase portratt of the system to a low-
dimienstonal subspace of the full phase s;pace In Fig 3 a two dimensional projection of the
reconstructed phase space is plotted The dimension of the attractor - the fractal dimenston
d - was calculated by using the integral correlation function [17] This correlation function
C(1), defined by

oy = ler:_N{i (gl) B(|x,~x,|-1) - (6)
where 0 15 the Heavistde step function, has the property
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and for small values of 1, d can be considered as a fractal dimenston —We have calculated the
correlation function (6) for different values of m To wvisualise the fractal dimension 1t 15
convenient according to (7) to plot In C(1) as a function of In 1 The general slo}e of the
curves indicates the values of d. In Fig 4 the correlation function 1s shown for different values

of m

5. The limitations of the method and conclusions. The disconttmities n the data sets
due to day-night alternance and to the vanable seeing condittons do not allow one to treat

these data sets hike those obtaned 1n a laboratory experiment when no real imitation on the
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Fig 3 Two dumensional projection of the reconstructed phase-space

lenght of set of data exists From this point of view a very precise description of the attractos

of the stellar oscillattons 1s not possible So the method used by us does not aim to obtamn a

precise value of the fractal dimension on such sets observational data, but to evaluate the

number of independent parameters responsable for dynamics of the system From Fig 4, as

m increases, the correlation function vanes, but for m = 4 the slope can be considered as

constant 1n a given range of 1| This indicates that the number of differential equations

necessary to describe the light variations for WR 16 must be at least four
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THE BEHAVIOUR OF THE NUCLEON SPIN
IN A PERIODIC PHASE OF THE NUCLEAR MATTER

Attila MIHALY'
Kecetved 20 06.1993

ABSTRACT. - A phase transition of nuclear matter into a periodic phase has been found

Studying the third component of nucleon spin tn this phase, we have found that the exp(-tmkz)

type modulations of the planc wave states are not present in the expectatton value of this

component

Recently a pentodic structure tn nuclear matter has been found [1] in the framework
of quantumhadrodynamics using mean-field approximation In this letter we summanse the
man features of this penodic phase and calculate the third component of nucleon spin
expectation values

In the last few years the possibility of a penodic structure mm nuclear matter was
investigated extensively [2,3,4] In these works the penodic behaviour of the matter density
1s studied In a recent work [1] a pentodic structuie n the current density at constant matter
density has been found

In the framework of the quantumhadrodynamics the nucleons (), the scalar mesons

(0), and the vector mesons (w*) are descnbed by the following field equations

v, G0 - g @ (x)) + g, 0-m]yp(x) =0 (1)
Oo+mlo=g Py V)
Do, + m, w, =g Py ¢ | ' €)]

T "Babeg-lolyal” Unversity, Focnlty of Physics, 3400 Clup-Napoca, Romaiia
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The coupling constants g, , £, and the masses m, m_ , it are given in [1] In the mean field:
appro%nmatnon the meson fields operators are replaced by their expectation values, which are
assumed to have the following forms
<o(x)> =0, <o’(x)> = o’
<@'(x)> = wcoskz, <w?(x)>=-wsinkz, <@’(x)>=0 @
According to this Ansatz the w-field has a static, pertadic vanation atong the z axts,
defined by the wave vector ¥ T‘hts penodicity induces a simular penodic behaviour of the
nuclear vector cusrent, 1 ¢ the matter density (Py°p) 1s constant and the current densities
(py' ) and (Py* ) are penodic
In this approximation the single paiticle nucleon states can be 'cons:dered as

independent quasiparticle states descnbed by Bloch Wavcs
‘ N

g (px) =e " Y u(Fmye ™ o)

n=-N

Here the bispinors #, (7, n) are the solutions of the following equation

En: H ,,U(p,n')=LEu(fn), » ©)
o'e-N
where
H =y [¥7+ynk+m*+y'g w18, .-
-2 DY (YO00, L) | ™
znd
Y= kv | ®)

The source terms ¥ [ 4 are also replaced by thetr expectation values <9 >, which
are defined by the help of the Fernn-Dirac distribution

O (L, £ (f)) = (14 B Dwn ) o)

9t}



THE BEHAVIOUR OF 1HE NUCLLON SPIN

where K (7) are the energy eigenvalues from Eq (6) The temperature and the baryon
chemical potential are denoted by T and y respectively (The chemical potential of the
antibaryons 1s - p) The field equations lead to a set of selfconsistent equations At fixed
values of the parameters T,u and k these selfconsisient equations can be solved numerically

for o, ®°, and @

The
_ voox
. (‘PZK ‘P) EZ E L ol = nihx
t n=-N 4l=-n
[2dp, ["ap, [, dp, 0 (Ln, E@) u, (50" VT, u.(Fon) (10)
where

o, 0
EK = [() a, ] (1)
fn (11), o¢ (K = 1,2,3) are the Pauht matrices
We have found by direct calculation that the coefficients of exp [~i(n—#n’ Ykz]
(10) at K = 3 were more than four orders of magnitude smaller in the case #/ = n than those
with #’ =1 This means that the exp(-mkz) (n = 1,2, N) type modulations of the plane
wave states are not present 1n the third component of nucleon spin
For the sake of physical wnterpretation of this result, we calculate the selfconsxs;em
"magnetic” field due to the penodicity of the w-field
The field tensor defined as
F¥W= ¢voft - 9t oY (12)
has only two non-vamshing elements
Y = wksnkz= H*

P = whcoskzs —H'

91
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This means that this "magnetic” field 1s perpendicular to the z axis

Therefore, the parallel component of the "magnetic" field 1s null and 1t cannot
influence the projection of the nucleon spin on this direction In other words, the z component
of the nucleon spin can "chose" any onentation, and our numerical results 15 quite natural

However, we must nottce that the situation 1s quite different for the other directions,
where the periodic components of the "magnetic” field do act Thus the next step in our study
1s going to be the study of the perpendicular components of the nucleon spin, which, by using

the same line of thought, should have periodic expectation values along the z axis

Acknowledgement. The author are very much indebted to 1L.Lovas and L Thtary for

the tlluminating discussions
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A STUDY OF A SIMPLE NONLINEAR MECHANICAL SYSTEM

S. CODREANU', Th. COLOSI”, M. DANCA™

Received 3005 1994

ABSTRACT. - The aum of a paper 1s an analitical and numencal mvestigation of a nonhinear

mechamical system, This system 1s a parametncally forced mechantcal oscillator, with cubic

nonlincanty We demonstrate that the system exhibits a very complicated dynamucs, tncluding

equilibrium points, hmut cycles and complicated chaouc attractors For the numerical stmulation

we have used an onginal method

Introduction. The irregular and unpredictable time evolution of many nonhnear
systems has been called chaos or deterministic chaos It occurs in many and different domains
of the science like physics, chemistry, astronomy, biology, economy etc [1], [2] For example
1t can be observed 1in mechamcal oscillators such as forced pendula or vibrating object [3],
[4], but also 1n rotating or heated flutds [S], [6], 1n nonhinear circuits [7], 1n laser cavities 8],
in nonlinear optical devices [9], [10], 1n Josephson junction [11]-[13], in plasmas [14], in
some chemical reactions [15}-[17], 1n biological and ecological models [18], [19] or
stimulated heart cells [20] and 1n Electroencephalogram data {21}

The central charactenistic of the systems which exhibit a chaottcal dynamics 1s that the
systems do not repeat their past behavior although they follow deterministic equations For
chaotic systems the slightly different imtial conditions lead to an error 1n prediction that

grows exponentially in ttme This characteristic, which occurs only when the governing

equations are nonlinear, 1s known as sensitivity to tnitial conditions The first who recognized

* "Babes-Bolyai" Umversity, Faculty of Phvsics, 3400 Cluy-Napoca, Romanta

* Techmeal Unver sity, 3400 Chy-Napoca, Romanra
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this phenomenon was Henn Poincare (1913) Although a chaotic system can resemble a
stochastic one, (1 e a system subject to a randoin external force), the sourse of the trregulanty
18 quite different For the chaos the irregulanty 1s part of the intrinsic dynamics of the sysiem,
not unpredictable outside influences If the dynamical system 1s described by a set of first
order differential equations the necessary condiions for chaotic motion are that the system
has at least three independent dynamical vanables and the equation of motion contain a
nonlinear term

The equations can often be expressed 1n the form

Bk, 5
dt o "
where 1 =1, 2, | n{(n=3)and with ¥ for example of the form
F=ax +bx,+cxx,+ +/x

where a,b,¢,f are constants For some choise of the constants, such systems are often chaotic

From hustorical point of view the development of the study of cuaotic systems 1s a
recent one, despite the fact that chaotic systems are determimistic and are described by many
of the well known equations This is due to the fact that, with the exception of some first
order equations, nonlnear differential equations are either difficult or impossible to solve
analitically So, the solution of nonlinear differential equations generally requires numerical
methods The first who detected chaos 1n a nonlinear dynamical system by a numertcal study
was E Lorenz [22]

One of the simplest physical system with a rich and complex behavior, which has been

intensively analyzed, 1s the damped dnven pendulum [23], [24] This 1s a based nonlinear

model system for different more complicated physical problems (nonlimear oscillators) hke
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the forced motions of a particle in a two-well'potentlal (such an electron in a plasma) [25],
{26], the magnetic pendulum [27], or the radio-frequency dnven Josephson junctions [11],
[28]

In the same class of nonlinear dynamical systems 1s also the motion of a shallow arch
subjected to horizontal and vertical pulsating loads proposed by Szemplinska-Stupnicka [29]
and recently explored by Lamarque end Malasoma [30] The aim of our paper 1s an analitical
study of the stady states of this system and then a numencal integration of differential
equation which models the system by using an onginal method proposed by one of the

authors [31]

The model and its fixed points. The equation of motion for a particular shallow arch
subjected to honizontal and vertical pulsating loads is
x +ax-05(1-2fcoswrf -x?)x = feoswt €))
where a 1s the damping coefficient, fand w are the amplitude and the circular frequency of
parametric excitation
To analize the’behavior of the system we consider the following system of autonomous
equations, which is equivalent to the differentral equation (1).
x =y
y = —ay+0,5(1 -2fcosz)x - 0,5x* + fcosz )
Z =0
We ci.: see that this set of equations (or this flow) describes a dissipative system for

any a > 0 A system 1s dissipative if an arbitrary volume V, enclosed by some surface § in
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the pbase space of the vanables of the system, contracts The surface $ evolves by having
each pomnt on 1t follow an orbit generated by (2) If the system (2) has the general form
F=F(R), F=(x,=x,x,2 ¥, =z) )
The statement of divergence theorem 1s
dv LK)
_— = —ld
dt I {2 ](‘

IS Jx‘

.
dt

In the case of the flow defined by (2)

and the dissipative system 1s defined by 0

av

7 = ~ql/ or V() = }(0)e™ )

t e the volume element contracts exponentially tn time for a > 0
If the parametnc excitation 1s swiched off (f = 0), the system (2) becomes
3= Lay + 051 - 0,557 )
and from (%) = 0, we find the following fixed points of the system (5)
7(0,0), (~1,0), (1, 0) (6)
If f= 0, from (2) one finds the fixed points (the steady states)
£(1,0,0), % —_;_+_;,/T-—é?,o,o),,g(—_;—_;\/ﬁ7,o,o (7)

with the obvious condition of reality of them /= %

The stability of the steady states. First we investigate the stability of the fixed points

(6) For x(0,0), the matrix of stability 1s

0,5 ~a

and the characternistic equation
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-A 1 0 3
-0,5 -a-h ®)

The eigenvalues of (8) are
}\,mu_;_(—a:kVa2+2) )

and we have A, > 0 and , < 0 for any a > 0 Thus the origin (x = 0) 1s a saddle fixed point

For the fixed points %(~1,0) and #(1,0), the characteristic equation 1s

- 1
=0
-1 -a-A
with the eigenvalues’
o 2] o

In this case A, <0 and A, <0 for any a = 2 If A, has the form A, = M=/ we

observe that A’ <0 for any @ > 0 Thus x = -1 and x = 1 are stable fixed ponts, or stable

equilibrium
The stabtlity of the fixed points (7) 1s investigated by the same method One finds for

x = 1, the charactenstic equation
-A 1 0
“1-f -a-h 0| = 0
0 0 -A

with the etgenvalues
M=0, A= _;_(—a:h\/a’-4(1 +/))

If ~-1sfs .%, A, 1s real and negative, also if s < .’_:r ~1, &, 15 real ‘and negative If
2
2 -1<ss %, h,=MxtA with A <0 fora>0 Thus x = 1 remains a stable fixed point in

the presence of the parametric excitation (f« 0)
For ti.e fixed pomts x = _;.(—l +/1- Sf) and x = _;_(—1 -1 W) the egenvalues of

the characteristic equattons are
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A=0
1 { ll)]
A, 7 —a:{:(a2 +8/f- li3\/1—8f)

with A, > 0 and A, <0, respectively A, <0 and A, > 0 We conclude that for 0 < /< _; these
fixed points are unstables

But the system has, beside the steady states, also the other important behaviors like
limit cycles with different pertods, which form a cascade of penod doubling cumulating in
chaos, as the amplitude of parametric excitation 1s used as a control paramater We observed

this benhavior by numencal nvestigation of (2) for different values of /£, w and a being

constants

The numerical study. We have performed a numerical investigation of equation (1),
or of equivalent set of equations (2), by using a new method of integration based on local
linearization iterative (LL.I) This method realises, with remarcable performances, ihe
numerical approximation of the solutions through the segments of straight, considered 1n the
neighbourhood of a ptvot moment With this method the relative errors cumulated was smaller
than 0,1%, for sufficient large characteristic time intervals Also, 1n the same domain of
errors, the computing time 1s smaller than those spent with usual fourth order Runge-Kutta
method

By fixing the parameters at the following values a = 1,5, w = 8, except the amplitude
of parametric excitation f, which was used as a control parameter, we have constructed the
projections of the trajectories in the phase space for a wide range of the control parameter

Thus, for f = 0, when the parametric excitation ts awiched off, we found the stable
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equlibnum x = -1 and x = 1 Because the trajectory goes to one or another fixed point, for
different 1mtial conditions, we drew the basins of attraction of these coexisting stable
solutions Figure 1 ahows the basins of attraction in the phase space region defined by -20
< x = 20, and -20 < y < 20 The basin of equilibrium point x = -1 15 colored 1n white, while
that of x =1 15 1n black In F;gure 2 we present two projecttons 1n XOY and XOZ planes of

the trajectory 1n this case

(2a,28)5

With parametric excitation (f=0), the focus x=1
rematn a solution of equation (1) This point is
numerically found to be a stable equiibrium

state until the amplitude f1s f~29,28, when a

limit cycle 1s created The projections in XOY <-20, -2 >
pli;ne of the trajectories with /=5 and /=20 are

shown 1n Figures 3 and 4 Figure 5 shows two Fig 1

projections 1n XOY and YOZ planes of the trajectory when f = 29,28, When f= 2929713 we
can see, from Figure 6, that a cycle limit 1s created In Figuie 7 a and b we present the cycle
limit for /=32 1n two projections on XOY and ZOX planes This period-1 ltmit cycle 1s also
stable until amplitude f1s f = 45,5 when a period-2 motion 1s created (see Figure 8) At f=
47,5 we can see, from Figure 9, that a pertod-4 motion 15 generated As fincreases further,
a peniod doubling cascade followed by chaos 1s clearly visible We presents this 1n Figures
10-12 for f= 47,7, f= 48 and f= 55 At f= 65 a new period-1 hmtt cycle 1s created (see
Figure 13), and the same scenario of pertod doubling cascade followed by chaos s visible

We have carried out extenstve numerical simulation and we found the same behavior for
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different values of f Figures 14-16 show some particular trajectones
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Conclusions. This work investigated the nonlinear dynamics of a mechanmical syst
with cubic nonhineanty and parametric excitation, by using the LL I techmque We havc
constructed different trajectories in the phase space as the amplitude of parametnic excitation
was used as a control parameter and shown that the system exhibits different chaotic

behaviors The route to chaos is shown to be via pertod-doubling bifurcations
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MASSIVE VECTOR, TENSOR AND SPIN-3/2
PARTICLES GRAVITATIONALLY SCATTERED
ON SCHWARZSCHILD BACKROUND

D. TATOMIR, D. RADU, O. MIHALACHE"

Received 15101993

ABSTRACT. - Using the S-matrix formahsm and Feynman’s diagram-techmque, the
gravitational scattening of the mimimally coupled vector, tensor and spin-3/2 (Ranta-Schwinger)
particles on Schwarzscluld background 1s studied for any value of the scattening angle

We mention that accordingly to our knowledge the previous works 1n this branch
dealed only with the small angle cases As it has been shown, 1n the small angle approximation
and ultrarelativistic case, the differential cross-sections coincide with those corresponding to
the photons, neutrinos, massless Rarita-Schwinger particles, gravitinos and gravitons, i e, the
gravitational particle scattertng 1s sptn tndependent, in agreement with many autors’ results,
obtained by other means

As particularly interesting result, we point out that the differential cross-scction for
scattering of the vector particles in the backward direction and ultrarelativistic case 1s fimte and
the helicity 1s not conserved, whle, for lensor and spin-3/2 particles m the same case the
differenttal cross-section s clearly unhimuted

In this paper, using the S-matrx formalism and Gupta’s linear approximation [1]
Vg g™ == by M
where g, " and y* are the metric tensor, the Minkowskt tensor - diag (+1, -1, -1, -1) -and
the tensor of the weak gravitational field, respectively, g = detg,, and k = V16xG (in natural
units, G‘bemg the Newton constant), the scattenng of the massive 1, 2 and BI/Z spin particles
in the external gravitational field descnibed by Schwarzschild metric 15 studied Also we

discuss the differential backward-cross-section as an tmportant particular case

In order to obtain the first-order interaction Lagrangians between the gravitational and

“"4l1 Cuza” University, Department of Physics, 6600 lassy, Romania



D TATOMIR, D RADU, O MIHALACHE

the massive vector, tensor and Ramta-Schwinger fields we use the principle of menimal
coupling {2] According to this pnnciple, for vector and tensor fields, we must add to the
expression of the gravitational field Lagrangian the complex massive vector and tensor field

Lagrangians wntten 1n the curved space [3, 4]
L.~V (‘—;—g"°g'¢G,l'\,Gaﬁ+ m’g‘“B,,'Bu) ()]
2, Vg g7 (£l gt M40 ) Y€)

It 1s easy to see that for the vector field we consideied the Proca formalism Here

G=8B -8B_ (8B

W= B~ B, being the covanant denvative of the vector field function) 1s the tensor

v
of the masstve vector field Concerning the tensor field we must emphasize that we followed
a Schwinger’s 1dea [S] using the third rank tensor

Hop® by 0™ O > (Ho= Hoa)s S
where ¢, 1s the covaniant dertvative of the tensor field function We note tn passing that a
remarcable analogy between the massive tensor and lineanzed (weak) gravitational fields 1s
revealed by this Lagrangian’s choice In the case of the Rarta-Schwinger field, besides

principle of mimmal coupling, we also used the "vierbemn" formalism [6], so that, the

Lagrangian of this system can be written as follows
e AR e TACE |-, )
where

@ =J-gg" [% (07w, = 70, ) + $,.wv] (6)

32
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Q- %E g“‘lTJ,,(YPﬂ"Y“ + Y‘Ypﬂ")wy. )

v, being the usual derivattve of the Rarita-Schwinger field function
The above expression for &, and &, have been obtajned inserting the expression of the
covariant of the spin-vectors:’

Vb, = - Tab, s 99,2 Bt T, ()
where I', are the Fock-Ivanenko spin coefficients of the affine connection [7] As 1t 1s known
they have the following expression:

Fu= bt ©)
where y* are the generalized Dirac matrices [8,9].
¥ = LAy, ¥, = L@y, (10)
(@) being the usual Dirac matrices. The expression for y, , 13
hha™ Ny~ Yol 8
In relations (10) L*(e) and Lfo) are the "vierbein" coefficients satisfying the following
constraints

L¥@)L*o) = g, L{mL(a) =g, (12)

Since all aqur considerations refer only to the first-order approximalion we give below the

"limarized" relations for the quantities which appear in calculations [4,7]

gr= - k™ (13)
8, = M+ ki, (14)

1 1 o
hf=}f-76§y, =y WD AR (15)
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rf,= _;k(h;;.+ hfy~ i) (the Chnstoffel symbols) (16)
n=n+—;kvghf. Y“ﬂY‘-—;kth“’ (17

It 1s very simply to show that the &, term n (5) has no contribution in the first-order
approximation Indeed we have
EO®) = B Y (e -hss) = e P (=Y e, .m0, (18)
where the well known anticommutation rules have been used
fr) = Pyeyit = 28 (19)
Taking 1nto account the previous constderations the first-order tnteraction Lagrangian between

the weak gravitational and the massive Ranta-Schwinger fields 1eads

00 = - k(T Byl -

(20)
L RS DI RS T AR
Passing to the flat space
x’=1t,x7,(;=123) >x,(=1,2,3), x, = 1, 1)
Py, Yy, Y -8, (22)

the first-order interaction Lagrangians between the gravitational and massive vector, tensor

and Ranta-Schwinger fields, respectively, are

k) = ~k(G G, u,* mBIBY,,) (23)

v - pa'va

gE.ml)(k) = k[[{. ([1nv)+IIuh) ! ]":vu I * rm zlp""'tp'\ ] "l'lh

pv

L, . ,
iy (I[MIIM— 5 ’q»m‘pm)v v I.[Ilmnpw(h,wt h,-h,,)* ('

34
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+ ¢;"(hw.v+ hvv.u" huv.p)Hlvu]

L) = %k(ﬁ’,ﬂm’a = Vol ) Vo™ %kmﬁawqy, \ (25)

where:
™ ™ O Vo (26)
G By Byt Hyam 0t b b e

B,, and ¢, " being the u\sual denvatives of the vector and tensor field functions, respectively
Also we have ;aken advantage of the Rarita-Schwinger field equation |

TWau™ MY, (28)
and ts adjoint ‘ 4
According to the standard quantum field theory the parts of the (23), (2I4) and (25)
Lagrangians-casted inta the nomlal‘ form - which describe the interaction of the massive

vector, tensor and 3/2-spin particles, respectively, with gravity are [4]
Nt 0] = K600 G2 w2 ) + m B @) BOW v o) 29)
N[0, -,00] =020 3052 - 4520 - 6200] + 02000 x
x [¢§‘3.;(x) + 9,0 +05)] + 05200 [92,69) *+ 455 - 39800 -

- 2m 200X () - [9:200) *+ 01000 - 09| % (30)

4556 + 4520 - 052,69] - 2070 €2}y 9 +

35
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0200 + 6106 |00 00 [ ) + ) ~ ) | +

+40)055,0) + 950 - 05,00 ] [ ) + 00 - L )])
N @] = 2 K[FL a0 - I i o - .

- TNy ) v
The processes are described by the following Feynman’s diagram type, where p and () and
also p’ and (s) are the four-momenta and polanzation ndices (r,s = 1 to 2s+1, where 5 1s the

spin of the particle) of the initial and final particles, and ¢ 15 the four momentum of the

virtual graviton

Fig 1 The wavy line represents a graviton
The solid lines repiesent either vector,

tensor or spmn-3/2 quanta

Using the S-matrix formalism we deduced the Feynman-type rules for diagrams in the
external gravitational field (descnbed by Schwarzschild metric) which allowed us to calculate
the matnx element <p’|S|p> 1n the mentioned approximation

Thus we find that [4]

ng' (@) = [op.av. - ;a,w]ym @ (32)

Vi (@) = 8,8,y (@) (33)
@) = b= 5 8. (34)
V@) = 8,qy @ (1) (35)

Taking 1nto account the Founer transform of the static external gravitational potential

36
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—

() = e A

el M SEadriEN (36)

(where M 1s the mass of the central body that creates the gravitational field and |#| 1s the
distance to this centre), the matrix elements 1n the external field approximation, corresponding

to the dragram i fig 1 are respectively

~1h M f 8(g,)

SB = <p!|S|p> = tfel@)p) - 2000 |2 Dp, e 2B)p, ] *

20npip, * 1O
x (fk-bu- - %b\ ) +me(F')e (98,8, )8(F' - F-7)dq = F (p',p)b(py - p,) 37
- b2
S;:I;=<pI|S|p> - 1k M J‘ (q()2 {[e (l)(pol)pll (3 ,(r)(!—;)P _e(r)(mpv_ev@(p*)pk) +
202n0ypi p, 191

+e 2@ )P el @, + el @, + e BIp,) + 62 (T LD, + e L P, -
~3e0(Pp,) - 2me) (7' e (r)(P-')]é,r O [( TP+ e () = e B )
(e, LD, 62D, ) - AL T LD+ @ W, + 62 ! -
e 0@ )e@) ((bx. 5, - _;ab) 5, + (av. 5, - _;5) 8, - (ox 5~ _;_ qu %) i}
-0 e, + ¢S, - eI, ) ( ( ; 0,.1) d,* (év- b~ —;0] x

x5, - (ou. - —;bm)bo,)]q,}ﬁ(ﬁ’ ~p-D)dq = F(p',p)bgy) (35)

17
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SeP=<p'|S|p> = P ESE (@0, ¢

tkimM J- (flo
|

s ol py” 19 !

+ 1@ P p VO, + mu (@ Y u @ 10(F - P-§))dq = (39)
= F(p'.0)5(25 - 1),

where  e2(@), e2(p), ul(P), [E,f”(ﬁ‘) = u,}”'(ﬁm] and p, on the one hand, and
e, e2F), ul(F), [Ep")( "y =uP(p )74] and p; on the other hand are the vectors, tensors,
spin-vectors and the energy of the imtial and final particles, respectively, andg, = py - p,= 0
states for the energy conservation law We have denoted by the common notations m,p and
P, the charactenistical quantities (the mass, 4-momentum and the energy) for the all three

fields respectively

The differential cross-section is given by the well known expression
do = (2m)* <f2: IFp! ,p)>,, P dQ, (40)
-

where dQ = 2x sin0 d6, 8 being the scattering angle In order to evaluate the differential

cross-section we must find the expression for <Y |F(p’, p)|*>,,, For |F(p’, p)|* we get fiom

Jap

5

(37), (38) and (39) relations respectively
kM

— ¥ le.w'n] (@n
8(2n)’p, P sm’_i.

[F(p!, p|* =

kM

2
2
[#p!, pi* = [Q,,m(n’ ,;)] e

8(2n)’poﬁzsm’g

ot

k2mM ~
. Y
16(2 ) p,(py - m”) 9111’7

where 1 15 given by

L= 21y,p, 1m

38
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Then, the expression <; |F(p’,p)|*>,, for vector, tensor and respectively Ranta-Schwinger
L4

fields are.

kM 1
<Y |FE',plt>,, = - (-3-2%)
%4 8(27:)2;10(1);—ml)sin’7 L

kM ‘(1
<TIFG. D>, = 7| (35 %)
L 8(2n)p,(pi - m?) smz_i. pol

K2mM 1y e
o 5| 3 X a0 ul@ =
ram=1

<Y AP\ pI*>,, =
S 16(2nyp(pd - m? )sm’.E

= k*mM ’ (l ¥ 0! )
—_ R-S |~
l6(2:\:)’po(puz-m’)smz; 4

(45)

(46)

@7

where ¥, 0. . Y02, and ¥ 07 are the polanzation sums for the vector, tensor and Ranta-
pol ol

Schwinger fields and because they have a long enough expressions we prefer not to give then

here

In order to evaluate the polanizaton sums we take 1nto account that the polarzation vectors,

tensors and spin-vectors, respectively, satisfy the relations [5, 10]

3
Y@ el @=d,, p,v=11w4
A1

s
n 1 l
Hmlp = ; e'f’ ([7)8;‘(;)([7) s 'f (devo + dupdvk) - 3 d;rvdln

4

® =~ Yupu+ tm 1 !
Eu Yu, () = 25 |6 - _ o (yp- +
= Py 2im v SY"Y” Im Wl =Yub)

) P
Bm’I“Iv )

(48)

{0

(50)

19
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where d,, 1s given by d, = 8+ f’;‘_’f:_’.

After a labor:ous calculus, for the differential cross-section of the massive vector, tensor and

Ranta-Schwinger particles one obtains the following expressions, respectively

2 2
2 2
do = |EM) dQ 14V 2009012 gm® (&2))
16n sm,,g 2v? 3 21 4? 2
2
2 2
2
do = M & L+v —.4_.sm19. +..__E__._sm“.g[9(3l-
16w .0 2v? V2 2 45(1 -y 2
sin’__
2
~ 108v? + 146v* ~ 92vS + 23v%) + 48v*(7 ~ 18v?+ 19vi- 8\")sm2_g. - (52)

- 24v*(5 - v - 11v%) sm‘_g - 192v5(1 + v1)51n“_2. + 128v8 sm".g.] }

2 2
23, 2
do = [k M] aQ (1 +v ] - 1 [V2(15 - 41v? +5v* +21v‘)sm2_g_ +

t6m 10 L 2v ) 36vi(1 VR
" (53)

+ 44 (3 -6vE- 5v“)sm“.g +8v¢ (3 +v’)sm‘§] 1,

where we denoted by v the 12 a0
P,

We shall notice that 1n the small angle appioximation the polanzation sums become

N

¥ 0 m*[l;vf) (54)

1 +v1] (55)

Y 0., = 55
pod

40
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2 (1 +42)

EI:QR:-S =4p, g (56)
pol

Taking 1nto account the previous relations, the differential cross-sections 1 the small angte

approximation become

1+v!
2v?

2
ds = KA 49
=nall® " Téw o' ?
)

] = da, . (57)

1 ¢, they are the differential cross-sections of Rutherford type As we can see from (51), (52)
and (53) the expression for do,, 1s contained by these relations as a first term Since this
term (1e do,, ) 1s quite the differential cross-section for the massive scalar particles (for
instance the scalar mesons) we can nterpret the second term tn the (51), (52) and (53)
relations as being the spin contributton of the vector, tensor and Ranta-Schwinger particles,
respectively

A particular nterest 1s presented by the back-scattering limit case In this spewial limut case

we have worked out respectively

2 1
2 2 a2
ol = [k M] [“V] ; 2oV aer (58)

lox 2v? v

2
Y aQr
o, = x
16 | T80vI(1—v1)' (59

X (45 =810V + 5067v"  9228vE + 5475V - 52201° + 229v'Y)

1

2 — 2 4

day (= kAL 9 -6vi+Sy qQ. (60
16 | 36vi(1 -v?)

where do® = do;  and dQ” = 2xd0

In the ultrarel~tivistic case (v —> 1) we get from (58)

o, 1

oy = T((;M)I (1R it
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i.e, in the back-scattenng and ultrarelativistic case, the differential cross-section % for the

vector field only (!) is constant (and non-zero), which means ihat 1n this case the helicity of

the particles is not conserved, in agreement with [11].

:

Fmally it’s. worthwhile to point out that in the small angle approximation, the differential

cross-secuons for scattenng in Schwarzschild field of masswe scalar, vector, spinor, Ranta-

Schwmger and tensor partlcles have the same form and in ultrarelativistic case they comcnde

With thése corrésponding to the neuirinos, photons, gravitons and grawitinos, te, -the-

graktitational particle scattering in this limit case is spm-lqdepéndent [12,°13]}, in ag}eement

with many authors’ results, obtained by other means [14]

1
3
3
4

wh

42

REFERENCES

‘1. 8 Gupta, Proc Phys Soc. A 65, 161, 608, 1952

De Wiit B.; Phys Rev, 160, 1113, 1967 162, 1195, 1967 162, 1239, 1967,

D Tatomir, An. sc Umv. "ALLCuza" Iagt (n.s ),.section I b, phys, tom XXIV, p 91, 1978

D. Tatomir, "Contributions in Quantum Study of the Particles Interaction 1n the Presence of Gravitation”
- Ph D. Thesis, "AlI Cuza" Untv, Iagi, 1981 (to be published)

J. Schwinger, "Particles, Sources and Fields", Addison-Wesley Publishing Company, 1970 (prmted n
US.A)

V. Fock and D Ivanenko. C r Acad. Sci, 188, 1470, 1929.

N Mitskevich, "Fiz polia v O.T.O ", Izd.-vo "Nauka", Moskva, 1969. .

R. Laag, Tr. Inst, fiz astr., ANESSR, Nr 5, 25, 1957

Tu. Viadimitov, Izv. V.U Zov., Flzka, Nr2, 133, 1963.

D Lurie, "Particles and Fields”, J.Willey & Sons, New-York, 1968

W De Log1 and 8.Kovacs, Phys. Rev, D, v. 16, Nr 2, 237, 1977

D. Tatonr: "Abstracts of Contributed Papers for the Discussion Groups” Jena Univ , 14-19 July, 1980
D Tatomir, "10-th International Conference in G R.G ", Padova, 4-9 July, 1983, Contnibuted Papers,
140

K.Lotze, Acta Phys Pol,, B 9, 665, 677, 1978,



STUDIA UNIV BABES-BOLYAI PHYSICA, XXXVIII, 2, 1993

FOURTH ORDER TORSION L-TENSOR FORMULAS
FOR ANHARMONIC FORCE CONSTANT TRANSFORMATION

T.A. BEU’
Recetved 1512 1993

ABSTRACT. - New fourth order analytical torsion L-tensors are reported, which complete

previously published third order eapresstons The formulas up to the third order are used 1n

molecular normal mode analysis calculattons for the nonhinear transformation of the force

constants from internal ccordinates to normal coordinates Sample calculations are presented

1. Introduction. Although, due to the advances tn computer techniques, most of the
computational effort of molecular normal mode analysis applications has been transferred to
numencal methods, for laige problems it may be still preferable to use analytical formulas
for the L-tensors tnvolved in the transformation of the force constants from internal- to normal
coordinates, instead of numertcally denving the internal coordinates with respect to the normal
coordinates, according to the defimtion of the L-tensors

L-tensors formulas for all elementary intemal valence coordinates are available The
torstonal coordinates, however, require an espectally delicate mathematical treatment, and give
nise to the most complicated expressions Formulas for planar equilibrium configurations [1],
and more recently, general formulas [2] have been reported Alternative torsion L-tensor
formulas have been presented 1n [3] (hereafter referred to as Paper 1), which, 1n contrast to
the analytical results of [2], are more compact, tmplying scalar operations with trigonometnc

functions stead of cumbersome vector operations

" "Babes-Bolvat” Univer sy, Faculty of Phwics, 3400 Cliy-Napoca, Romama
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It 1s the purpose of this paper to present new fourth order torston L-tensors, which
complete the set reported in Paper I Due to the complexity of the calculations, extensive use
was made of the symbolic computation package Mathematica. The expresstons up to the third
order are equivalent to those of Paper I Results for methanol and hydrazine, obtained by the
numerical tmplementation of these expressions, are presented and compared with similar

results from the literature

2. Equations. The Taylor expansion of the potential energy with respect 1n terms of
curvilinear internal displacement coordinates may be wrnitten as [1]

iy uk™

_;_ZFRR+ 57 RRR+_l4zk W RRR R+ ()

and F

u are the 2nd, 3rd and 4th denvatives of the potential

where the force constants F,, F,,
energy to the coordinates R, referred to the equilibrium configuration of the molecule In

order to perform a normal mode analysis, the vibrational-rotational Hamiltoman 1s, hower,

conventently expressed in terms of the normal coordinates O,

VeiXn0 X 47000+ X 40000, 0 ‘o

ra,1 rs hLu

where A = 4x’ciw’
The nternal coordinates R, can be expressed 1 temis of normal coordipates of

nonlinear transformation

14
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RI - EL"Q:- + ELI"QrQ: + E L‘"‘QrQJQl-’- 2 (3)
r r,s ’.,’.l
where the elements of the L-tensor, L,, L, L/"', , have to be interpreted as first-, second-, and
third order denivatives of the mtemal coordinate R, with respect to normal coordinates
The formulas for the transformation of the force constants from internal-, to normal
coordinates (including only L-tensors up to the third order) may be readily obtained by

substituting (3) 1n (1), and comparing the result with (2)

N =Y FRLL
i
¢rﬂ = ”EI‘FUAL’rLj:LkI + IX;ITU(L‘”LJ"" LI”LJ‘ + LIJILJr)

¢rxm = E FUH LlrLj:Lle,u

INR N}

4 E F:J/;(L/"Lj'l‘ku + L,”LJ,L: + L‘ruLj:Lkl

1]k

+ Lq“LJrL: + L‘auLer‘t + Lllule Lk.v)
+ EFU(LINLJN + L,”ij + L’ruLJ.vl
LY
+ L,"’Lj" + Llr:uLJl + L,rmLJ’ + L,"uLJ’)

As stated above, 1t ts only the case of torsional coordinates we are dealing with 1n
what follows The torsion coordinate involves four atoms If the atoms a, b, ¢, and d are
linked by the bond vectors r, = ab, r, = bc and r, = cd, the torsion cootdinate 1 1s defined
as the dihedral angle between the planes abc and bed The torsion "displacement” coordinate

R, which 1s actually used as a normal coordinate, may then be defined as the difference
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{
between the torston coordinate and the corresponding equilibrium value <,

C))

Rwl =T -, = dICCOS

(e,>e) (eJXek)} .

sng, sng ,

where e, e, e, are the umt vectors of the three bonds
The torsion L-tensor may be set up, as already pointed out, from the deuvatives of the
torsion displacement coordinate with respect to the normal coordinates The relations for the

first four orders are

R , *R ., J'R
[r.v 1, 11/;’u=’ (113 (5)

R w oo ”
80,30, " 30,00,30; a0,00,00,00,

r ik rs_
i = 4k
30

In order to avoid the complications implied by repeatedly denving the mixed vector
product from the expression of the torsion displacement given by (4), we tiausform R,
making use of the well-known Lagrange 1dentity

(axb)(c«d) = (a*c)(b d) - (b-c)(ad)
Relating the obtained scalar products of the umit vectois to the angles defined by them

ere = —coscbu, e e = ~Cosp

2 2 e e, = Cos¢ ,,

Il

the torsion displacement coordinate becomes

(0)

Ru 4 = arccos
sing, s .

cosd, cosg , — cosqv,‘] o
.

As one may notice, the angle ¢, between the non-adjacent bonds 1 and & appears i the abos
relation, as well

In performing the operations required to denve the expressions of the torsion /.
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tensors, it is useful to keep in mind the definition of the first order angle bending L-tensor
" .. 99
L= 'a—QU (7
which, coming from the denvatives of the angles ¢,, ¢, and ¢, respectively, will enter in
the expression of all torsion L-tensor

In order to simplify the expresstons of the torsion L-tensors, we define the following

auxiliary tensors

S, = Ljlsing o ®)

= S cosp, + Sjicosd,, ©

Uji= S¢Sy + SSi, (10)

Vig = 878, S, cosp, + ScSyS,cosp, an

we» U and V' are obviously symmetric with respect to the index pairs "y" and "jk"

The formulas for the torsion L-tensors yielded by Mathematica (according to the
definitions (5)) are obtained employing a rather elaborate set of expression manipulation rules,
which allow for massive simplification of the relations, use being made of the expresstons of
the already determined lower order tensors Here are the resulting formulas for the first order

L-tensor

Lysing,

L) = Thcott + csct |Ljcotd  + Lrcotd - (12)
vk ik ) o U ik Ik 7 ’
[L sing,, sing "

the second order tensor

ry f " r r I rs
L= "Luk gk~ cott, ( Lyl * Uuk)

(13)

LiS, LSk Ly
- aser, {k {7 + i Dk - ik
sing, sind, s s,

(L,,:coscp,,‘ - ’1',],(sm¢l,,) },
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the third order tensor
rat 1 r r. o r
Luk = LurkLu'kLuk + Llji UuL + Lulk Uu; - Luilun
tpr r 1 ] 7, rs
- coty, [LauLiTge + Lk + Lo + LuLis - Vi |

L (14)

sing , sing,,

rorgt

+ oy, 2c°‘¢UL1krSJSu' +200t¢ Ly SpsSp *

1] 1 st : k] ! om v ! 1
x [005¢,ﬁ(szTuk+ Lll7uk) + 5"‘4’,*([/:::14; - Tl - 1;*)] }.

and finally, the fourth order L-tensor
Lot = Ly LiLis v LisLis LisLin) + Lo L+ Ll i)
L LAl (LaL L= Lot T+ LU + LUl + LU
» coty, [ L LyeLysbs - LigLis - Linkis = LisLin = LjLor
Ll - LALG - Ll - (Ll + Lo+ LLia) T
- 2(1 +2c08%, ) 5,5,75,55 - 2(1+ 2008, ) SiSiSASK
+ LljkLi_:lz 1;: + Lij,kLl;k :_r/;: + Ll_;kLt_;‘lx /52] - Llj’k V(;;" - LUIL :;;u Ly~ LU"k V:;;l

+ cs(:ct{—Z(l +2c08*¢, )escd, LiSyS,S; - 2(1 + 2costy , escd Ly SSuSy

r
Ly

I fru u s i 1 ks u 3 t nu
_— [COS¢M (LuLyLiic = LT T = LuTp T~ L T T
sing, sing ,

u L t wu z u ’ urn s 5 up f 3 ! u
=Ly Uulx Ly yk ~ L Uuk) + sm‘t‘m (- Lulu run = LyLy 7uA =LylLy ik
x L u u e v ! w vy 1] I
AT TaUL+ TaUm s TaUs+ v} (15)

As 1t 1s apparent from Egs (12-15), all torsion L-tensor elements depend on the angle

bending tensor elements L,;, and on the torsion L-tensor elements of lower order It should
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also be emphasized the explicit dependence of the torsion L-tensors on the equilibrium value
of the torston displacement coordinate <, only through the factors cot <, and cos T,

Another point worth discussing 1s the appearance of the "angle bending" L-tensor
elements, L,;, corresponding to the angle ¢, defined by the non-adjacent bond vectors The
significance of the mentioned elements may be regarded as purely mathematical, and for their

computation the formulas for usual angle bending may be employed [1]

3. Sample calculations. We present in what follows fundamental frequency results for
two sample cases imvolving torsional coordinates methanol and hydrazine In both cases there
have been used only Z-tensors up to the third order

The harmonic frequencies and normal coordinates have been calculated by the Wilson
F-G method The anharmonicity correction 1s accomplished by employing the approach of
Hoy, Mills and Strey [1] (briefly discussed 1n section 2) embedded 1n an oniginal FORTRAN
77 computer code for general normal mode analysis, run both under the UNIX and DOS
operating systems

The geometry and internal coordinates used to descrtbe methanol are those of [4] The
force constants are taken from the same reference, where all cubic force constants of the type
Fy, with 1, y and k all different, and all quartic force constants other than the diagonal
stretching ones are neglected It should be noted that the calculations reported in [4] are
performed strictly numencally, no use being made of analytical L-tensor formulas

Table " shows the computed fundamental frequencies of [4], the ones computed by

means of our L-tensor formulas, along with the observed frequencies reported in [5] One may

13
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notice the fair agreement between our frequency values and those of [4] Both sets of
computed frequencies exhibit the same overestimating tendency as compared to the
experimental values, however, the overall better agreement of our results (with a smaller
maximum relative error of 6 7%) 1s obvious Exceptions are 1, (C-H bond stretching) and T,
(C-O-H angle bending), for which the errors are small anyway For the three torsion modes

of methanol (7, T,; and 7,;) our relative errors are significantly smaller

Table 1. Fundamental vibration frequencies of methanol v** are the expenmental values of [5}, v' arc
the calculated values of [4] and v" are the frequencies computed 1n this work (in cm™, the corresponding relatn ¢
errors being expressed in %)

o v e 1 v (Vv
K
¥y 3682 3730 13 3728 12
v, 2999 3009 03 3011 04
v, 2844 2919 16 2865 07
v, 1478 1611 83 1583 66
vy 1455 1571 74 1559 67
Ve 1334 1391 41 1364 22
v 1075 1113 35 1080 05
v 1034 1046 11 139 05
Al
v 2970 2988 06 3006 2
Vio 1465 1583 75 1537 17
v, 1145 1234 72 i L
iz 271 262 34 203 0
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All relevant data for the hydrazine molecule (geometry, internal coordinates and force
constants) are taken from [2] Table II shows besides the calculated frequencies of [2] and
of the present work, experimental data of [6] One should again notice the fair agreement
between the two sets of computed frequencies The discrepancies between our frequencies and
those of [2] (with maxima for the T, N-N stretcing mode and t,, antisymmetnic NH, wagging
mode) are probably due less accurate force constants histed in [2] and used 1n our calculations,
than the ones actually used to produce the frequencies of [2]

Table II. Fundamental vibration fiequencies of hydrazine v* are expenmental data, v’ are computed values

of [2], and v" are the frequencies computed in this work (in cm’, the corresponding relative errors being
expressed 1n %)

ybs v Vv v (Vv
A
v, 3390° 3413 07 3397 02
v, 3300 3297
v, 1628 1659 19 1671 26
v, 1324° 1344 15 1361 27
v, 1098° 1121 20 1119 19
v 780" 840 71 843 75
v, 3774 398 53 350 77
B
Yy 3398° 3402 01 3440 12
A 3297° 3287 -03 3331 10
Yio 1587° 1645 3.5 1635 41
vy 128%° 1320 238 1318 26
vy 937¢ 1045 103 1058 14

* {6}, * [7), I8}, * 10], " (11]
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4. Conclusions. New torsion L-tensor formulas up to the fourth order are presented,
which, in contrast to some previous analytical results, are more compact, 1mplying scalat
operations with trigonometnc functions instead of cumbersome vector operations The
numerical results which have been subject to comparison, although affected by the employed
set of force constants and the adopted numerical strategy, compare favourably with one

another and with experimental data fiom the literature
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EXCITATION OF A LOWER HYBRID WAVES IN A WARM PLASMA
BY A WARM RELATIVISTIC ELECTRON BEAM

J. KARACSONY and Z. KISS’

Recerved 208 1993

ABSTRACT. - The linear theory of excitation of electrostatic lower hybnd waves 1nto a warm
magnetized plasma by a warm relativistic electron beam is presented It 1s found that
electrostatic lower hybrid waves can be excited by Cherenkov resonance The fiequencies and

growth rates for excited waves are calculated

1. Introduction. Absorbtion of a lower hybnid waves seems to be a very efficient
method for heating 1ons n a plasma [1,2] In recent years, considerable attentton has been
focused on theoretical and experimental studies of lower hybrid waves for plasmaheating and
current generation 1n tokamaks These waves have been succesfully employed to heat
electrons and to drive plasma current in a number of tokamaks [3-8]

On the other hand, has been demonstrated that lower hybrid waves generated by
auroral electrons can produce transversally accelerated 10ns 1n 1onosferic plasmas [9, 10]

In the space physics context a great attention has been accorded to the lower hybnd
dnft instability generated by density and magnetic field inhomogemties [11, 12] The lower
hybnd wave can be also excited by an electromagnetic pump wave [13] and by electron
beams The linear theory of the lower hybrid waves excited by a nonielativistic electron beam

streaming through a cold plasma along the magnetic field has been discussed in detail by

Papadopoulos and Palmadesso [14] The relativistic election beam temperature effects on this

" Unmiversity of Cluy-Napoca, Faculty of Physics, 3400 Clup-Napoca, Romania
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instability has been studied 1n [15]. In the present paper we demonstrate that such waves can
be generzted by a warm relativistic electron beam into a warm magnetized plasma

In our model a warm relativistic electron beam with density n,, and a velocity v,
streams through a plasma with warm electrons and cold 1ons along a magnetic field 8, The
unperturbed plasma density 1s considered to be n,, >> n,, Because we are interested with
lower hybrid waves excitation we will study the almost perpendicular propagation of plasma

waves to the magnetic field

2. Dispersion equation. The general dispersion equation for longitudinal waves can
be wrnitten as [19]

e, si’8 + e cos’® + 2e , cosBsnd = 0 )
where e, (1,7 = 1,3) are the dielectric tensor components of the system and 6 repiesenis the
angle between the wave vector ¥ and the direction of the external magnetic field 7, (Cne
assumes that the wave vector ¥ lies 1n the xOz-plane and Oz-axis 1s onented parallel to the
external magnetic field)

The dtelectric tensor can be expressed by means of the conducuwity tensor o in the
following way [19]

£, 9t _4(‘010,1 (2

We will use the expressions calculated 1n [17] for the conductivity tensor components

of the warm relativistic electron beam and the expresstons calculated m {16] for the

conductivity tensor components of the warm plasma with temperature anizottupy Considering

cold plasma ions and using relation (2) we can write the dielectric tensor components under
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the form*

o 6)

2 +n[% - 1]]}'@",) +
w L,
L4 ce (4)

(1) T
m—*"[‘f'l"”x
ce i (5)

where the following notations have been used

nw_, T
Pom 1= i Asy) - 72 V() (©)

[0 1] 1]

v, 7, oy, T,
Qn =n {—_Z(snb) + (1 - "Ti ) Y(snb )] + T _T—i Y(Snb) (7)

Vlb 15 (3 16

and
AR = e[ (W) 8)

I(\) are the Bessel functions of the first kind of imaginary argument with

kot
(. ©)

2
),

ce

for the plasma and
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-2 2
0? Vi Yo
WY Thiad (10)

,

ce

for the becm
The quantity w, represents the electron plasma frequency and w), the 1on plasma
frequency, while w_, and w,, are the electron and 1on cyclotron frequencies, respectively The
perpendicular and parallel mean square velocity for beam electrons have been defined by the
following relations [18].
Ty = malb | (1)
T, m,yflb ' (12)
where T, and 7Ty, are the perpendicular and parallel beam temperature, respectively
Y= (1 - v /c’)m 15 the usual relativistic factor and 0 = n,,/n, < 1.

In the expressions (3)-(7) we used the plasma dispers 1n functions [18]

)

Xs,) = (2m)™ J oxp(-412) 4 , (13)
4 ¢ ~s,
and
4 = _”2“ { €Xp _[2/2)
) = (2m) L_TGT“m (14)
with
s, = .ul_m". (15)
L AR

for the plasma and
§om_ o e 16)
for the beam
The perpendicular and parallel mean square velocity for the plasma electrons have
been defined by the relations [16]

Toy.” m,\-’-i_;,, (17
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where 7., and 7, are the perpendicular and parallel electron plasma temperature,
respectively
Since we will be interested with almost perpendicular wave propagation with respect
to plasma return current direction, 1n expressions (3)-(5) we neglected plasma return current
effects
Substituting the expressions (30-(5) in (10 and taking into account that [18]
Y,) = 1+5,Z6,) (18)

the electrostatic dispersion relation becomes

2 2 2
0,,c05°8  ,sim’0 ©

DKw)=1-_" - 2 [1 + YA M) 2s,,) x
o? o -, kW] E
x |s +"w“f'_’. + [1+§fA(7\)z(sb)x (19)
ne k‘,_l' TJ_‘ Y kl n

xS+ e _T'."_ =0
kv, Ty,

3. Excitation of lower hybrid waves. For electrostatic waves with w, << @ << w,,
and cos® = m, /m, some sumplification of equation (19) is possible because s> 1 Using the

asymptotic values of Z(s,,) [18]

1 1 7T Snzs
z =l - - k1 e -2 20
s,,) v 1l7e T3 (20)
and neglecting the higher order terms, the dlspersxon equation (19) reduces to
2 2
D(Ew) = 1 =22 = 2% 4 () cos’ - .
o o ‘ 0 =no,, T.L,

I m L@ ml
+:’ A(A) - 1+Y A (y,) ¥ 21
2 k’k 'Y., kzv.b[ E b ( )
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x Z u le - ()
G Yo TJ.
z Ib b

Now, taking into account that for lower hybnd waves we can use for 4 ,) the

expression [19]

Inl
40 = o (22)

and we finally have the dispersion relation 1n the form

2 2 2 2 oW
D(Rw) = 1- 22 - &r costg 4 2t 4 l_’f ©pu® T _
(1)2 w? (.l):, kzkvl,
"1 2 nw_, 1|z,
- 1+ 4,0 Z(s,) |5, . e B

Ya kz—:a n ATRAN

(23)
=0

With the purpose to investigate this dispersion equation, we will follow the usually
applied procedure 1n plasma physics [19] According to this, when Im @ <<Re w, the excited
wave frequencies can be calculated from the equation

Re D(K,w) = 0 249
and the corresponding growth rates from the relation
me = - mPEe) 25)
aRe D(K,m,) fow,

where o, = Re (k)

Wnting the Z(s,,) function under the form [18]

Z(s,,) = —exp [—%] [’Iem [%z] dE ~ 1 (;)m (26)

and taking into account that in Re D(¥,w) the contnbution of the beam terms are of order v,

we obtain for the excited wave frequencies the expression
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w; = e 2(m + ) cos’e) 27)
where
b, T
pe
R I T YRS
) (28)
. no, T,
*Re Z(s,,) s, + g
with [ kv, T*"]l‘-uu.

2 2 2
w,, + W, cos’0
Wpm 2P (29)

1+ @, fo,
The growth rate for the instability can be found from (24) using for D(¥w) the
expresston (23)

Taking 1nto account that Im Z(s,,) with n » 0 are small compared with Im Z(s,,), we

obtain for Im o the following expression

)

I T LI
Ima Tia k2 o _rkth e +

(30)

kv = (w, -~ XV,

+ l A0, ) s _2577'—

k v 15 Yo
The fastest growing instability of the lower hybrid wave is then obtained when

w, = K7, 31

with the beam electron speed just a little faster than the phase velocity of the wave 1n the
beam direction This 1s necessary to assure Im o > 0
The first factor in the bracket caracterizes the damping of excited waves due to plasma

electrons
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4. Conclusions. The above results show that a warm relativistic electron beam can

excite lower hybnid waves in warm magnetized plasma These waves can be excited by

Cherenkov resonance when o, ~ ¥-7, We calculated the frequencies and growth rate for

excited waves The obtained growth rate expression contains also the damping effects due to

the plasma electrons [first term 1n the bracket of expresion (30)] on the excited waves When

the Chereakov resonance condition 1s satisfied the damping term becomes small compared

with the term which 1s responélble for the qrowth of the wave amplitudes [the second term

1n the bracket of expression (30)] Thus it resvlts an instability for the lower hybrid waves.

Another important conclusion can be also drawn for beam electron temperature effect

The expression which was derived for the growth rate shows that parallel beam temperature

has an stabilizing effect on the instability.
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ANALYSIS OF THE PHYSICAL CHARACTERISTICS
OF A DUSTY PLASMA 1. THE GRAIN CHARGES
AND THEIR EFFECTS

Speranja COLDEA’

Recesved 509 1993

ABSTRACT., - The charge of a dust in a plasma 1s not a fixed one, depending on the

characteristics of the plasma, on other phenomena as secondary and field enussion,

photoemission, etc By supposing the grains being at rest in a Maxwellian plasma, an analysis

for the properties of grain charges in a dusty plasma 1s made The comesponding effects are

shortly discussed In the second part of the paper other effects of the clectrostatics of dusty

plasmas will be analysed

1. Introduction. A dusty plasma can be defined as a plasma with a phase of solid
objects (grains or dusty particles), that usually exist in laboratory plasmas, planetary and
cosmic plasmas For the understanding of the 10nosphere properties and of the consequences
for earth atmospheric pollution, a modern knowledge of the dusty plasmas charactenstics is
needed Generally, the method of study such plasmas characteristics 1s based on the theory
of the composite plasma dynamics (kinetic model or fluid model) Experimentally, the
Tonosphenc Radar Scatter Technique 18 used, based on the analysis of the statistical properties
of radar retumns from ionosphere Measurements of physical properties of dusty plasma in
tonosphere or planetary ring (magnetosphere) are also made by satellites The conclusion of
the experiments 1s that the present of dust may change the structure and properttes of the

plasma The present paper deals with the study of fundamental properties of a dusty plasma

with impunties, that are electrically charged A short analysis of the grain charging and of the

" "Babey-Bolvai" Unwer sity, Faculty of Physics, 3400 Cly-Napoca, Romania
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corresponding effects 1n a dusty plasma 1s given, based on the fundamental equations of such

a plasma and on some quantitative constderations

2. The basic equations. Firstly we shall present the equations that describe the
charging of dust grains in a plasma, process driven by plasma currents, photoelectron and
secondary emission currents [1]-[7] The basic equations for all thesse currents 1n the case of
a number of grains 1n a plasma comparatively with those of a single grain 1n plasma or in
vacuum will be presented -

By consicienng that a grain 1s at rest 1n a Maxwellian plasma with electron and 100
temperatures T, and T, (T, ~ T,) and by neglecting the other charging effects, the potential of

the grain ¢ 1s obtained to be negative (1f Flow, <<Flow_) The currents to the surface of the
grain are [1}-[3], [7]:

4maine
1= —m'exp(eﬁ.q’) (1)

4na’nZe

,=W'(l-ﬁ,29¢) (2)

where p = 1/kT and a 1s the grain radius, m,, m; being the electron and 1on mass and T, T,
- the corresponding temperatures, ¢ 1s the grain surface potential
If ¢ > 0 then /~exp(-eZf¢) and 7 ~(1-ef ¢) The equilibrium potential 1s found
from the condition.
L+l =0 (3)
and 1t 18 independent of plasma density

Because the charging time 1s nonzero and 1t 1s proportional to 1/a a specitic
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gyrophase dnft motion of gram in plasma takes place

The secondary and photo-emissions determine a positive current to the grain Two
cases could be discussed

(@) If ¢ < 0, all the released electrons by secondary emission escape and the

corresponding electron current is of the form

kT 172 E @
1 =370 0 Y 8 M PP 4
e m n'(Z:rtm_] *1ak T @)
where
E E} E,u?
F ol =_."__-fdzl-u5-exp B B (5)
4kT, 16k2T? 4kT,

and 9, 15 a material parameter of value 05 < 6, < 30 and E_, 1s the value
E(5)€E (01-2)keV

() If ¢ > O, several electrons are reabsorbed tn the secondary emission process and

12
- KTV Ay s e o loed {1 Z UL
I, 376"'”'[2‘:th) [1+.k_T,] cxp[ T(T .TT_]]I x) %)

then we have

1
B
where x = __™_ 7.~ 10K, B = A1 and
4/(71, E

m

Fl = x? fdu sy dg Cxulen) (7
The photoelectrons flow 15 of the following form {9]

I

I,=na®K <0
(8)

I =ma’K+exp -2 o >0
4 27'!
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where T, 15 the temperature of photoelectrons (T,~1el) and K = n-x 1s the flow of photons
(v being the photoefficiency of value € (0 1 - 1))

When a gramn of a = lp m n a plasma of 7,=1e¢l” 1s taken, and the plasma and
secondary emission currents are constdered, three steady states are possible (if 1, = 0), the
midle one 13 unstable and the other two ones stable From some considerations that we don’t
mt‘roduce‘here 1t could be seen that this behaviour leads to a coagulation of dust grains effect
[6], that will be discussed elsewhere

The case of a moving grain in plasma can be also assumed, the corresponding electron

and ion currents being given by

! 2y2m a’en, exp (eBp) ©)
= - -eap (ef
‘ (Byrm Y plebs

and

T 2
I, =na’nZe (l + 2Ze¢ ] + & 'Chp[‘g—) (10)

thi the ?

24T,
where 7, = [__.__’] 1s the 10n thermal velocity and w 1s the grain velocity Becausew < T,
m,

the grain may be considered at rest and I, 1s the same as (1) From the equlibrium condition
I, + I, = 0 the potential ¢ = ¢ (w) could be obtained
At this point a qualitative discussion must be made the capacitance of a grain 1n
vacuum C,a, if the gramn s introduced in & plasma, the potential around 1t 1s
o =0 LA = D] where & = L, 11 the distance between grains [3] The effect of this
r (1 +ka) A,
like a spherical capacitor gramn sorrounded by positive sheats (outer conducting shells) 1s the

following when r « &, the posttive shell 1s pushed closer to grain surface and i1ts capacitance

increases If grains are 1 a neutral plasma they become negatively charged and there are

(]
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excess 1ons 1n plasma, the condition I = /, at the gramn surface 1s satisfied

3. The effects of grain charge in a dusty plasma. The relation for 1on and electron
densities n,(F) are given by the Boltszmn factor.
n(F) = Crexpl-q,84 (M) (an
where C, (1 = ¢,1) 15 taken from the condition [n(F)d*r = N,, N, being the total number of "1"
species, ¢ - the potential around the grain and q, 1s the charge

The Poisson equation that will be used in this case 15

Vip +dup (7)) = —4nY, n,q, =
i

N,qexp{-B,q,(¢ (7) - 9)] (12)
T e =B a0 (F) - )

= ~4x

with p(7) being the charge density on the grain After using the method of expansion of

electric potential 1 ,4,(¢ - $)(¢ < 1), we obtain to the lower order the relation

V29 - k*¢ +dmq (F) = -4nY 7 q,
{

L fere-n-wd (42
where
k= 4n$ﬁ;q,z-ﬁ, (a4
and
7, = l/fd’r'n,(?') (15)
with V - the volume of integration, ¢ being the averaged value of ¢ over V
The final Poisson equation 1s gauge invariant
Vi = 8) =R ) dmp () = ~4a ) T, (16)
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It can be observed that the currents on the grain are driven by the difference(¢ ),
The solution of the last equation could be obtained under the following form if a neutral

grains-plasma system (Q(<0) ~ 0 (> 0), with N gratns of same radius a and charge Q, 1s
constdered’

- 4t~
$-¢ E¢(F)+TCTI n-q,

7
where ¢ () 1s the solution of the boundary condition

Vi (F) - k% (F) + 4mp (F) = 0 (18)

that could be wnitten as an integral equation using the Green’s theorem

-
4)(,’-’)=. Efd’ C)Cp( kl';,’ l . 'Z/‘ '; VI¢(’-:)_
7 -7 | (19)
- $(F) J_FI v exp(~k |7~ F'|)
|7 -7 |7-F

The center of 1"-grain 1s choosen as the ongin of the system and only the 1™ term¢,(7)
of the above sum E’ 1s considered. The grain surface potential is ¢ (a) and the clectric field - V¢ (7)

15 the same over the grain surface From Gauss’ theorem it can be obtained

(F-7) Y
! V() = 2L 20
IR 0

By integrating the equation (19) the following result 1s obtained

o(F) = "Q,TI exp (~kr) exp(ka) - exp(-ka)

2ka (21)
“’Z(k‘?) exp(-kr) [ exp(-ka) (1 + ka) - exp (ka)(1 = ka) ]
=

Furter the other grains (j = 1) are considered and the collective effects between grains

may be taken into account and then the potential ¢ (r) 1s gtven after mtegration of eq (19)

for any distnbution function
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XSG 7Y = N[dr, S (7, F) (22)
Jni

If f =1, this condition is of the form 4xR*3 = N, that defines a distance R ~ _% In

this case the potential 1s

(r) = gexp[—k(r—a)r

o)

. 1+2xNk3exp(-kR) (1 +kR) (exp(2kr) - 1)
1 +ka-2naNk3exp (=kR)-[(1 +ka) - (1 -ka)exp (2ka)]
and then
2y - mo(ry - — NG (24)
’ k’[l _ 4ma’N
3

For equilibnium the condition 7 + 7, = 0 15 imposed, and in above equation the currents

ate given by the eq (1)-(2), with the 7, 7, ¢(a) > ¢ and 7= i, i,- 71, = -%-—NN-
(1—4::113__)
3

The 10n charge 1s taken as unity and g = 8, Then the equilibrium grain chaige 1s deduced

from the equation

V2
1- eBlo(a)-8 ) = (.,i:_] %-exp[ew(a)—ﬂ (25)

e

A dimensionless parameter A(N) that contains the dependence of ¢ on gramn and

plasma parameters s introduced, defined by

. 4J'£N_Qﬂ).__
ACN) = (¢(a)~9) (26)

Ll - 4na3N]

with the aim to write the equlibrium charge equation (23) as follows

07
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1-elo(@) - 8)[1 - eploca) - 3) 4wy =
i ) _ &)
=(7"_] [1+elocay -3) A |-expleplocar - 5)]

It can be seen that A(N) o N If the ratio %((1(\)/)) of grain charges (for a number of .g

grains 1n plasma) and the charge of a single grain 1n the considered plasma are introduced,

this ratio 15

QN) _ ¢@)-¢ . CWN) . (28
00  T[o(a)-6ly., CO (28)

where _ 2@ ¢ o1 put SV 5y
d(@) -9 by ()

As an example the PF-ring of the Saturn, that contains a dusty plasma, may be
considered The specific parameters are in this case a = luym, R = 0,2 cm, T = 10 pmeV,

n = 100 cm® (O" 10ns) and Ay = 166 cm The result for the value of capacitance ratio 1s

CW) . 10009 and 9@ =81 5710
€(0) [0(a) = ¢ Jvoo

From the presented analysis two conclusions could be deduced for the present state
of the constdered problem

a) The grain charge, under the given conditions, 18 not so large as we could expect 1f
the plasma temperature T = 10 eV 15 taken Q(N) = 2 70243-10* Q(0)

b) The corresponding electromagnetic forces are smaller in the considered example,
for the evaluated smaller grain charge

The same discussion could be made for dense dusty plasmas [9] and also for high
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dust-grain density by using the same kind of analysis

The other effects on a charged grain 1n a dusty plasma, as drag on a moving grain, the

motion of such a dust and coagulation of grain in plasma will be discussed in the second part

of the paper

O W N e
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FOR THE DRAG ON A MOVING DUST GRAIN
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ABSTRACT. - The plasma collective effects are included to analyse the process of the plasma

drag on a charged dust gramn moving through a plasma, due to Coulomb collisions The

concluston of the analytical discussion 1s that the forces among the 1ons modify the grain

mnfluence on the 1ons trajectonies, which 13 the source of the collective effects and that the drag

on a gran 1s mdependent of the presence or absence of plasma parlicles moving faster than

the dust

1. Introduction. The effects of a charged particle on the grains 1 a dusty plasma can
be constdered from two potnts of view

(a) the effects of electric and magnetic forces on the dynamics of the grains 1n the
plasma, and

(b) the effects of the grain charge on the properties of a plasma waves propagation,
instabilities and new modes

In the case (a) the electromagnetic force should be added to the gravitational or
radtation pressure forces and the orbits of the grans tn plasma could be altered

The equation of motion of a grain 1s of the form [1]-[2]

mvv = eZﬂ(E o1 -(\TXB)) *F - nul-r (1)
e

where 7 1s the gravitational force and 7 1s the radiation pressure Such a theory ts called

gravito-electrodynamics [1]-[2} The plasma physics 1s modified by the presence of some

" "Rabes-Bolvar" University, Faculty of Physics, 3400 Cly-Napoca, Romanta
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charged dusty particles
Depending on the considered particulai phenomenon that 1s discussed two kinds of
theones could be used
(1) the dust-grain can be taken as another plasma component (heavy 1ons) and then the
known results of many-component plasma theory could be applied
(1) the grains could be considered as external fixed impunties, acting as local and
strong perturbations for plasma particles
Grains moving through the plasma could be also considered
For a dusty plasma, without the case when the grain radius o(n) = 1 and when 1t
contains very low frequency oscillation modes, the grain dynamics Vcan be neglected with
respect to the plasma ton electron dynamics The following simple physical model for a dusty
plasma can be taken into account a nonneutral plasma (n = ) In the presence of a
distribution of fixed charged centers that determunes a stationary potentia! distnbution of the
system, being the solution of the Poisson equation
Vg = iz [E @ [Lo )P0+ p(7) @)
where [, (7, @) a =1 are the distnbution functions of the plasma components 1n the presence
of grains and the charge density of the grain p, 1s given as
PAF) = ¢ Zﬁj ZJO(7 - Ry) €)
p,(7) 15 a given function and does not change the plasma response n the presence of a wave
or of any other perturbation
This 1s the simplest model for a dusty plasma, but other more complex physical

models are used, such as the spherical capacitor model, where the sphencal symmelry
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assumption 1s made and for which the nearest neighbor approximation 1s not needed Other
two models are those of impermeable grains and of permeable grains 1n a plasma, the last
being artificial because it was consideied that plasma permeates the grain and the system 1s
overall neutral

The collective effects could be tncluded or not 1n the theory of dusty plasmas In this
second part of the paper {3] the coilectlve effects 1n the plasma drag process on a charged
grain are analysed We take into account only the effects of electnc forces due to 1on

Coulomb collistons on the grains 1n the plasma

2. Collective effects on a dust grain in the case of drag process. A chaiged grain
interacts with the other charged dusty plasma particles The collective effects occur because
there are forces among the plasma particles that are altered by the presence of a grain charge
The 1incluston of collective effects requires the use of the Viasov - Maxwell equations
Usually a lineanization 1s needed, giving an inexact solution

A more complex collective effect, the drag on a grain 1n a dusty plasma, when the
grains move through the plasma, 1s analysed in the paper, the collective effects between the
plasma ions exist due to their interaction and are considered here The interaction of the
grains among themselves 15 not considered The charging curents could be calculated, the
factor by which the grain charge and the electromagnetic force on such a particle are altered
by the presence of the other grains n a dusty plasma may be also evaluated The plasma 1s
considered as a perturbed reservoir (with » = n,, because some charges are given to the

grains) The velocity distributton of such a plasma is a Maswellian one and the plasma has
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an average potential ¢, the difference ¢() - ¢, where ¢(@) 15 the grain surface potential
determines the son and electron currents to a grain [1]-[2], all the other charging processes
are neglected here It is considered that ,= 8, An analysis could be made by considenng a
gauge-invanant Poisson equation
V@ -9) - K@) -§) + dnp,(7) = ~4xEn, g, )
The solution of this equation can be given for the different earlier considered models
The detailed theory of the motion of a charged grain (n a plasma and of the collective effects
on such a gramn is not gnve;x here The analysis for the electrostatics of a dusty plasma, with
the study only of the drag on a dust grain moving in the plasma 1s made
The drag force on a moving grain in a plasma ts a phenomenon due to direct 10ns
impact and to the grain-ion collisions and 1s defined as the product of the acceleration of
grains (of velocity v;) and of the gramn mass m, eg m_ u(v,) (we will adopt the
Chandrasekhar approximation of fimite m,) The direct 1on impact diag 18 given by an

equation of the form [4], 1f the collective effects are neglected

F,= —n,-nazml-o.’[ '(cxp—mf)+(..(3. +_;)f"(%).)} (5)
-
where ma? = 2kT,
There are two cases that may be taken into consideration
(1) if o s o the grain 1s moving slowly and 1n this case.
F = =2fun a'mow ©)
and
(1) 1if o = o the gramn 1s moving faster and then
Fy=ansatm o (N
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The assumption that the dusty grains do not interact 1s made The collective effects among
the 1ons could be or not constdered, the foice among the 1ons modifies the gramn influence on
the 1on trajectory It ts necessary to lineanze the 1on distribution by assuming that of'< /, e g
the force 1s shghtly changed 1n the presence of a grain charge, that means to not consider the
smallness of scatiering angles This 1s the same as expanding the product of grain and 10n
charges 1n Qe, this product being proportional to the grain-ion coupling

The expressions for F 4 1n the case of no large scattering angles (for the limit of small

product Qe) can be given under the following form

F - anQte? o [y AN (8)

m, a v3

that 15 the expression given by eq (5) 1f f(v) 1s taken as a Maxwellan distribution and for the

case of large scattering angles 1s given by the relation [5]

my* _,
v T+ Qz 700
e? J‘P (\) ! (9)

myt
)

2

Qe
where the impact parameters are b, = A, and b, =b
With the aun to include all effects discussed above, the equations given for the drag
force 1n the considered approximations are coupled and 1t 18 possible to give a more realistic
result The difference between the eqs (8) and (9) 1s a measure of the errors that appear due
to linearization of the Vlasov-Maxwell equations, 1f the impact parameters sausfy the
condition a s b = A, This correction 1s used together with the drag foice obtained with the

inclusion of col'ective effects 1n the set of Vlasov-Maxwell equations (for a < b s )

)? - K(F o)
F = —9 an ik 1K) 10
f A AR o) (10



S COLDEA

where K(X, w) 1s the plasma disperston function [6] Only for the condition b > A (the
scattering angles are small) a correction 1s not needed Then for a s b s A, the collective
effects are not so important and only the grain charge tmposes the ton trajectory and not the
other tons

A possibility to find the radial motion velocity of dust 1n a magnetospheric (planetary)
plasma (the migration motion), that 1s due to the drag effect, appears as the result of the
earlier made analysts The rotating plasma gives then to a gram a laige circular orbit added
to 1ts angular momentum motion Inside of syncrotronous radius a dust gram overtakes the
plasma and falls towards any considered planet Usually the 1ons are not influenced by the
other neighbours (ions) are describe hypeibolic orbits, ‘The forces among tons modify the
grain influence on the ton trajectorntes, this fact being the source of the collective effects

The conclusion of this short analysis 1s that we can choose some particular data for
a given plasma, as the density n, of ions, the tempeiature T,, the Landau wavelength X, the
charge Q of the grain and the gramn velocity w, then the force F,; could be evaluated for a
specific case, this fact giving the possibility to see the correct comportament of the dusty
gramns n a planetary plasma Some numerical evaluations of the drag force 1n a particular case

will be done elsewhere

REFERENCES

Mendis D A, Houpis HL F, Hill JR, J Geophys Res, 87, 3449, (1982)

de Angelis U, Physica Scripta 45, 465 (1992)

Coldea S, Studia Untv Babes-Bolyay, ser, Physica 38 i 2, (1993)

Chandrasckhar S, Ap J, 97. 255 (1943)

Morfill G E ., Goerts CK, Planet Space Sci, 28, 1087, (1980), lcarus, S5 111 (1983)

Krall N A and Trnivelpiece A W, Principles of Plasma Physics McGrow-1ill ed . New Yoik (1973)

[+ Y R

76



STUDIA UNIV BABES-BOLYAI, PHYSICA, XXXVIIl, 2, 1993

VIBRATIONAL AND ROTATIONAL RELAXATION IN PYRROLE
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ABSTRACT. - Rotattonal and vibrational relaxation of pure liquid pyrrole al temperatures 283,
293, 303, 313, 333 K and 1 CS, solution at 283 K have been studied by Raman bande shape
analysis The activation energy for molecular reorientation of pyrrole molecule was deternuned
The expenmental vibrational correlatton functions were compared with the Kubo-Rothsculd

and Oxtoby rclattons

1, Introduction. Different spectroscopic techmques (IR, depolanised Rayleigh, Raman,
NMR) are used for the study of molecular dynamics in condensed phases [1,2]

Rotational relaxation was studied first for the molecules in which vibrational relaxation
appeared as an additional and often very weak phenomenom

Therefore 1n order to test the different theories of vibrational relaxation, heavy
molecules 1n which vibrational relaxation has an 1mportant contribution, should be preferred

Recently Navarro and al [3] were obtained the IR relaxations from the molecules of
brofogical 1interest

Among the different spectroscopic techniques, Raman Spectroscopy has the advantage
to separate the contnibutions of rotational and vibrational relaxatton, in the line hope

From the experimental spectra l,, and [, (the indexes refer to the polarsations of

incident and scattering light, respectively) we can obtain the 1sotropic line profil (I.)) which

150.
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T ILIESCU, A SIKE

offers information only on the vibrational relaxation and amisotropic one (I,,,,) from which
we obtain information about rotational relaxation [4]
1,4 = 1y @) = S 1 (o) (1)
Lanso(0) = 1 (00) )
By eliminating the contnbution of the slit width of the spectrometer and by assuming
a lotentzian shape line, we can obtain the real wibrational widths of the line (full widths at
half maximum, fwhm)
I.=T, 3)
Cyine™ Thoo* Ta )
(T,,) being the line width of the rotational contribution
Vibrational (v,) and rotational (r,,) correlation times are obtained by using
Ty an= 1ML, 4, (5
The wibrational (G, (1)) and rotational (G,,(1)) correlation funciions, offer another
possibility to estimate the different relaxation mechanisms
G, (1) = j]lm(m)erp(lmt)dm (6)
G, (1) = (1, (a)expiwt)dwiG,(t) @)
The matn purpose of the present work 1s the Raman study of vibrational and rotational
relaxations for ring breathing vibration (1144 cm™, A,, p = 0 05) of liquid pyrrole and carbon

disulfide solutions and to compate the experimental correlation function with theoretical

Kubo-Rothschild and Oxtoby equations

2. Eaperimental. Raman spectrum was excited with 488 nm hine (0 3-0 4 w) of a Ar
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laser type ILA 120-1 the radiation being passed beforehand through a Glann-Thomson prism
The scattered light collected at 90° was analyzed with a double monochiomator GDM 1000
and /7, and I, components were obtained by a 90° rotation of the polarord situated 1n the

gathering optics

One of the Raman spectra 1n liquid pyrrole 1s shown n figure 1

Raman Intensity /au

1
000 wavenumber / ¢! 1040

Figure 1 1, and I, Raman spectra for v, (A,) mode of liqud pyrrole at 283K, slit width of 0 6 cm™ The
tntensity are expressed in arbitrary units

The monochromator sht width was set at 06-08 cm™ (fwhm) for both scattering
components The ratio between the shit width and apparent band width of /,, component was
0 1, so that the fimite slit width effect on the determnated I',, and I, values could be
neglected In wder to avord a weak asymmetry of the band, /,, and 7, spectra were

measured at every 0,4 cm™ on the high wave number side of the band A distance of 5 5 half-
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widths fiom the peak center was used 1n order to 1nsuie a flat base line
Founer transforms of 1 and /7, spectia were deconvoluted with the tniangle shit
function (obtained with Ar' plasma laser lines) The experimental vibrational second moment i4,”
was obtained by using the formula [5]
A = J‘Im(o)) (o - 0y Ydw - fS(m) (w - w, ) dw (8)

where /_(w) and S(w) are the normalised 1sotropic Raman spectra and experimental triangle

tsa
slit function 1espectively

The pyrrole was purified by distilation and used immediately Solvent of “Merk”"
uvasol type was used without punification Only CS, was utilised because tn other solvents
(ke CCl,, C,H,OH, CH,CN) the modification of the colow solution during the inllumination

with the laser hight was noticed

During the measurements the temperature was constant within £ 05 K

3. Results and disscution. The Raman band parameters obtained for v, mode of
pute liquid pyrrole using the relations (1-5) and neglecting the influence of slit width, are
summarized for different temperatures 1n table 1

In the limit of the experunental errors + 05 ¢cm™ there 15 a concidence of both
scattering components

The ©, values calculated from the slope of In G(t) are very close to values obtained
from I'y without shit correction The computation of 1,, from the slope of In G (1) 15 verv

difficult because G,,(t) osciilate after 1 5 ps

Fig 2 presents vibrational and rotational correlation functuons on loganthoie scale at
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t/ps

o~

303 K for pure liquid pyrrole 0 !

From t,, values (see table 1) 15 evident that

the reorentational contribution to the band shape
T=303K

pure hqud
increases with temperature, as expected On the -0d o,
—~~ 0n
other hand, 1n the limit of experimental errors the
—04-
vibrational correlation times T, are temperature |
independent Fig2 Vibrational, reorientational correlation
functions of v,,,(A;) mode for pure liquid pyrrole
for T=283 K

Table | Raman line parameters for v, mode pure liqud pyrmole at several temperatures (Iine width (fwhin)
correlauon time T

T/K | Scallenng component e T, ps Tolps
I, 57
283 18 81
Yoo 70
I 56
293 19 59
Lo 74
I, 57
303 18 53
L 71
L. 56
313 19 44
Too 80
I 57
333 18 39
Loneo 84

Assuming an Arrhenius type relationship for temperature dependence of the rotational
correlatton time [6)
T,0= Aesp(k, IRTY 4 = const ("

The activation energy E, for the reonientation of pytiole motecule 15 estimated 1o be

al
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95 Kl/mol (fig 3)

Infy

We will use the t,; values 1n order to

18}

18]

conclude about the relattv importance of
Ep=15 KI/mol
different relaxation mechanism For all the

temperatures  studied the vibrational

12 L 5 2
relaxation 1s the most important mechanism 3 iz D 36 ot

Fig 3 The loganthm of the reonentational correlation
in forming the bande shape umes (t,) for vy, (A)) mode vs 1/T

In order to understand the evolution of relaxation times and the tnteractions between
pyrrole molecules and solvents, the expenimental wvibranonal (Gy) and rotational (G,y)
correlation functions were determined for different concentrations of pyrrole in the carbon

disulfide solutions Fig 4 presents the rotational and vibrational correlations functions for

pyrrole 1n CS, at concentrations (molar fractions m.f) 0 72, 046, 022
t/ps
Q 1 2

In solution at short times Gy decays faster
than G,;, and therefore the vibrational relaxation 1s
the main mechamsm, responsable for the band

-0k

shape broadening A parabolic character of the

vibrational correlations functions (Fig 2 and 4) 15

noticed at short ttmes and the function becomes hﬁl
Fig 4 Vibrational and reorientational correlation

almost linear tn loganthmic scale at long time This functions of v,,,, mode of pyrrole CS, solution

character corresponds respectively to lorentzian function in the central section of the line and

to a gaussian 1n the wings In this situation we can apply the relation (4) even the profile 15

not a pure lorentzian shape
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The application of the vibrational dephasing theory developed by Kubo and Rothschild
[7] suplhes some additional informations conicern'ng the vibrational relaxation processes of thev,,
mode 1n pyrrole According to this theory the vibrational correlations functions s expressed
by
G, (1) = exp[—<m1(0)> {-Lf lexp(~tlt) - 1] + TC/}] (10)
This vibrational correlation function 1s essentially determined by a measurement of
vibrational second moment A4” (in cm?), which gives the mean-sequare frequency
displacement of the mnstantaneous vibrational frequency w, + w(¢)
<w?(0)> = dn2ciM,) [ps7?) (11)
and the modulation time T, which characterizes the correlation decay of the stochastic
perturbation of ()
<o w(0)>/<e?(0)> = exp(-t/T) (12)
Two typical situations are distingumshed, depending on whether,
<@l (0)>" g <loi > 1 (13)
the processes which modulate w(s) are etther "fast” or "slow"
Equation (10) describes the vibrational dephasing piocess and the two humiting cases
can be examinated For extremely low modulation (z,-» =) or for short times (t<<t, ) eq (10)
leads to a gaussian vibrational function
G, (1) = exp[-<w?(0)>142] (14)
The half width corresponding to a gaussian spectrum being
[y = (2In2)2 < @?(0) >"*xe (15)

For a very fast modulation (x,— 0) or for long times (¢>7_) eq (10) becomes a simple
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exponential relaxation function
G, (1) = exp|-<a?(0)>7 ¢ (16)
The half width for a lorentz1an spectrum being
TL = <wH(0)> 1,/ (17)
Another expression for relation (12) has been proposed by Oxtoby [8]
<w(Nw(0)>/<w?(0)> = sech?(tk,) (18)
which gives the correlation function
G, (1) = exp[-<w(0) > ncosh (1)) (19)

Theoretical equationas (10) and (19) were applied to our experimental correlations
functions The experimental second moments A4", obtained from isotropic Raman spectra
(eq 8) were used to calculate <w?(0)> (eq 11)

The theoretical vibrational comelations functions were computed according to
eq (10,19) by inserting experimental <w?(0)> and adjusting v, for the bes. agreement between
the theoretical and expenimental correlation functions

Table 2 present the application of Kubo-Rothschild’s and Oxtoby’s equations to v,
mode of pyrrole pure liquid at different temperatures and for solutions at 283K

Table 2 Application of Kubo-Rotschild’s and Oxtoby’s equations to v,,,, mode pyrolle pure liquid and solutions

Oxtoby Kubo-Rotschuld r,

System T (cm ')
K) [P o [<lO| I=TPl TY | e (<o’ T enp

(s | (ps) *to| (cm') | (em') | ps *te| (em?)
exp| Ox Oxn O Ox| KR KR| KR

285 | 114 [ 041 043 133 49 |03 | 0do 53 56

pure 293 | 097 | 048] 047 123 19 tos2f o5l 53 59

pyrolle | 303 | 065 [ 071 | 057 100 18 | 080 o064 55 57

"I | 090 | 070 0606 18 60 08| 079 802 56
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Solution
mf,
072 283 094 | 046 044 121 435 050 048 49 50
046 283 092 { 041 039 119 40 043 041 42 48
022 283 072 | 052 044 89 37 056 047 42 44

With experimental vibrational second moment <w?(0)>,_, Ty (eq 15) and I} (eq 17)

exp
were calculated These values were compared with the expenmental I, =T,

Inspection of table 2 shows that I values are very close to I';** which mmplies an
important contribution of lorentzian part in the band shape

The 1. values for pure liquid pyrrole are 0 4-0 8 ps and increase as the temperature
1s ratsed Thus the correlation decay of stochastic perturbation 1s slow at high temperatures
At high temperatures a polymenzation of pyirole molecules take probably place In general,
for solution, 7. values decrease with dilution due to the decrease of the velocity of fluctuation

The vibrational second moment <w?(0)> decrease with increasing dilutton [t1s known
that an 1ncrease 1n the <w?(0)> appears in the systems where the oscillators interact strongly
with the neighboring molecules This means that 1n our case the interaction between pyriole
molecule and surrounding molecules 1s larger 1n concentrated solution than 1n diluted one, as
expected, CS, molecule betng nonpolar molecule

In condensed phase at low concentration the main mechanism of vibrational relaxation
1s the phase relaxation (vibrational dephasing) [9] In addition to the above mentioned
mechanism, 1n concentrated solution, two other mechanisms may contribute to the broadening
of the tsotropic Raman spectia resonance energy exchange [10] and concentration fluctuation
(11]

These theonies predict a concentration dependence of the line widths of thel, ~ ¢
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type From table 2 we noticed a decrease of af

I'(exp) values with dilution Fig 5 present, this flg sol <
Iinear dependence By extrapolating C'? — 0, the ‘:’L o . 2

line width due to pure dephasing for CS, solution ’//

10[—
" s 1 1
0

02 Ok 06 [T) 1.0 vt

to be 32 cm™.
From relation (13) and inspection of table 2 Fig 5 The expenmental 1sotropic Raman hne
widths (fwhin) vs square root of mole fraction
we observe that Kubo product <w?(0)> 7, 1g carbon disulfide solution.
approximately stmilar for both equation (10,19) and 1ts value for different temperatures 1n
pure fiqmd pyrrole 043 - 07 indicate an intermediate modulation regime for vibrational
dephasing T,,, mode of pyrrole The fact that the Kubo product values are ~ 0 4 1n dilution
1 an indication that there 1s a faster modulation regime than in pure hquid’
In fig 6 the expenimental vibrational correlation function s compared with the
theoretical Kubo-Rothschild’s and Oxtoby’s correlation functions for pure liquid pyrrole and
dilutied in CS,

Particulary for short times, the Oxtoby equation fits better than Kubo-Rothschild

equation the expertmental data

4, Coneclusions. The resulis obtained indicate that for the entire ttme scale studied, the
vibrational relaxation 1s the most tmportant mechanism for v,,, vibrational mode of pure
pytrole and in CS, solutton From Arrhenius type dependence of t,, vs 1/T, an activation

energy of 9 5KI/mol for pyrrole molecule was determined
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0 1 2 3 § ths
T T T T
'F: o 0 1‘ 4 3 4 t/bS
T
]
IS AN
-02k
»
o ' i
T 203K , L Teamk
———experimentat —~- expermentol

o0sF CF 04k CF
, puce liguid CS; salution e
' - Oxtoby (=0 22mt \
BT — Kubo » -0
: 7 Hubo-Rolhschia -OSL --fomnammw ’\
Yo ' H
d -10
: r
]

r 12 '\

. InG

-16F Y b '\ﬁ

In a., «

Gy A

Fig 6 Expenmental vibrational correlation functions fitted with Kubo and Oxtoby equattons
a-purre liquid
b-carbon disulfide solutions
To stmplify the figure only one temperature for pure and CS, solution are presented To stmplify the figure only
one temperature for pure and CS; solstion are presented

A pure dephasing line width of 3 2 cm™ was obtained from the linear dependence
I'(exp) vs C'?

A better fit with the expenimental date is obtained using the Oxtoby equaton instead
of Kubo-Rothschid equation The Kubo product corresponds to an intermediate modulation

regtme In diluted solutions this regime 1s faster than in pure iquid pyrrole

To stmplity the figure only one temperature {o1 pure and CS, solution are presented
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TOTAL CROSS SECTION DETERMINATION BY FAST NEUTRONS
SPECTROMETRY ON AN ISOTOPICALLY ENRICHED "N TARGET
USING AN *"Am-’Be NEUTRON SOURCE

L. DARABAN', T. FIAT", E. VARI-NAGY"
Recerved 10,07 1993

ABSTRACT. - We have build a method, for measuring the excitaton function, based on the
analysis of the transmitted spectrum of the fast neutrons generated by 2 Am-*Be 1sotopic
source and using a spectrometer with recotl protons and pulse - shape discnimnation We have
demonstrated that, 1n case of *N nucleus as target, acceptable values of the total cross sections
can be obtained by means of this method

1 Introduction. In the field of nuclear reactions induced by fast neutsons, a lot of
interest is concentrated on the problems which refer to the mechanism of the fast neutrons
interaction with the nucleus, and on the information that can be inferred about the nuclear
structure from these interactions

Analysing the experimental data from a statistic point of view, we may observ that the
nucleus of the stable isotopes with little natural abundance are of a special interest These
nucleus been less research subject, but, because of the more unstable nuclear structure, they

have a spectacular behaviour during the nuclear processes

2, Experimental. The experimental methodology for measuring total cross sections
1s presented Lately, there have been used "white” neutron sources, based on cyclotrons, limar
a'ccelerators or tandem grenerators, to measurte excitation functions ,(E) We used for the fitst
time the ' Am-’Be source spectrum It shou!d be mentioned that these kind of measurements
can be realised only with a fast neutrons spectrometer and the use of the Am-Be source needs
a good n-y discrimination

The probability of interaction between the fast neutrons and the nucleus s

‘ "Babeg-Bolvar" Umversity, Facidiv ot Phasics, 3100 Cluy-Napoca, Ronanta
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characterized by the cross section o and 1s defined in the following way [1]
aN

01‘ [,
where dN 1s the number of interactions betweeriV :ge neutrons and the target nucleus, N ts the
neutrons number that fall on 1 cm? of target area, n 1s the nucleus concentration per target
volume umt of pure element and d 1s the target thichness In the case of a molecular target
the relation (1) became much complex like 1n relation (16)

When using a thick target, the density of the flux changes with thickness "x" In order
to find out the number of the neutrons penetrating the target, one should give the differential
equation of the layer fullfilling the following requirement for a given thin layer haveing a
thickness dx at a depth X 1n the sample the following equation 15 valid ‘

dN = -N(¥)n o, dx

The solution of the equation (2) has this form

N(x) = N, exp(-» 0, X)

where N, 15 the initial neutron flux This means that, for finding out the cross section of the
neutrons interaction with the nucleus ts sufficient to measure in one expertunent the decrease
of the neutrons flux N(d)/N,, durtng the penetration of the target
m Yo

N@)

nd
This formula can be turmed 1nto another one containing more accestble experimental

Op =

parameters In this way

/
nui, Ve=sd A N ==Ng¢
| 4
It resuilts the next formula

s
UT m
N c ™
a4 C S

where N(d) is the number of the neutrons which are left after the penetration of the target,
A 1s the atomic mass of the target tsotope, N, 1s the Avogadro’s number, ¢ 1s the isotopical
concentration, m s the mass of the pure element and S 1s the transversal section of the target

The relation N/N=T is called transmission factor
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If we have the possibility to venfy the energy of the neutrons with a neutron
spectrometer, then we can measure the total cross sections corresponding to already known
values of the neutrons energy

Measurements are done through the transmission method, by mans of the so-called
"good geometry arrangement” We place the sample 1n the way of a collimated bundle of
monoenergetic neutrons We measure Ny and N 1n order to be able to calculate T [2]

If we want to extract an excitation function having the following form o, =f(E,), then
we registet the spectrum of neutrons, measuring both with and without sample, on the whole
energy field, and we calculate, by means of the fomula (6), o for every value of the energy
of the spectrum

Our purpose was to determine the excitation function for "N For that purpose we
used a sample of *NH,"*NO, (double marked), enriched by 1sotopes up to the concentration
of 98,5% 1n “N

In order to measure the c1oss sections, we use an >*' Am-"Be souice of neutrons of 1C,
generating 10°n/s, enclosed 1n a collimator of borate parafine, a fast neutron spectiometer with
stilbene crystals and a pulse-shape discrimination circutt (fig 1), studied 1n [3-8]

To extract the latelly scattered neutrons, we used a beam stopper The common
methods 1s to put a long metal bar (of Fe, Cu, or Pb) in the place of the sample, through
which the neutrons cannot enter Then, the transnussion factor corrected by the background
18

—Nb

N
T —
Ny - N,

where N, 1s the laterally scattered neutrons intensity, which arrives in the detector

We have performed preliminary studies on the 2C nucleu using the spectrum of the
Am-Be source, for improving the measurement method of the total cross section at fast
neutrons and we obtained the excitation function of *C nucleus This shows broader and
thicker resonances The purpose of these measutements was to see 1f we could collect nuclear
data 1n a 10° n/s total pencil (the Am-Be souice gives 10° n/s in 4%) Another purpose was
to estimate the neutrons spectrometer 1esolution depending on resonances separation

We collimated the neutrons source with a borated parafine collimator and we placed
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a neutron detector to 0,5 m distance of the collimator A grafit sample with m/s=3,78 g/cm?
was placed 1n the middle, between the detector and the collimator We registered the incident
neutron spectra Ny(E,) and the transmmutted spectra N(E,) tn 2 hours each other, to have a good
statistic We made the calibration of the multichanne! analyser’s channels 1n protons energies
and operated the neutron spectrometer with stilbene 1a the same condttions, but with the gate
n anticoinctdance, this means opposite to the neutron signal of the pulse-shape discrimination

arcutt (fig 1) Using the method of calibration 1n electronic energtes with

/ Cq / : AA»"
Y hae | T
— A

p
E I
Vr -
| i 7z
7/ I ™
7, ul Lp
r——--- R Y
: n n / :
|y Y
/\ s[glu | Y n :
& ¢ LN |
A L
| L D 7 |
: 12/ :L___ [,\\n # ‘I
T~13 vy |
e e e v e = e e - 7__...___.
6
1~ 115

Fig 1 The scheme of neutron spectrometer with n-y discrumnation I-The P § D anput, 11 Spectrometric tnput,
A B 1dernical output, C -double discrimination, D - simple discrinunation

1 The Am-Be source in borated parafine collinator, 2 Stilbene scimntilaion crystal 20130 mm, 3
Fotomultiphicator ¢ y 19, 4 The PSD circunt, 5 The charge preamphfier type 1141 FAN, 6 Power source with
cadre {or NIM modules type ST 614, 7 Miner reversor type NE 4618 8 Linear gate (1) type 1183 FAN, 9
Encigy analyser type NEs 4664, 10 High voltage power supply type 1135, 11 Spectrometric amphifier type NE
4698, 12 Luncar gate (I type 1183 FAN, i3 Muluchannct analyser 1CA-70 I+ Prnter 15 Potenbometric
recorder
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y sources, these have been turned 1n proton energies with a luminosity function having the

next form L(E,)=C,E®

3000

2500

2000 -

1500

———

Retative intensity

1000

500 -

It

1 2 3 4 5 6 E(Mev)

Fig 2 The ransnussion neutrons of the *' Am-"Be source neutrons through carbon
8
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The data-were transferred in one computer CORAL 4021 that was working in tandem
with a multchannel analyser ICA-70 Using a program named SPEC-N, we obtained the
icident neutron spectrum Ny(E), and 1n a carbon sample transmutted neutrons spectrum N(E,)
(fig 2)

Using the relation (6), we calculated pomnt by point, the values of the function o,(E)
and 1n order to find the transmssion factor T, we divided the two speciras Fig 3 shows the
results, 1n comparation with the results obtained 1 [9] In conclusion, we have

a After the calibration of the Am-Be source spectrum with gamma sources, (without
controll by the monoenergetics neutrons), there are appeanng deviation from the real energy
of the neutrons until 0,5MeV This 1s llustrated by the position of the carbon’s resonances

b The absolute values of the cross section are not in accordance with the data given
in hiterature {9], these have the tendency to be systematically less in the two neutron peaks
region and systematically greater where we have less neutrons

The "good geometry" condition require that the value of the transmission factor to be
cc 0,5 for each energetics group So, i order to determine the excitation function, we can’t
use the continuous spectrum the way 1t’s shaped in {ig3, so only by measunng the

transmission factor 1n the eneigy region

Also, inttoducing a set of changed values set (I 1,E1) in the SPEC-N program, we
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40

& (barrs)

a

15 25 35 L5 55 65 75
Ep(MeV)

Fig 3 The continous line - the results indicated by [10] The broken line - the measurements effectued on the
Am-Be source

adjusted the luminosity function L(E,) depending on the shift established comparatively with
the carbon’s resonances In that way, we used the carbon resonances for the recalibration of
the neutron spectrometer, we obtained for a stilbene crystal with 3 cm diameter and 2 cm

thickness

1,404
L(E) - 0,184 E,

With this measurement technique, perfected on the "C nucleus, we obtaned the tin

N
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g¢lbarns)

1 ! ) b 1 i A 1 1

9
En(MEV)

correct values of the excitation function (using an Am-Be source) (fig 4)
By using fig 4, we can study the resolution of our neution spectrometer with the
stilbene crystal By the way this spectrometer solves the carbon resonances at 2,08 MeV or

2,45 MeV, you can see that the equipment (built and perfected in our laboratory) has a
resolution of 0,2 MeV, we can estimate the equipment measurement error,by using the results

from the fig 4, too 10%

3 Total cross section determination of "N In order to calculate the total cioss
section of N, we measured the initial neutronic spectrum of the ™' Am-’Be source and the

spectrum transmitted through the sample double marked with N (enriched at 98,5% in '’N)
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In order to venfy the contribution of the oxygen and hydrogen of the NH,NO, sample, we
also registered the spectrum transmitted through the natural sample, having the same mass and
contatning "N, as well as the spectrum of the laterally scattered neutrons (fig 5)

It 15 true that the curves of fig 5 are close, but, as a result of our expenence with the
program SPEC-N, we found that the difference was stell therte, because the sample marked
with N absorbs more 1ntenstve the neutrons than the natural sample

Knowing these curves, the excitation function of N, as well as the major 1sotopical
concentration C,y, C,y and respectively, the minor isotopical concentration C,sy, C,,y of the
PN and "N from the sample, we are able to calculate the microscopic cross section of "N
for the maximal values of the spectrum in fig 5, where we had a better statistics

The macroscopic cross section of the chemical compound NH,NQ,, can be defined 1n
accord with [3], in the following way

BUE) = nygy 015 {E) + 1y 0y (E) + By 0g (E) + "{w 914y (E)
where n; 1s the concentration of the 1 nucleus in 1 cm?® n;’ 1s the concentration of the minor
1sotope, and o(E,) 1s the cross section according to the value E, of the neutrons

From the relations (3) and (9), we can obtain the next relation

B(E) = L ] oD
d NE)

We can extract the neutron background, which 18 exactely the spectrumn measured with the
beam stopper, using the relation (7)

1 NoB) - No(E

1
BED = N(E,) ~ NyE,)

If we couple the relations (9) and (11), then we will obtain a -elation for the microscopic
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We need to know the excitation functions of the oxygen, hydrogen and nitrogen - 14 (minor
n this sample on this energetic domain) and the nucleus numbers 1n one volume umt ng, n,
and n’

But the utilisation of relation (12) 1s not the most comfortable way to measure the
cross section of the N with mimmum error Thercfore, we made a measurement 1n the same
conditions on one natural sample NH,NO,, having the same mass and geometrical form (the
natural 1sotoptcal concentration of **N is 0,37%). We wrote for this sample a similar relation
to (12) After that, we made the differences of the two relations

NiE) - NyE)
d By NisdE) ~ NyE)

05ME,) = 0 (E) +

15

_ 1 Ny(E,) - Ny(E) . ("u _ Pu ) o, dE,) +
dngy NUNE) - NSE) Py Py
14 15 ! /
iy Ty Bisy
+ ( - ) — olSN(En) 014N(En)
Pun  Disy By

Because we worked with samples having the same mass, we can prove that

nlé nlS
(i - —N) 04(E,) = 003 o, (E)

Ryy Py
(1 will be neglected)
14 15
[l - l) 0(E,) = 0,06 o (E,)
Maw sy
Relation (13) becomes

1 - %4;) ouE) = 1 - Ci“”) OB *

1 o MED - NyE) 1 NE) - NE)
dng, Ny - N(E) dnyy  NofE) - N(E)

+
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In that way, knowing the microscopic cross section of "N, we can find the microscopic cross
section of N If we consider that the thicknesses of the sample are the same, using formula

(2) we can turn relation (15) into another one, more useful

c, c,.
(1 - —C—) SRTCAR (1 - C—‘”] LICAR

Uy 150

mg 8 Crsy NigfE, - Ny(E)

1 Ay No(E)-Ny(E) _

N,

_ 1 Aysy m_%En) - NyE)
N mr® Ciy NigdZ) - NyE)
4

where Ny(E,) represented the spectium measurcd by mzans of the beam stopper, N (E,) 1s
the spectrum transmutted through the natural sample, and A g and A,y are the respective
isotopical masses

We have made the calculation with relation (16), using the spectras from fig5 We
found out that the only sure values are those from the regton of the two intense groups of the
neutrons This value 1s fulfiels the "good geometry" condition for the tiansmission factor

The values obtatned by, using formula (16) were placed over the excitation function
gven by [11, 12], our points being matked by * Regarding the order of magmtude the results

proved to be 1n accordance with the results grven by [11, 12] (fig 6)
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ABSTRACT. - The influence of the melting temperature on the redox equilibrnum of urantum

1ons 1n the 0 93Na,B, 00 05A1,0,-0 02UQ, glass was studied using optical spectroscopy The

obtained optical data prove that increasing melting temperature determtine the reduction of the

U? 10ns to U* ions in the studied glass

1. Introduction. Since glass 1s used to immobilization cf nuclear waste [1,2] the study
of glasses contaiming radionuchides becomes important Uranmium 1s one of the important
radionuclides that appears 1n nuclear wastes As was previously reported[3,4] uranium tons
appear in oxtde glasses in different valence state, such as U'®, U** and U** The study of redox
equilibnium between these valence states 1s of considerable interest

This paper presents the results of a spectroscopic investigation of the influence of the

melting temperature on the redox equilibrium of uranium tons in the 0 93Na,B,0,-0 05Al,0,-
0 02U0, glass

2. Experimental Method. Samples were prepared using reagent grad; borax
Na,B,0, 10H,0, ALO, ("Reactivul' Romama) and uranyl mnitrate UQ,(NO,), 6H,0
("Chemapol" Czechoslovakia) First a/borax glass was obtained by melting borax at 1000°C

for 30 minutes UO; was obtained by thermal decomposition of the uranyl mitrate Than,

adequate amounts of Na,B,0,(powdered glass), UO, and Al,O, were melted to obtain the

" Technical Univer ity of Chy-Napoca, 3400 Chy-Napoca, Romania
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0 93Na,B,0,-0 05A1,0,-0 02UO, glass The samples were prepared using five different melting
temperatures, namely 800, 900, 1000, 1100 and 1200°C The melts were equilibrated at these
temperatures for 2 hours Glass samples were obtained as slabs (20x8x3 mm) by pouring the
melts 1n a stainless steel piece having an appropnate grove

Optical absorption spectra for the wisible and UV region(10,000-30,000cm™) were
recorded using a Specord UV-VIS(Germany) spectrometer To obtain the opttcal spectra the
glass slabs were polished on two opposite sides

3. Results and Discussion. All the samples containing UO, were yellow This suggests
the presence of urantum tons mainly as U*", probably in UO,** (uranyl) form

The 0 02UQ, content of the studied samples permits to obtain optical absorption spectra
with well resolved spectral features A representative absorption spectrum of the
0 93Na,B,0,-0 05A1,0,-0 02UQ, glass for the UV and visible regton 1s presented in figuie 1

(spectrum 1)
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Fig 1 Optical spectra of 0 93Na,B,0,-0 05A1L,0,-0 02U0O, (curve 1) and 0 93Na,B 0,-0 03AL0, (curve 2) glasses
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Spectrum 2 1n this figure corresponds to the basic 0 93Na,B,0,-0 05AL,0, glass The
comparison of the two spectra proves that the spectral features exhibit by spectrum 2 belong

to the uramum 10ns The spectroscopic features evidentiated by this spectrum are charactenistic
1 I

for oxide glasses containing uranium ions{3,4]

The most important features of the 0 93Na,B,0,-0 05A1,0,-0 02UQ, glass appear at about
16,000cm™( assigned to U* 10ns), 20,700cm™( assigned mainly to U®" 1ons), 23,200cm™(
assigned mainly to U*" 10ns), and from 24,100cm™( assigned to U®* 1ons) The assignements
were made according to some previously reported data concerning some borosilicate and
borate glasses[3,4] We note that the positions of the absorption bands belonging to the U*
and U®" ions observed for the 093Na,B,0,-0 05Al1,0,-0 02UQ, glass are close to those
reported for other borate and borosilicate glasses This suggests the fact that the coordination
sites of uranium valence states seem to be independent of glass composition

The vanation of the melting temperature generates some changes of the spectral features

These changes are shown 1 figure 2

A2
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20700
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22000 20000 20000 16000
Wave number{cm1)

Fig 2 Changes produced in the optical spectra of the 0 93Na,B,0,-0 05A1,0,-0 02UQ, glass by increasing the
melting temperature ( 1 for 800°C, 2 for 900°C, 3 for 1000°C, 4 for 1100°C and 5 for 1200°C)
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Thus increasing melting temperature generates the increase of the bands from 16,000 and
23,200cm™ and the decrease of the shoulder fiom 20,700cm™ These changes indicate an
increase of the amount of U' 10ns 1n the samples with increasing the melting temperature
The incrcase of the melting temperature of the samples-seem to determine the reduction of
the uianum 1ons according to the equation
4U%(melt) + 40%(melt)= 4U"* + 20,(gas) )
It 13 possible that this process implies not only U'® and U"* 1ons but also U*'ions a1 d follows
a two step process, according to the equations
4U% (melt) + 20%(melt) = 4U"°(melt) + O,(gas) (2)
4U*¥(melt) + 20%(melt) = 4U"(melt) + O,(gas) 3)
Ow spectroscopic data did not permit 1o evidentiate the presence of U*' 1ons However we
do not exclude the possibility of appeaience of U*' 10ns, but we estimate that the 5+ valence
state 15 probably less stable 1n the studied glass than 6+ and 4+ ones
4. Conclusions. An optical spectroscopic investigation was made on the
0 93Ny,B,0,-0 05A1,0,-0 02UQ, glass 1n order to study the influence of the melfing
temperature on the redox equilibrium of the uranium 10ns The obtained data indicate that the

increasing melting temperatures determine the reduction of the U 1ons to U*' 1ons
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