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STUDIA UNIV BABES-BOLYAI PHYSICA, XXXVIl, 2, 1993

A STUDY OF A SIMPLE NONLINEAR MECHANICAL SYSTEM

S. CODREANU', Th, COLOSI”, M. DANCA™

Recerved 3005 1994

ABSTRACT. - The aim of a paper 1s an analitical and numercal mvestigauon of a nonlinear

mechanical system, This system 1s a parametnically forced mechanical oscillator, with cubic

nonlineanty We demonstrate that the system exlubits a very complicated dynamics, including

equilibrium points, it cycles and complhicated chaotic attractors For the numerical simulation

we have used an onginal method

Introduction. The irregular and unpredictable time evolution of many nonlinear
systems has been called chaos or determimistic chaos It occurs 1n many and different domains
of the science like physics, chemistry, astronomy, biology, economy etc [1], [2] For example
1t can be observed in mechanical oscillators such as forced pendula or vibrating object [3],
{4], but also tn rotating or heated flwds {5], [6], in nonhnear circunts [7], 1n laser cavities [8],
in nonlinear optical devices [9], [10], in Josephson junction {11]-[13], in plasmas [14], in
some chemical reactions [15]-[17], 1n biological and ecological models [18], [19] or in
stimulated heart cells {20} and in Electroencephalogram data [21]

The central charactenstic of the systems which exhibit a chaotical dynamics 15 that the
systems do not repeat their past behavior although they follow determimstic equations For
chaotic systems the slightly different mitial conditions lead to an error tn prediction that

grows exponenttally in ttme This characteristic, which occurs only when the governing

equations are nonlinear, is known as sensitivity to 1utial conditions The first who recognized
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this phenomenon was Henn Poincare (1913) Although a chaotic system can resemble a
stochastic one, (1 e a system subject to a randoin external force), the sourse of the wrregularity
1s quute different For the chaos the irregulaty s part of the intninsic dynamics of the system,
not unpredictable outside influences If the dynamical system 1s descubed by a set of first
order differenttal equations the necessary condinions for chaotic motion are that the system
has at least three independent dynamical vanables and the equation of motion contain a
nonhinear term

The equations can often be expressed n the form

i{_x_' =K (x,x, ,x)
dt o -
where 1=1, 2, , n(n = 3) and with F for example of the form
F=ax 1bx,+exx+ +/

where a,b,c f are constants For some choise of the constants, such systems are often chaotic

From hustorical point of view the development of the study of cihaotic systems is a
recent one, despite the fact that chaotic systems are determimstic and are described by many
of the well known equations This 1s due to the fact that, with the exception of some first
order equations, nonlinear differential equauons are etther difficult or impossible to solve
analitically So, the solution of nonlinear differential equations generally requires numertcal
methods The first who detected chaos 1n a nonlinear dynanucal system by a numerical study
was E Lorenz [22]

One of the simplest physical system with a rich and complex behavior, which has been

intensively analyzed, 1s the damped dniven pendulum [23], [24] This (s a based nonhinear

mode! system for different more complicated physical problems (nonlinear oscillators) hike
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the forced motions of a particle 1n a two-well potential (such an electron in a plasma) [25],
[26], the magnetic pendulum [27], or the radio-frequency dniven Josephson junctions [11],
[28]

In the same class of nonlinear dynamical systems 1s also the motion of a shallow arch
subjected to horizontal and vertical pulsating loads proposed by Szemplinska-Stupnicka [29]
and recently explored by Lamarque end Malasoma [30] The aim of our paper 1s an analitical
study of the stady states of this system and then a numerncal ntegration of differential
equation which models the system by using an onginal method proposed by one of the

authors [31]

The model and its fixed points. The equation of motion for a particular shallow arch
subjected to honizontal and vertical pulsating loads is-

v +ax-0,5(1 - 2fcoswf - x?)x = feoswt )
where a 1s the damping coefficient, fand w are the amplitude and the circular frequency of
parametnc excitation

To analize the.)behavior of the system we consider the following system of autonomous
equations, which is equivalent to the differential equation (1).
x=y
y=-ay+0,5( ~2fcosz)x - 0,5¢* + fcosz (2)
Z=@
We ce. see that this set of equattons (or this flow) describes a dissipative system for

any a > 0 A system is dissipative if an arbitrary volume V, enclosed by some surface S in
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the pbase space of the vanables of the system, contracts The surface S evolves by having
each point on 1t follow an orbit generated by (2) If the system (2) has the general form
F=F(X), T=(x=x,5=y,x=2) 3)

The statement of divergence theorem 1s
A7y 2 e
dt = dx,

@
dt

In the case of the flow defined by (2)

dVv
dr

1 ¢ the volume element contracts exponentially tn time for a > 0

and the dissipative system 1s defined by 0

= —al or V(1) = (0)e ™ 4)

If the parametric excitation is swiched off (f = 0), the system (2) becomes
x=y
y = ~ay +0,5x - 0,5x3 )
and from 7(#) = 0, we {ind the following fixed points of the system (5)
%(0,0), %(-1,0), (1, 0) ©)
If £+ 0, from (2) one finds the fixed points (the steady states)

£(1,0,0), 9;(~_;_+_;\/1 -8/,0,0), e;(—% -%,/1 87,00 (7)

with the obvious condition of reality of them f= %

The stability of the steady states. First we investigate the stability of the fixed potnts

(6) For x(0,0), the matrix of stability 1s

0,5 -a

and the characteristic equation
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-A 1

- 0
-0,5 -a-A ®)

The eigenvalues of (8) are
7‘1_1"%(‘0*\/0”2) ©
and we have A, > 0 and A, <0 for any a > 0 Thus the ongin (x = 0) 1s a saddle fixed point

For the fixed points £(-1,0) and £(1,0), the characternistic equation 1s

-, 1
-1 -a-h

= 0

with the eigenvalues’
na- Heasies) (10)
In this case A, < 0 and A, <O for any @ = 2 If A, has the form A ,= 22" we
observe that A’ < 0 for any a > 0 Thus x = -1 and x = 1 are stable fixed points, or stable
equiltbrium
The stability of the fixed points (7) 15 investigated by the same method One finds for

x = 1, the charactenstic equation

A 1 0
-1-f -a-A 0| = 0
0 0 -

with the eigenvalues

A =0, }\7'3=_21.(-a:h\/a’—4(1 +f))

If -1ss=x %, A, 18 real and negative, also if s < %i -1, A, 1s 1eal ‘and negative If

2
_”T -l1<fs ,;_, Ay=A£iA with A <0 fora>0 Thus x =1 remains a stable fixed point 1n

the presence of the parametric excitation (f = 0)

For ti,e fixed points x = .%(-l +f1- 8f) and x = _;(—1 - 1= Bf), the eigenvalues of

the characteristic equations are
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A= 0
1 [ m]
Mo ax(a? +87-12£3/T787)

with A, > 0 and A, <0, respectively A, <0 and A, > 0 We conclude that for 0 < < _; these
fixed potnts are unstables

But the system has, beside the steady states, also the other tmportant behaviors like
limut cycles with different periods, which form a cascade of period doubling cumulating in
chaos, as the amplitude of parametric excitation 1s used as a control paramater We observed

thus benhavior by numencal mvestigation of (2) for different values of £, @ and a being

constants

The numerical study. We have performed a numencal investigation of equation (1),
or of equivalent set of equations (2), by using a new method of integration based on local
lineanization iterative (LL 1) This method realises, with remarcable performances, the
numencal approximation of the solutions through the segments of straight, considered 1n the
neighbourhood of a pivot moment With this method the relative errors cumulated was smaller
than 0,1%, for sufficient large characteristic time 1ntervals Also, 1n the same domain of
errors, the computing time 1s smaller than those spent with usual fourth order Runge-Kutta
method

By fixing the parameters at the following values a = 1,5, @ = 8, except the amplitude
of parametric excitation f, which was used as a control parameter, we have constructed the
projections of the trajectories 1n the phase space for a wide range of the control parameter

Thus, for / = 0, when the parametric excttation 1s awiched off, we found the stable
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equilibnum x = -1 and x = 1 Because the trajectory goes to one or another fixed point, for
different imtial conditions, we drew the basins of attraction of these coexisting stable
solutions Figure 1 ahows the basins of attraction 1n the phase space region defined by -20
<x =< 20, and -20 < y < 20 The basin of equilibnum point ¥ = -1 1s colored 1n white, while
that of x = 1 15 1n black In Figure 2 we present two projections 1n XOY and XOZ planes of

the trajectory 1n this case

(26,20

With parametric excitation (f=0), the focus x=1
rematn a solution of equation (1) This point is
numericelly found to be a stable equihbrium

state unttl the amplitude f1s f~29,28, when a

limit cycle 1s created The projections in XOY «-20,

plz;ne of the trajectories with /=5 and /=20 are
shown in Figures 3 and 4 Figure 5 shows two Fig 1

projections tn XQY and YOZ planes of the trajectory when f= 29,28 When /= 29,29713 we
can see, from Figure 6, that a cycle ltmit 1s created In Figure 7 a and b we present the cycle
limit for /=32 in two projections on XOY and ZOX planes This period-1 himut cycle 1s also
stable until amplitude f1s £~ 45,5 when a period-2 motion ts created (see Figure 8) At f=
47,5 we can see, from Figure 9, that a pertod-4 motion 1s generated As fincreases further,
a pertod doubling cascade followed by chaos 1s clearly visible We presents this in Figures
10-12 for f= 47,7, f= 48 and f= 55 At f= 65 a new penod-1 limit cycle 1s cieated (see
Figure 13), and the same scenarto of pertod doubling cascade followed by chaos 1s visible

We have carried out extenstve numerical simulatton and we found the same behavior for



S CODREANU, T COLOSI, M DANCA

different values of f Figures 14-16 show some particular trajectories
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Conclusions. This work 1nvestigated the nonhinear dynamics of a mechanical syst«.
with cubic nonlinearity and parametric excitation, by using the L L 1. technique We havc
constructed different trajectories 1n the phase space as the amplitude of parametric excitation
was used as a control parameter and shown that the system exhibits different chaotc

behaviors The route to chaos 1s shown to be via penod-doubling bifuications
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MASSIVE VECTOR, TENSOR AND SPIN-3/2
PARTICLES GRAVITATIONALLY SCATTERED
ON SCHWARZSCHILD BACKROUND

D. TATOMIR, D. RADU, O. MIHALACHE’

Received 15 10 1993

ABSTRACT. - Using the S-matnx formalism and Feynman’s diagram-technique, the
gravitational scattering of the minimally coupled vector, tensor and spin-3/2 (Ranta-Schwinger)
particles on Schwarzschild background 1s studied for any value of the scattenng angle

We mention that accordingly to our knowledge the previous works in this branch
dealed only with the small angle cases As 1t has been shown, 1n the small angle approximation
and ultrarelativistic case, the differential cross-sections coincide with those corresponding to
the photons, neutrninos, massless Rarita-Schwinger particles, gravitinos and gravitons, i ¢, the
gravitational particle scattering 15 spin independent, in agreement with many autors’ results,
obtained by other means

As particularly interesting result, we pont out that the differential cross-scction for
scattering of the vector particles 1n the backward direction and ultrarelativistic case 1s finute and
the helicity is not conserved, wlule, for tensor and spin-3/2 particles in the same case the
differential cross-section 1s clearly unlimited

In this paper, using the S-matrix formalism and Gupta’s linear approximation [1]
J-g g™ = - ky™ (1)
where g, 7 and y* are the metnc tensor, the Minkowski tensor - diag (+1, -1, -1, -1) -and
the tensor of the weak gravitational field, respectively, g = detg,, and % = V162G (in natuial
units, G.bemg the Newton constant), the scattering of the masstve 1, 2 and 3}2 spin particles
in the external gravitational field descnibed by Schwarzschuld metiic 15 studied Also we

discuss the differential backward-cross-section as an tmportant particular case

In order to obtain the first-order interaction Lagrangians between the gravitational and

*"Al I Cuza” Umversity, Deparment of Physics, 6600 lassy, Romania
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the massive vector, tensor and Ranta-Schwinger fields we use the principle of minimal
coupling [2] According to this principle, for vector and tensor fields, we must add to the
expression of the gravitational field Lagrangtan the complex massive vector and tensor field

Lagrangians wntten tn the curved space [3, 4]
1 a, v . vap*
Qm,E J:g— ("'—'Z-gp 8 pGvaap+ ng B, Bq) (2)
L, nggvﬂ(g‘°11‘;hiluﬂp+ m’¢,',,,¢PB) - (3)

It 1s easy to see that for the vector field we considered the Proca formalism Here

G,= B,,~ B,, (8,, being the covariant denvative of the vector field function) 1s the tensor

v
of the massive vector field Concerning the tensor field we must emphasize that we followed
a Schwinger’s 1dea [5] using the third rank tensor

Hop™ dau® s~ s > (Ha™ Hya) )
where ¢,,, is the covanant derivative of the tensor field function We note in passing that a
remarcable analogy between the massive tensor and lineanzed (weak) gravitational fields 1s
revealed by this L‘agr-angian’s choice In the case of the Ranta-Schwinger field, besides

prnciple of mimmal coupling, we also used the "vierbein" formalism [6], so that, the

Lagrangian of this system can be written as follows

gR -5 =VEE * ["5 (iT’pVLYLlpV - \T’NYAVA‘pv) + ’”‘Tppwv] = S£l + se2 ’ (5)
where
2, - e [ B - Fw) i ©)
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g, - —;\Fg_ g"‘tT’p(vP AV Y*v,,u")wv. )

v, being the usual derivative of the Rarita-Schwinger field function
The above expression for &, and &, have been obtamned inserting the expression of the
covariant of the spin-vectors:’

Vb, = b T, BV, BT, ®
where T',, are the Fock-Ivanenko spin caeffictents of the affine connection [7] As 1t 1s known
they have the following expression:

r,- %w, ©)
where y* are the generalized Dirac matrices [8,9]:
¥ = LH@)y(@), v,= L@)y©@), 10)
y(a) being the usual Dirac matrices The expression for y,, 18
Y™ Tow™ YT (11)
In relattons (10) L*(a) and Lfo) are the "vierbein" coefficients satisfying the following
constraints.

L¥@)L¥(e) = g™, Lf(o)L(a) =g, (12)

Since all our considerations refer only to the first-order approximation we give below the

"limarized" relations for the quantities which appear in calculations [4,7]

gr= - kb (13)
8, = Mt kh, (14)
1 o
hf=yf°%5§y’ W= sy, vy, (15)
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rf,= _;_k(h;:ﬁ hl\ - h, ) (the Chnstoffel symbols) (16)
1
el Py e a7)

It 1s very simply to show that the &, term tn (5) has no contribution in the first-order
approximation Indeed we have
000 = L1 (i) = -y, =0, (18)
where the well known anticommutation rules have been used:
vt = Pyveyy = 28m (19)
Taking int'o account the previous constderations the first-order interaction Lagrangian between

the weak gravitational and the masstve Rarita-Schwinger fields reads

O%) = -ék(\T’MYV\P‘—\TwV M-

(20)
- (Bt e Bty kG
Passing to the flat space
¥°=1, %, (= 1,2,3) > x, (j=1,2,3), x, = 1, @n
Py, ey, = -5, (22)

the first-order interaction Lagrangians between the gravitational and massive vector, tensor

and Rarita-Schwinger fields, respectively, are

gL (k) = —k(G G u. + 'nsz.Buyvu) @3)

uv - pava

gWk) =k[H. (H +H.m) ko Zrnz«p,'“(p”]\".;

Hva avik

1 . .
-k (HMHM,.- iy 1¢pv¢w) v A Uy B Cn
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* (P B ) H
00 = KB 00, Bolhes ) o™ 3 B0
where

1
upvn ypv— 'a‘ Buvyuu

G ‘B - ’pr » Hpvk': .Pvl,p'b q’uh,v- ¢pv.}. 4

(25)

(26)

@7

B, and ¢, being the uéual derivatives of the vector and tensor field functions, respectively,

Also we have taken advantage of the Rarita-Schwinger field equation

yp“'pa.u = ‘”"Pu ‘

and 1ts adjoint

@28)

According to the standard quantum field theory the parts of the (23), (24) and (25)

Lagrangians-casted inta the normal form - which describe the interacion of the massive

vector, tensor and 3/2-spin partictes, respectively, with gravity are {4]
N8 w)] = HG W 620 12 @) +m B0 BOW v )

N[0 0] =k 20 3050 - 080 - 0320 + 9:5200) =

x 62,9 + 62,09 + 425] + 40 [0 + 62569 - 3409 -

- 2m; 05y ) k(13509 + 9100 - 053] x

(45209 + 05,09 - 62,9 ] - 270370 05 Ly ) +

(29

(30)
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{0200 + 915200 | 02 00 [, ) + A 0 - B ) | +

+4:200 0500 + 05,00 05, [ A ) + A0 - B )]

N )] = k[@f:i(xn,,wa’(x) T, 000 [y ) -

Gn
kmwu W@y ()

The processes are described by the following Feynman’s diagram type, where p and () and
also p’ and (s) are the four-momenta and polanzation wndices (r,s = 1 to 2s+1, where s 1s the
spin of the particle) of the wnitial and final particles, and ¢ 1s the four momentum of the

virtual graviton

Fig 1 The wavy line represents a graviton
The solid lines represent erther vector,

tensor or spin-3/2 quanta

Using the S-matrix formahsm we deduced the Feynman-type rules for diagrams in the
external gravitational field (described by Schwarzschild metnic) which allowed us to calculate
the matrix element <p’|S|p> 1n the mentioned approximation,

Thus we find that [4].

uZ'q) = [op.ﬁv. - 2, ]ymm 32)
Vo () = “(§) (33)

hen @) = [6,, 5. L ,N]y::' @ (34)
@) = 18,4y @) . (= yT) (35)

Taking 1to account the Founer transform of the static external gravitational potential
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e kM s kM (36)

o - 1
YD) (2n)“f = G

(where M 1s the mass of the central body that creates the gravitational field and (%] 1s the
distance to this centre), the matrix elements 1n the external field approximation, corresponding

to the diagram 1n fig 1 are respectively

~kIM f 8(qy)

SB = <p!|S|p> = ([el@)pl 200! [ @p,- eF)p,] *

22 plp, | 11
x (q.oa. - %bm) s m2eP (@ )l (7)6,8,)0(5 - F-§)d%q = F(p’,p)o(p! - p,) (37)
- 2
S,::?,=<P’|S|p> - 1k2M J‘ (qu (:)(ﬁ/)pu (3 (r)(p)p ‘ex(:.)(P_')Pv‘ev(.:)(ﬁ)P,‘)“
202m0ypl p, ° 11

+ Qe @, + e @, + e BIp, ) + 62 G PSP, + e P, -
=36 p,) - 2m el e IE)18, Dy [eF pi + el B 0! - e 2B )1 )
x (2@, + e L@, - )P ) =me ) F)ed @)1+ [0F p,) +e) @ )p! -
=@ Bl e () (( ; 5;0) 5, + (q. B, _;qa) 5, (ax 5, % 6M) %) -
-e8G) [e, + eQ PP, - 0PI, ) ( 0450, )6 +(6 8- —;b)

- (b,.‘b,‘— -;-B,W)boj)]q,}ﬁ(ﬁ’—ﬁ-t]’)(/’q = F(p/.p)b(gy) (38)
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2 o(¢ -
1kimM (10) { [/pv/ llé')(ﬁ’)Y',";r)w)bu'ov‘ '

S = <p'ISlp> = .
a2y fpd p, * 141

D@ WP B0, 8, + mi (G Y u P 10(P - =)y’ = (*n
= F(p'.0)8(25 - 1, ),

where  ¢(P), eX(P), u7(D), [iz’,f”(p’) = u,}”'(p’)yq] and p, on the one hand, and
e(F), e2P"), ul(F'), [17,.(”(;3" ) = (P’ )74] and p, on the other hand are the vectors, tensors,
spin-vectors and the energy of the imtal and final particles, respectively, andg, = p, - p,= 0
states for the energy conservation law We have denoted by the common notations m,p and
P, the charactenistical quantities (the mass, 4-momentum and the energy) for the all three

fields respectively

The differential cross-section 1s given by the well known expression
do = (2)? <§: IF(p!,mI2>,, pi dQ, (40)
»

where dQ = 2x sin@ d6, O being the scattering angle In order to evaluate the differential

cross-section we must find the expression for <Y} |F(p’, p)I*>,, For [F(p’, p)|* we get fiom

S
(37), (38) and (39) relations respectively
2
1l s (—22 oo @
8(2m)'p, p* sm’_z_
2 2
r s =220 o, ) (1
8(2:t)’pu;7’sm’_2.

ki

|,_,'1, !

(F@'pl* =
2 2 ? , B
16(2x Y py(py - m’)sm 5
where 1 15 given by

L= 20y, p, - tm

38



MASSIVE VECTOR, TENSOR AND SPIN-3/2 PARTICLES

Then, the expression < ; |F(p’,p)|*>,, for vector, tensor and respectively Ranta-Schwinger
p

fields are

/g kM (1w 2
<X IF!,pl>, = 7| (55 %) @4s)
- 8(27) py (15 - mysi | A7

2 2
<EIF@. Pk, L (5% o) (46)
S 8(2m) p,(pg ~ m?) smz_z. wl

k2mM

<Y [Fp!, plt>,, = 5| 7 LS |70F B =
L 16(2m)p,(pg - m* )sin 22 el
(47)
_ kmM 3 2
= ) (T E QR—S‘) .
16(2Jt)2p0(poz—m’)sm’_§ pol

where Y, 0., , Y 0., and ¥ Q7 ¢ are the polanization sums for the vector, tensor and Rarita-
pol pol

Schwinger fields and because they have a long enough expressions we prefer not to give then

here

In order to evaluate the polanzation sums we take into account that the polarization vectors,

tensors and spin-veotors, respectively, satisfy the relations [5, 10]

3
Y@ e@=d,, pv=1104 (48)
A=1
> 1
Hm,xp b geﬂ)(ﬁ)e(')(p’) = _(dw\dvp * updk) - "'duvd (e

+im 1

u(’) i =—6—_ v —yp )+ 2
Z 2 21 w SY"Y" Im 0 =Y ) Im?

AR (50)
™ ni'v
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Bp,
where d,, 1s given by. d,_ =8+ =

After a labor:ous calculus, for the differential cross-section of the massive vector, tensor and

Ranta-Schwinger particles one obtains the following expresstons, respectively

2 2
2 2
do = |FM) _dQ N1evi) 200002 g8 1))
167 sm“E 22 3 2|2 2
2 1
M| dQ 1+42 4 3] 2 3]
do={__"| _~°_ - s+~ sm'_[9(31-
(1671:] a2V vi 2 45(1 - 7!

~ 108v? + 146+v* ~ 92vS + 23v%) + 48v3(7 - 18v2+ 19v*- 8v“)sm’2 (52)

- 2vH(5 - 6V - llv“)sm“g S 192v5(1 +v )sm69 + 128¢8 snB"]}

2 2
2 2
do=| KM} & “V - ! [WA(15 - 4132 + 5v* +21v8) it +
16% sm‘e v 36vi(1 -v?)? 2
7 (53)

+ (3 -6V - 5v‘)51‘g+8v (3+v)sm® ]},

where we denoted by v the ﬂ ratio
Py

We shall notice that 1n the small angle approximation the polanzation sums become

EQ;mlu3ﬁ4[l+v) (54)

1+v 5
EQIZM ( 2\/2 ] (5')
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2 (1 +v?)?

E QR2~.s = 4p, 7 (56)
ol

Taking into account the previous relations, the differential cross-sections 1n the small angle

approximation become
2

1+4?

2v?

kM

dg2
do_ 5= (1631:

7

) = do,., (57)
sin

1¢, they are the differential cross-sections of Rutherford type As we can see from (51), (52)
and (53) the expression for do,, 1s contained by these relations as a first term Since this
term (1e do,, ) 1s quite the differential cross-section for the masstve scalar particles (for
instance the scalar mesons) we can nterpret the second term in the (51), (52) and (53)
relations as being the spin contnibution of the vector, tensor and Rarta-Schwinger parucles,
respectively

A particular interest 1s presented by the back-scattening hmit case In this speciat limut case

we have worked out respectively

2 2
2 2 —yl
dot, = (M eV o2 27V g (58)
16n 242 3 v?
2
G o | FIM o
16w | 180v (1)’ {59)
% (45 -810V? ¥ S067v"  9228v0 + 5475v* - 52210+ 229v'1)
2
1 - 2 4
dofy o= | KM 26V 4 (60
16 ) 36+v'(1 -v?)

where do = da, and dQ" = 20

In the ultrarel-ttvistic case (v — 1) we get from (58)

(’(,.'grl 1 ((1A/)1 ) 6ol
— 1Hlg
dQ* 3
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i e, in the back-scatiening and ultrarelatvistic case, the differenttal cross-section —— dQ _ for the

vector field only (!) is constant (and non-zero), which means that in this case the helicity of

1

the particles is not conserved, 1n agreement with [11].
Finally it’s worthwhile to point out that 1n the small angle ax;proximatlon, the differential
g:ross-’sections for scattering in Schwarzschild field of massive scalar, vector, spinor, Rarita-
. Sch;winger and tensor particles,ilavd the same form and in ultrarelativistic éase they cc;incidc;
thh thése corrésponding to the neutrinos, photons, gra\lntons and gravitinos, i.e, «thé'
gravuamnal particle scattermg in this limit case is spm—mdependent [12, 13], in agreement

w1th many authors results obtained by other means [14]
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FOURTH ORDER TORSION L-TENSOR FORMULAS
FOR ANHARMONIC FORCE CONSTANT TRANSFORMATION

T.A. BLU"
Recerved 1512 1993

ABSTRACT. - New fourth order analytical torsion L-tensors are reported, which complete

previously published third order expressions The formulas up to the third order are used 1n

molecular normal mode analysis calculations for the nonlinear transformation of the force

constants from internal ccordinates to normal coordinates Sample calculations are presented

1. Introduction. Although, due to the advances 1n computer techniques, most of the
computational effort of molecular normal mode analysis applications has been tiansferred to
numerical methods, for large problems 1t may be still preferable to use analytical formulas
for the L-tensors involved 1n the transformatton of the force constants from internal- to normal
coordinates, instead of numertcally deriving the internal coordinates with respect to the normal
coordinates, according to the defimtion of the L-tensors

L-tensors formulas for all elementary tnternal valence coordinates are available The
torstonal coordinates, however, require an especially delicate mathematical treatment, and give
nse to the most complicated expressions. Formulas for planar equilibrium configurations [1],
and more recently, general formulas [2] have been reported Alternative torsion L-tensor
formulas have been presented 1n [3] (hereafter referred to as Paper I), which, 1n contrast to
the analytical results of [2], are more compact, implying scalar operations with trigonometric

functions instead of cumbersome vector operations

" "Babes-Bolvar" University, Faculty of Phvsics, 3400 Chy-Napoca, Romama
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It 1s the purpose of this paper to present new fourth order torston L-tensors, which
complete the set reported 1n Paper I Due to the complexity of the calculations, extenstve use
was made of the symbolic computation package Mathematica The expressions up to the third
order are equivalent to those of Paper I Results for methanol and hydrazine, obtained by the
numencal tmplementation of these expressions, aie presented and compated with similar

results from the literature

2. Equations. The Taylor expansion of the potential energy with respect n terms of

curvilinear internal displacement coordinates may be written as [1]

V=_;_ZFRR+ > F RRR+7I_2 wRRRR ()

iyt gkt
Ij [

and F

s are the 2nd, 3rd and 4th denvatives of the potential

where the force constants F,, I/,
energy to the coordinates R, referred to the equlibrium configuration of the molecule In

order to perform a normal mode analysis, the wvibrational-rotational Hamultoman 13, huwer,

convemently expressed in terms of the normal coordinates (),

V=%23x,0f _):¢"'QQ( o5 L 0,000, o

a0 rsthu

where A = 4nclo!

The internal coordimates 1%, can be expressed in tenns of noraal coordinates

nonlinear transformation

1
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Rl e EL’rQr + EL‘"QrQI + E L””QrQJQI+ ’ (3)
r r,: r a1
where the elements of the L-tensor, L,,L;”,L;”', , have to be interpreted as first-, second-, and
thurd order denvatives of the internal coordinate R, with respect to normal coordinates
The formulas for the transformation of the force constants from internal-, to normal
coordinates (including only L-tensors up to the third order) may be readily obtained by

substituting (3) in (1), and comparnng the result with (2)

N =Y FLL
iJ

¢nl = E FU;LlrL_/‘Lk, + EFU(LI”LJ'+ L,”Lj"' L,"Lj')
L1k hJ

st ry sy iyu
¢ - Zkl gkl Lt Lj LALI
LAk

+ r

Ik
L1k

(LroLesLn L s L)Ly

S LPLILY LD L LPLL )
+ EU: Fu( L,"Lj'" . L/” ij + L’ru LJ"
+ L:"ILju + Llr:uLlr + Llrlu L_/’ + L‘JIuLjr)

As stated above, it ts only the case of torsional coordinates we are dealing with 1n
what follows The torsion coordtnate involves four atoms If the atoms o, b, ¢, and d are
linked by the bond vectors r, = ab, r; = bc and r, = cd, the torsion coordinate t 1s defined
as the dihedral angle between the planes abc and bed The torsion "displacement” coordinate

R,,, which 1s actually used as a normal coordinate, may then be defined as the difference

E =
wn
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between the torston coordinate and the corresponding equilibrium value <,

Ruz =T - T, = dICCOS

(e>e) (e~ ek)] -1, (4)

sing,, std |

where ¢, ¢, e, are the umt vectors of the three bonds

The torsion L-tensor may be set up, as already pointed out, from the denvatives of the
torsion displacement coordinate with respect to the normal coordinates The relations for the
first four orders are

3R

1k 3t

AR ’'R
1k ¢ i)k (5)

,L, y gy = A =
30, 9000, 0,00,50, " 00,30,60,00,

IR,
L

rai

In order to avoid the complications implied by repeatedly denving the mixed vector

3

product from the expression of the torsion displacement given by (4), we transform £,
making use of the well-known Lagrange 1dentity

(axb)(cxd) = (a-c)(b-d) - (b-c)(a-d)
Relating the obtained scalar products of the umt vectors to the angles defined by them

ere = —cos¢u, e e = ~Cosh

f J e, e, = Cosp,,,

5

the torsion displacement coordinate becomes

(0)

R, = arccos
sing, s ,

cosp, cosg , - cosqn,k] .

As one may notice, the angle ¢, between the non-adjacent bonds 1 and & appears in the abou
relation, as well

In performing the operations required to denve the expressions of the torsion /.
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tensors, it is useful to keep 1n mund the defimtion of the first order angle bending L-tensor
| . 99
L= TQ_U' M
which, coming from the denvatives of the angles ¢,, ¢, and ¢, respectively, will enter 1n
the expression of all torsion L-tensor

In order to simphify the expresstions of the torsion L-tensors, we define the following

auxilary tensors

Sy = Ly lsing )

Tji= Sjcosp,, + Sycosp,, ©

ok = Sy Sy + SS, (10

Vik = Sy5,8, 0080, + SiSySucosd,, @an

r3i

Ty, Uji and V' are obviously symmetric with respect to the index pairs "y and "4"

The formulas for the torsion L-tensors yselded by Mathematica (according to the
definitions (5)) are obtamed employing a rather elaborate set of expression manipulation rules,
which allow for massive stmplhification of the relations, use being made of the expressions of

the already determined lower order tensors Here are the resulting formulas for the first order

L-tensor
L smg
r r r r 1k ik
L = Ty cott, + cscx, Fucowﬁ + L,,‘colq)u - W’, (12)
y SN,
the second order tensor
L/;; = _Lu'k thrk - COII'(LJ,‘L,;,‘ + UJ;)
(13)

LyS; LSk Lk
- C&CT' {k {1 + ij ik + . ik
sing,  sind,  sing stnp,

(L,;COS‘P,* - Tu’l sing lk) }'
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the third order tensor
rel t I4 sy
L,_,; = Llj’kLJkLUk + LuA Uuk Lulk Uu: - Lui U,A
- coty, [LuALr_/k et LukLulz + LukLul + IuALuk /&:l]

L (14)

r ¥ 1 r ¥
+ cscy, 2C°t¢IJLJ‘SUSU +2C0t¢'jk USJA et m
u Jk

x { cosd,, (Lu' ljk +Ly 'u,k ) +sing,, ( Lily - T Tl_jlk ,;L) ] } ,

and finally, the fourth order L-tensor
"= UL( LoLy+ LigLye + LukLuk) + L,,,,(LU"L,;: * Lu“kLl;;c)
+ LyLiLj+ ( LyeLipLgy = L' ) Tge+ LUy + LUy + LU
+ coty, [Lur*LJkLu'kLJk - L,;;L,}‘,: - L,;i ok L,;ZLJI ‘*leﬁ“
Ll - LaLu - Ll = (Lokin+ Lk + LaLia) o
~2(1+2cos%, ) 5,5,78,5, ~ 2(1 + 2c05%,) SiSiSASs
+ LljkLi_;k i+ L(;kLl;kU + LukLuk ljk] - L,V ’2" - LUlk ok~ Ly~ LYy Vid
+ eset {~2(1 + 20089, Jesc, LSy S, S, - 2(1 + 2c057¢ , Yescd Ly SIS,

’
ik

W [ cosg,, ( L)kLil(Ltk Ly ukTuk le rUA uk - L Tuk Tuk

- L ¢ ul: Ltk UJZ le( l_/h) + ém"’,},( lele Tl_/l LII:LI: TUIA - LI:LI; Tuuk
+* T T Ton + TaUg* T Ui+ TaUg + VT')]} (15)

As it is apparent from Egs (12-15), all torsion L-tensor elements depend on the angle

bending tensor elements L, and on the torsion L-tensor elements of lower order It should

1
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also be emphasized the explicit dependence of the torsion L-tensors on the equilibrium value
of the torston displacement coordinate <, only through the factors cot t, and cos T,

Another point worth discussing is the appearance of the "angle bending" L-tensor
elements, L, corresponding to the angle ¢, defined by the non-adjacent bond vectors The
significance of the mentioned elements may be regarded as purely mathematical, and for their

computation the formulas for usual angle bending may be employed [1]

3. Sample calculations. We present 1n what follows fundamental frequency results for
two sample cases involving torsional coordinates methanol and hydrazine In both cases there
have been used only L-tensors up to the third order

The harmonic frequencies and normal coordinates have been calculated by the Wilson
F-G method The anharmonicity correction 1s accomplished by employing the approach of
Hoy, Mills and Strey [1] (briefly discussed 1n section 2) embedded 1n an onginal FORTRAN
77 computer code for general normal mode analysis, run both under the UNIX and DOS
operating systems

The geometry and internal coordinates used to describe methanol are those of [4] The
force constants are taken from the same reference, where all cubic force constants of the type
Fy with 1, y and & all different, and all quartic force constants other than the diagonal
stretching ones are neglected It should be noted that the calculations reported 1 [4] are
performed strictly numencally, no use being made of analytical L-tensor formulas

Table 7 shows the computed fundamental frequencies of [4], the ones computed by

means of our L-tensor formulas, along with the observed frequencies reported 1n [5] One may

1
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notice the fair agreement between our frequency values and those of [4] Both sets of
computed frequencies exhibit the same overestimating tendency as compared to the
experimental values, however, the overall better agreement of our results (with a smaller
maximum relative error of 6 7%) 15 obvious Exceptions are T, (C-H bond stretching) and v,
(C-O-H angle bending), for which the errors are small anyway For the thiee toision modes

of methanol (t,,, T,, and 7t,,) our relative errors are significantly smaller

Table 1. Fundamental vibration frequencies of methanol v*’ are the caperimental values of |5), v* aie
the calculated values of [4] and v" are the frequencies computed 1o thus work (1n cax!, the conesponding rulative
errors being eapressed 1n %)

v v’ v’y Vv (VA
A
v, 3682 3730 13 3728 12
v, 2999 3009 03 3011 04
vy 2844 2919 26 2865 07
v, 1478 1611 83 1583 66
v, 1455 1571 74 1559 67
v 1334 1391 41 1364 22
v, 1075 1113 35 1080 05
v 1034 1046 11 139 0s i
A
v, 2970 2988 06 3006 te
Vio 1465 1583 75 A
v, 1145 1234 72 L LU R L
Vi 271 262 34 203 0
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All relevant data for the hydrazine molecule (geometry, internal coordinates and force
constants) are taken from [2]. Table Il shows besides the calculated frequencies of [2] and
of the present work, experimental data of [6] One should again notice the fair agreement
between the two sets of computed frequencies The discrepancies between our frequencies and
those of [2] (with maxima for the T, N-N stretcing mode and <, antisymmetric NH, wagging
mode) are probably due less accurate force constants listed 1n [2] and used in our calculations,
than the ones actually used to produce the frequencies of [2]

‘Table II. Fundamental vibration fiequencies of hydrazine, v*** are expenmental data, v’ are computed values

of 2], and v" are the frequencies computed 1n this work (in cm’, the corresponding relative errors being
expressed in %)

o v V' -v)N' v Vv

A

v, 3390° 3413 07 3397 02
v, 3300 ‘ 3297

v, 1628 1659 19 1671 26
\7 1324° 1344 15 1361 27
vy 1098° 1121 20 1119 19
v 780" 840 71 843 75
v, 3774 398 53 350 17
B

Vg 3398 3402 01 3440 12
v, 3297° 3287 03 3331 10
vio 1587" 1645 3.5 1655 41
v, 1283° 1320 28 1318 26
vy 937° 1045 103 1058 114

“ {61, * 7], ° (8], * [10], * (1]
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4. Conclusions. New torston L-tensor formulas up to the fourth order are presented,

which, 1n contrast to some previous analytical resuits, are more compact, tmplying scalar

operattons with trigonometric functions instead of cumbersome vector operations The

numerical results which have been subject to comparson, although affected by the employed

set of force constants and the adopted numerical strategy, compare favourably with one

another and with experimental data from the literature
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EXCITATION OF A LOWER HYBRID WAVES IN A WARM PLASMA
BY A WARM RELATIVISTIC ELECTRON BEAM

J. KARACSONY and Z. KISS®

Receved 208 1993

ABSTRACT. - The linear theory of excitation of electrostatic lower hybrid waves into a warm
magnetized plasma by a warm relattvistic electron beam 1s presented It 1s found that
electrostatic lower hybrid waves can be excited by Cherenkov resonance The frequencies and

growth rates for excited waves are calculated

1. Introduction. Absorbtion of a lower hybrid waves seems to be a very efficient
method for heating 1ons in a plasma [1,2] In recent years, considerable attention has been
focused on theoretical and experimental studies of tower hybrid waves for plasma’heating and
current generation in tokamaks These waves have been succesfully employed to heat
electrons and to drive plasma current 1n a number of tokamaks [3-8]

On the other hand, has been demonstrated that lower hybrid waves generated by
auroral electrons can produce transversally accelerated tons 1n 1onosferic plasmas [9, 10]

In the space physics context a great attention has been accorded to the lower hybnd
dnft instabihty generated by density and magnetic field inhomogenities [11, 12] The lower
hybnd wave can be also excited by an electromagnetic pump wave [13] and by electron
beams The linear theory of the lower hybrid waves excited by a nonielativistic electron beam

streaming through a cold plasma along the magnetic field has been discussed 1 detail by

Papadopoulos and Palmadesso [14] The relativistic election beam temperature effects on this

" Unversity of Cluy-Napoca, Faculty of Physics, 3400 Clu-Napoca, Romania
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instability has been studied mn [15] In the present paper we demonstrate that such waves can
be generated by a warm relativistic electron beam nto a warm magnetized plasma

In our model a warm relativistic electron beam with density n,, and a velocity ¥,
streams through a plasma with warm electrons and cold 1ons along a magnetic field 8, The
unperturbed plasma density is considered to be n,, >> n,, Because we are interested with
lower hybrid waves excitation we will study the almost perpendicular propagation of plasma

waves to the magnetic field

2. Dispersion equation. The general dispersion cquation for longitudinal waves can
be written as [19]

e, s + e, cos’™® + 2e  cosO s = 0 (n
where e, (1,y = 1,3) are the dielectric tensor components of the system and 6 repiesenis the
angle between the wave vector ¥ and the direction of the external magnetic field B, (Cne
assumes that the wave vector ¥ lies 1n the xOz-plane and Oz-axis 1s onented parallel to the
external magnetic field)

The dielectric tensor can be expressed by means of the conductivity tensor o 1n the
following way [19]

0= 8, 2o, )

We will use the expressions calculated 1n [17] for the conductivity tensor components

of the warm relativistic electron beam and the expressions calcuiated m {16] for the

conductivity tensor components of the warm plasma with temperature amizotiopy Considening

cold plasma ions and using relation (2) we can write the dielectric tensor components under
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the form

P <y L &
8"1____212,1}\

- (s, )+
ol~w, W n s

o —
¢ ] Ie

o o’ A [ nw,,

T, A,
+ 2y ) [+ X0t n*) p.
tl- n }"b

2
@, AM T | w T,
= " tg0 LAASUC Mhadi le — 1| ¥ +
ex: (1)2 g g n A’ T (D" n T-L' (snl )

A(N)
+ Ny lns
Yng xb Q"

2
e"=1-i"'.-rioi’itg29 L o-n _T*_' L oun _Tif.-l X
(D2 (Dz (1)” Tla mu Tl-t
4.(y)
A

b

Qn

oY,
x ¥(s. )+ — R
5. Yﬂ;[w

ce

where the following notations have been used.

nw_ T,
Z(s,y) 5= Y5,
Yo:Y1s T,

P=1-

v T, wy
=an|. 227 +{1~-_2 1Y + 0
0, n[v (5,) [ - ) (S,,,,)] —

15 b

T,
Tﬁ Yés,)

c 15

and
AN =eP N

I (M) are the Bessel functions of the first kind of 1maginary argument with

2=
A - kxn Vi,

2
),

ce

for the plasma and

©)

4)

&)

(©)

@)

®)

)
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LR Apind (10)
for the bezm.

The quantity w,, represents the electron plasma frequency and w, the 1on plasma
frequency, while w,, and w,, are the electron and 10n cyclotron frequencies, respectively The
perpendicular and parallel mean square velocity for beam electrons have beer; defined by the
following relations [18]

Toy= mylb S (1)

Ty = myy b ' - (12)
where 7., and 7j, are the perpendicular and parallel beam temperature, respectively
Y, = (1 - v /c’)m 1s the usual relativistic factor and 0 =, /n, < 1

In the expressions (3)-(7) we used the plasma dispers in functions [18]

26,) = 2y | E‘P;;‘:ﬁld: (13)

and
Y(s,) = (2™ f iﬁ"tp_f'_:/_z). dr 14)

with
s m L 10 ‘ (15)

k9,
for the plasma and
w-KV -no,_ K,

Snb _'—"‘E'"“)'l':'_— (] 6)

for the beam
The perpendicular and parallel mean square velocity for the plasma electrons have
been defined by the relations [16]

Toy ommyvis. an
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where 7., and 7;, are the perpendicular and parallel electron plasma temperature,
respectively
Since we will be interested with almost perpendicular wave propagation with respect
to plasma retumn current direction, 1n expresstons (3)-(5) we neglected plasma return current
effects
Substituting the expresstons (30-(5) in (10 and taking 1nto account that [18]
Y(s,) = 1+s,7(,) (18)

the electrostatic dispersion relation becomes

2 2 2 on? 2
wpCos'8 s’ . @

DFEw)=1 - e I+EA)\,ZS x
(Fe) o ) k’\';lf[ P 2 26,0
no,_, T wz
n
x |5 + ! 1+2:A(h)£( ) (19)
( k',vh L,H Ys k’vlb{ e

« s no,, T, -0
w* kv, Y, TJ_b

3. Excitation of lower hybrid waves. For electrostatic waves with o, << © << @,
and cos8 = m, /m, some simplification of equation (19) is possible because s,,> 1 Using the

asymptotic values of Z(s,,) [18]
Slllﬂ

1 1 n
Z(s,,) = —?": - E - 41 5¢ "o (20)
and neglecting the higher order terms, the dlspersmn equatton (19) reduces to
2 2 .
[ ) 1
DEw) =1 - =2 4 (\)cos®0 - e Dee 1oy
(K,0) 7 ) Z X0 ) o o

,n wp, m' o ,
+1 | AN)e — L+) Ady,)x 21
T Tk _:! ) : V'b[ E Yy) ( )
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no, T,
X Z(‘snb) snb + - - I" =0
xvlb IYo T-‘-b

Now, taking into account that for lower hybrid waves we can use for 4,(\) the

expresston [19]
]

An(}"e) - m (22)

and we finally have the dispersion refation 1n the form

2

2 2 2 oo
,, (1) () 7 w, o =TT
D(k;co)=l—_".—_’;cosiﬁ+i+z l_ __”Z_Je W
—=
©, o w’, 2 kv,

(23)

=Q

2 v
S0 G R A0 2G5, |5, + e T
Y: kz{;:b [ ; n\""h nb nb kXV “,Yg TJ.’,

With the purpose to investigate this dispersion equation, we will follow the usually
applied procedure 1n plasma phystcs [19] According to this, when Im w << Re w, the excited
wave frequencies can be calculated from the equation

Re D(R, ) =0 (24)

and the corresponding growth rates from the relation
Im D(Kw,)

Imw = -~
dRe D(Ew)dw,

(25)

where o, = Re w(%)

<

Writing the Z(s,,) function under the form [18]

S ™ 2 12
Z(s,,) = —exp [- ;"’) ‘[.exp (Ez.]d?; -1 (;) (26)

and taking into account that 1n Re D(%,w) the contribution of the beam terms are of order n,

we obtain for the excited wave frequencies the expression
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(w + o cosi(')) 27
where
(.02
@ s ﬂl [I+EA(A)
* ce D v
15 . (28)
" *Re Z(s,,) s, + I
with kviYo T | |,
ol = S G0 (29)

2 2
1 + ap, fo,

The growth rate for the instability can be found from (24) using for D w) the
expression (23)
Taking 1nto account that Im Z(s,,) with n = 0 are small compared with Im Z(s,,), we

obtain for Im o the following expression

Ima = - yu W 0 | e T,
292 k2 Trod kzﬁ‘

V (-7
+n‘ A0 = — T
kvlbYa

The fastest growing instability of the lower hybnd wave is then obtained when

(39)

o= KV, 31)
with the beam electron speed just a little faster than tile phase velocity of the wave i the
beam direction This 1s necessary to assure Im w > 0

The first factor in the bracket caracterizes the damping of excited waves due to plasma

electrons
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4. Conclusions. The above results show that a warm relativistic electron beam can

excite lower hybnid waves 1n warm magnetized plasma These waves can be excited by

Cherenkov resonance when w, =~ k+7, We calculated the frequencies and growth rate for

excited waves The obtained growth rate expression contans also the damping effects due to

the plasma electrons [first term 1n the bracket of expresion (30)] on the excited waves When

the Chereakov resonance conditton 18 satisfied the damping term becomes small compared

with the term which is responéible for the qrowth of the wave amplitudes [the second term

in the bracket of expression (30)] Thus it results an instability for the lower hybnid waves.

Another important conclusion can be also drawn for beam electron temperature effect

The expression which was derived for the growth rate shows that parallel beam temperature

has an stabilizing effect on the instability.
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ANALYSIS OF THE PHYSICAL CHARACTERISTICS
OF A DUSTY PLASMA 1. THE GRAIN CHARGES
AND THEIR EFFECTS

Speranta COLDEA’

Recerved 509 1993

ABSTRACT. - The charge of a dust 1n a plasma 1s not a fixed one, depending on the

chamctenstics of the plasma, on other phenomena as secondary and field emussion,

photocmission, etc By supposing the grains being at rest in a Maxwellian plasma, an analysis

for the properttes of grain charges 1n a dusty plasma 1s made The correspondmg effects are

shortly discussed In the second part of the paper other effects of the electrostatics of dusty

plasmas will be analysed

1. Introduction. A dusty plasma can be defined as a plasma with a phase of solid
objects (grains or dusty particles), that usually exist in laboratory plasmas, planetary and
cosmic plasmas For the understanding of the 1onosphere properties and of the consequences
for earth atmospheric pollution, a modern knowledge of the dusty plasmas charactenistics is
needed Generally, the method of study such plasmas characteristics 1s based on the theory
of the composite plasma dynamics (kinetic model or fluid model) Experimentally, the
Ionosphenc Radar Scatter Technique 1s used, based on the analysis of the statistical properties
of radar returns from ionosphere Measurements of physical properttes of dusty plasma in
1onosphere or planetary ring (magnetosphere) are also made by satetlites The concluston of
the experiments 1s that the present of dust may change the structure and properties of the

plasma The present paper deals with the study of fundamental properties of a dusty plasma

with impurities, that are electrically charged A short analysis of the grain charging and of the

* "Babeg-Bohait” Umiversity, Faculty of Phvsics, 3400 Clhy-Napoca, Romania
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corresponding effects 1n a dusty plasma 1s given, based on the fundamental equations of such

a plasma and on some quantitative considerations

2. The basic equations. Firstly we shall present the equations that describe the
charging of dust grains tn a plasma, process driven by plasma currents, photoelectron and
secondary emisston currents [1]-[7] The basic equations for all thesse currents in the case of
a number of grans in a plasma comparatively with those of a single grain in plasma or in
vacuum will be presented ‘

By considertng that a grain 1s at rest in a Maxwellian plasma with electron and 10n
temperatures T, and T, (T, ~ T)) and by neglecting the other charging effects, the potential of

the grain ¢ 1s obtained to be negative (1if Flow, <<Flow, ) The currents to the surface of the
gratn are [1]-[3], [7].

ina’ne
I.E' ‘W’CW(GBJP) (l)

4ma’n Ze
" (2nBm )

“(1-BZed) : ?)
where p = 1/kT and a 1s the grain radwus, m,, m, being the electron and 1on mass and T, T,
the conespondiné temperatures, ¢ is the gram surface potential
If ¢ > 0 then I~exp(-eZf,¢) and I~ (1-ep,¢) The equilibnum potential 1s found
from the condition
L+1=0 3)
and 1t 1s independent of plasma density

Because the charging time 1s nonzero and 1t s propottional to 1/a, a specific
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gyrophase dnft motion of grain in plasma takes place

The secondary and photo-emissions determine a positive current to the grain Two
cases could be discussed

(a) If ¢ < 0, all the released electrons by secondary emission escape and the

corresponding electron current is of the form
172

kT,

2xm
L]

e

1,.=3 7bm-n,[

= ]*" @

where

E E}
Pl =_.__i-fdu-u5-e\£p
4T, | 16K°T,

E‘l’l.uz
'[ vy "” ©)

and 8, 15 a material parameter of value 05 < &, < 30 and E_ 1s the value
E(5)E (01-2) keV
(b) If ¢ > O, several electrons are reabsorbed 1n the secondary emission process and

then we have

7]
kT

1,.=373 n : .
2m,

1+%_]-expl—.%[71_-7{_]]-l?'(r) (6)

12
B
where x = 7 "}‘ , T ~10°K. B = [%9.] and

L ~m

Fy = x? jdu-u 5 g Lxulvw) (7)

The photoelectrons flow 1s of the following form [9]

I,=ma®K o <0
(8)

T

1p=na"1\"cxp(—_2£] o >0
2 Kl
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where T 15 the temperature of photoelectrons (7~ tel) and K = n-x 1s the flow of photons
(n being the photoefficiency of value € (0 1 - 1))

When a gramn of a = Ip m in a plasma of 7,=1e) 1s taken, and the plasma and
secondary emission currents are considered, three steady states are possible (if 1., = 0), the
midle one 1s unstable and the other two ones stable From some considerations that we don’t
mtlroduce_here 1t could be seen that this behaviour leads to a coagulation of dust grains effect
[6], that will be discussed elsewhere

The case of a moving grain 1n plasma can be also assumed, the corresponding electron

and ton currents being given by

2y2n a%n
by PO ©)
2 @
and
2 Ty _ 2Zed @ w?
I =ma’nZe||l+ 2 - Y "exp|- — (10$)
2”’ mi’l' u’ﬁ i

thi the *
{

26T
where T, = (___L) 18 the 1on thermal velocity and w 1s the grain velocity Becausew « T,

m
the grain may be considered at rest and I, 1s the same as (1) From the equilibrium condition
I, + 1, = 0 the potential ¢ = ¢ (w) could be obtatned

At this pomnt a qualitative discussion must be made the capacitance of a grain in
vacuum C,=a, 1f the grain 1s ntroduced m a plasma, the potential around 1t 1s
o =0 LK = D] where & = L, 115 the distance between gramns [3] The effect of this
r(l +ka) A,

like a spherical capacitor grain sorrounded by posttive sheats (outer conducting shells) 1s the

following when r ~ &, the positive shell 1s pushed closer to gran surface and its capacitance

incieases If grains are i a neutral plasma they become negatively charged and there are

G4
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excess ions 1n plasma; the conditton I = /, at the gran surface is satisfied

3. The effecis of grain charge in a dusty plasma. The relation for 1on and electron
densities n,(7) are given by the Boltzmann factor
n(F) = Cexpl-4,8,¢ (F)] (1)
where C, (1 = e,1) 1s taken from the condition J-n‘(i") d*r = N,, N, being the total number of "1"
species, ¢ - the potential around the grain and q, 1s the charge
The Poisson equatson that will be used 1n this case 15

Vi + 4mp, (7) = —4nY, n,°q, =
. 1

qule)\p[_ﬂjq‘(q) (F) —q))] (]2)

T @ epi-Bg, (4 (F) - 9))

= -4xn

with p(7) being the charge density on the gramn After using the method of expansion of

electric potential 1n §,4,(¢ - $)(d < 1), we obtain to the lower order the relation

Vi - k¢ +4mg(7) = -4nY T q,
I

R s T g (13)
7 [ @ -9) -k
where
k=4nY g} B, (14)
and
7, = o [ o) (15)
with V - the volume of integration, ¢ being the averaged value of ¢ over V
The fin1l Poisson equation 1s gauge invariant
V(¢ - 9) = kNG - ) +dup (F) = ~4xY] g, (10)
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It can be observed that the currents on the graimn are driven by the difference(¢ - ¢),
The solution of the last equation could be obtained under the following form if a neutral
grains-plasma system (Q(<0) ~ @ (> 0), with N grains of same radius a and charge Q, 1s
considered
0-¢ = ¢m+._En g, (17)
where ¢ (/) 15 the solution of the boundary condition
Vi (F) - k¢ (F) + dmp, (F) = 0 (18)

that could be written as an integral equation using the Green’s theorem

$(7) =_§:fd’ il k'i,' D v -
F [P-7 (19)
,‘F‘I exp(-k |F-F|)
- VI
¢(F)[,-.;_p’[ (77 ]

The center of 1™-grain 1s choosen as the origin of the system and only the 1" termg ()
of the above sum ¥ 1s considered “The grain surface potential is ¢ (@) and the clectric field -V (7)

1s the same over the grain surface From Gauss’ theorem 1t can be obtained

LTINS (20)

By 1integrating the equation (19) the following resuit 1s obtained

o(F) = _(.fl exp (-kr) Iexp(ka)z;{:xp(—ka) " o
L) enp(-kr)[ exp(-ka) (1 + ka) - exp (ka)(L - ha)] B

2kr

Furter the other grains (J = 1) are considered and the collective effects between grains
may be taken into account and then the potenuial ¢(r) 15 given after mtegration of eq (19),

for any distribution function
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IACRARRILAIGRA) (22)
i

If f= 1, this condition 1s of the form 4xk*3 = N, that defines a distance R ~ % In

this case the potential 15

(1) = Lorpl-k(r-a)]-
§ A (23)
1+2x Nk exp(-kR) (1 +kR)(exp(2kr)-1)
1+ka-2aNk3exp (—kR)-[(1+ka) - (1 -ka)exp (2ka)]
and then
80 -9 = () - o ITNC (24
/cz(l _ 4na’N
3

For equilibrium the condition 7, + 7, = 0 15 1mposed, and 1n above equation the currents

/"?:_Ezu _g"——‘—‘——_N
¢ (1—44103_]\_/)
3

The 10n charge 1s taken as unity and p = 8, Then the equilibrium gram chaige 1s deduced

are given by the eq (1) - (2), with the 7, 7, ¢ (a) = ¢ and 77, = 7

from the equatton

172
eloierF]- (2] Zoeslepisco-3) @)

m,

A dimensionless parameter A(N) that contains the dependence of ¢ on gramn and

plasma parameters 15 introduced, defined by

4nN_.gﬁQ__
A(N) = (¢(a)-¢) (26)

3
k2 1_4m1 N

with the aim to wnte the equilibrium charge equation (23) as follows
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1-eBlo @ - §)[1 - eplo(a) - 3)4(m)] =
12 _ _ (27)
-(—:—] [1+elo(a) - 8) AN ]-cxp [ el @) -3 )]

e

It can be seen that A(N) o N If the ratio %((1:), )) of grain charges (for a number of_’[:/.

grains 1n plasma) and the charge of a single grain 1n the considered plasma are introduced,

this ratio s
o) . 4@ -4 . CN) . (28)
20 o@)-¢l., CO

where _ 2@ =% o put £W) 5

[6(a) - 9 lvwo c)

As an example the F-ning of the Saturn, that contains a dusty plasma, may be
considered The specific paiameters are in this case a = lym, R = 0,2 cm, T = 10 umeV,

n = 100 cm® (O" 10ns) and Ay = 166 cm The result for the value of capacitance 1atio 15

SN - 10009 and 1@ 8] 5710

€(0) [0(a) ~ ¢ o

From the presented analysis two conclusions could be deduced for the present state
of the consuiered problem

a) The grain charge, under the given conditions, is not so large as we could expect 1f
the plasma temperature T = 10 eV 1s taken Q(N) = 2 70243-10*-Q(0)

b) The corresponding electromagnetic forces are smaller 1n the considered example,
for the evaluated smaller grain charge

The same discussion could be made for dense dusty plasmas 9] and also for ugh
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dust-grain density by using the same kind of analysis

The other effects on a charged grain 1n a dusty plasma, as drag on a moving grain, the

motion of such a dust and coagulation of grain in plasma will be discussed 1n the second part

of the paper
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ANALYSYS OF THE PHYSICAL CHARACTERISTICS
OF A DUSTY PLASMA II. THE COLLECTIVE EFFECTS
FOR THE DRAG ON A MOVING DUST GRAIN

Speran{a COLDEA’

Receved 509 1993

ABSTRACT. - The plasma collectve effects are mncluded to analyse the process of the plasma

drag on a charged dust gram moving through a plasma, due to Coulomb collisions The

conclusion of the analyucal discusston 1s that the forces among the tons modify the gram

mfluence on the 1ons trajectortes, which 1s the source of the collective effects and that the drag

on a gratn 1s mdependent of the presence or absence of plasma parlicles moving faster than

the dust

1. Introduction. The effects of a charged particle on the grains 1 a dusty plasma can
be considered from two points of view:

(a) the effects of electric and magnetic forces on the dynamics of the grains in the
plasma, and

(b) the effects of the grain charge on the properties of a plasma waves propagation,
nstabilities and new modes

In the case (a) the electtomagnetic force should be added to the gravitational or
radiation pressure forces and the orbits of the grains in plasma could be altered

The equation of motion of a grain 1s of the form [1]-[2]

m-V\7=eZ‘(E+_l'(\7XB)) +F - P )
(4

where 7 1s the gravitational force and 7 1s the radiatton pressure Such a theory 1s called

gravito-electrodynamics [1]-[2] The plasma physics 1s modified by the presence of some

" "Babes-Bolvar" University, Iraculty of Physics, 3400 Cly-Napoca, Romana
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charged dusty particles
Devending on the consideied particular phenomenon that 1s discussed two kinds of
theones could be used
(1) the dust-grain can be taken as another plasma component (heavy 1ons) and then the
known results of many-component plasma theory could be applied
(u) the grains could be considered as external fixed impunties, acting as local and
strong perturbations for plasma particles
Grains moving through the plasma could be also considered
For a dusty plasma, without the case when the grain radius a(n) = 1 and when 1t
contains very low frequency oscillation modes, the gramn dynamics can be neglected with
respect to the plasma 1on electron dynamics. The following simple physical model for a dusty
plasma can be taken into account a nonneutral plasma (s = »n) 1n the presence of a
distribution of fixed charged centers that determines a stationary potentia! distribution of the
system, being the solution of the Poisson equation
Vi = —in [2 6. [Lu Ry + p () ©)
where f (7, i7) o =1,e,h are the distribution functions of the plasmda components 1n the presence
of gramns and the charge density of the gram p_ 1s given as
PF) = e-g ZJ8(F - R,) )
p,(7) 15 a given function and does not change the plasma response 1n the presence of a wave
or of any other perturbatton
This 1s the simplest model for a dusty plasma, but other more complex physical

models are used, such as the spherical capacitor model, where the sphenical symmetry
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assumption 1s made and for which the nearest neighbor approximation 1s not needed Other
two models are those of impermeable grains and of permeable grains in a plasma, the last
bemng artifictal because 1t was constdered that plasma permeates the grain and the system is
overall neutral

The collective effects could be included or not 1n the theory of dusty plasmas In this
second part of the paper [3] the collective effects 1n the plasma drag process on a charged
gramn are analysed We take into account only the effects of electric forces due to 1on

Coulomb collistons on the grains in the plasma

2. Collective effects on a dust grain in the case of drag process. A chaiged grain
interacts with the other charged dusty plasma particles The collective effects occur because
there are forces among the plasma particles that are altered by the presence of a grain charge
The inclusion of collective effects requires the use of the Vlasov - Maxwell equations
Usually a lineanization 1s needed, giving an inexact solutton

A more complex collective effect, the drag on a grain in a dusty plasma, when the
grains move through the plasma, 18 analysed in the paper, the collective effects between the
plasma ions exist due to their interaction and are considered here The interaction of the
grains among themselves 1s not considered The charging curents could be calculated, the
factor by which the giain charge and the electromagnetic force on such a particle are altered
by the presence of the other grains n a dusty plasma may be also evaluated The plasma 1s
considered as 1 perturbed reservoir (with n,« n, because some charges are given to the

gramns) The velocity distribution of such a plasma 1s a Maxwellian one and the plasma has
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an average potential ¢, the difference ¢ (o) - ¢, where ¢(w) 1s the gramn surface potential
determines the 1on and electron curients to a grain [1]-]2], all the other charging processes
are neglected here It 1s constdered that §,= $, An analysts could be made by considerng a
gauge-invariant Poisson equation
V(@) ~) -~ k2@ (@) = 9) + dnep (1) = ~axY o n, g, 4)
The solution of this equation can be given for the different eailier considered models
The detailed theory of the motion of a charged giain 1n a plasma and of the collective effects
on such a grain 1s not given here The analysis for the electrostatics of a dusty plasma, with
the study only of the drag on a dust grain moving n the plasma 1s made
The diag force on a moving grawn tn a plasma 1s a phenomenon due to direct rons
impact and to the grain-ion collisions and 1s defined as the product of the acceleration of
grains (of velocity vy) and of the gramn mass m,, eg m u(vy) (we will adopt the
Chandrasekhar approximation of fimte m,) The direct 1on 1mpact diag 1s given by an

equation of the form [4], if the collective effects are neglected

F,= "'1'“”2"’.'a2l “(exp ~mf)+(.2 +_l.]j"(_(?_]] (5)
— a 2 a
where m? = 2kT,
There are two cases that may be taken into constderation
(1) if © = o the grain 18 moving slowly and n this case
F,= ~2fnn-alman 6)
and
(1) 1f w = « the gram 1s moving faster and then
I = anralme (7)
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The assumption that the dusty grains do not interact 1s made The collective eft:ects among
the 1ons vcould be or not considered, the force among the 1ons modifies the gramn influence on
the ton trajectory It 1s necessary to linearize the 1on distnbution by assuming that o/ < f, e g
the forcé 1s shightly changed 1n the presence of a grain charge, that means to not consider the
smallness of scattering angles Tlus 1s the same as expanding the product of grain and 10m
charges in Qe, this product being pioportional to the gratn-1on coupling

The expressions for F,; in the case of no large scattering angles (for the limit of small

product Qe) can be given under the following form

L AnQle? Mo eas SOV
Fo= 22 el fd v (8)

m,

that 1s the expression given by eq (5) if f(v) 1s taken as a Maxwellian distribution and for the

case of large scattening angles 1s given by the relation [5]

4
my*
+
71,1 P
Q%

®

14

2,1 .
Fo= 22 (g L
m, e my*

1+ 2

where the impa;t parameters are b, = hpand b, =b

With the aim to include all effects discussed above, the equations given for the drag
force in the considered approximations are coupled and 1t 1s possible to give a more realistic
result The difference between the eqs (8) and (9) ts a measure of the errors that appear due
to linearization of the Vlasov-Maxwell equations, if the impact parameters satisfy the
conditton a < b = A This correction 1s used together with the drag force obtained with the

incluston of col'ective effects in the set of Vlasov-Maxwell equations (for a < b < =)

Fe Q7 (g k. 1-K(R o) (10)
) 2 EOR(E. )
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where K(X, ) 1s the plasma dispersion function [6] Only for the condition b > A, (the
scattering angles are small) a correction 1s not needed Then for a s b = A, the collective
effects are not so important and only the gramn gharge umposes the ton trajectory and not the
other 10ns ‘

A possibility to find the radial motion velocity of dust 1n a magnetospheric (planetary)
plasma (the migration motion), that 1s due to the drag effect, appears as the result of the
earlier made analysis The rotating plasma gives then to a grain a large circular orbit added
to 1ts angular momentum motion Inside of syncrotronous radius a dust grain overtakes the
plasma and falls towards any considered planet Usually the ions are not influenced by the
other neighbours (ions) are describe hyperbolic orbits The forces among tons modify the
grain influence on the ion trajectories, this fact being the source of the collectlvq effects.

The conclusion of this short analysis 1s that we can choose some particular data for
a given plasma, as the density n; of 1ons, the temperature T,, the Landau wavelength A, the
charge Q of the grain and the grain velocity w, then the force F; could be evaluated for a
specific case, this fact giving the possibility to see the correct comportament of the dusty

grains wn a planetary plasma Some numerical evaluations of the drag force 1n a particular case

will be done elsewhere

REFERENCES

Mendis D A, Houpis HLF, Hill JR, J Geophys Res, 87, 3449, (1982)

de Angelis U, Physica Scripta 45, 465 (1992)

Coldea S, Studia Untv Babeg-Bolyay, ser, Physica, 38 nr 2, (1993)

Chandrasekhar S, Ap 1, 97, 255 (1943)

Morfill G E, Goerts CK, Planet Space Sci, 28, 1087, (1980), lcarus, 55, 111 (1983)

Krall N A and Tnvelpiece A W, Principles of Plasma Physics, McGrow-Hill ed , New York (1973)

A B W N e

76



STUDIA UNIV BABES-BOLYAI PHYSICA, XXXVIII, 2, 1993

VIBRATIONAL AND ROTATIONAL RELAXATION IN PYRROLE
PURE LIQUID AND SOLUTIONS STUDIED
BY RAMAN SPECTROSCOPY

T. ILIESCU, A. SIKE’

Received 50693

ABSTRACT. - Rotational and vibrational relaxation of pure liquid pyrrole al temperatures 283,
293, 303, 313, 333 K and 1n CS, solution at 283 K have been studied by Raman bande shape
analysis The activation energy for molecular reorientation of pyrrole molecule was determined
The expenimental vibrational correlatton functions were compared with the Kubo-Rothscluld

and Oxtoby relations

1. Introduction. Different spectroscopic techniques (IR, depolanised Rayleigh, Raman,
NMR) are used for the study of molecular dynamics in condensed phases [1,2]

Rotational relaxation was studied first for the molecules i which vibrational relaxation
appeared as an additional and often very weak phenomenom

Therefore 1n order to test the different theories of vibrational relaxation, heavy
molecules 1n which vibrational relaxation has an important contributton, should be preferred

Recently Navarro and al {3] were obtained the IR relaxations from the molecules of
biological interest

Among the different spectroscopic techniques, Raman Spectroscopy has the advantage
to separate the contributions of rotational and vibrational relaxation, n the line hope

From the expenimental spectra Iy and [y (the indexes refer to the polartsations of

incident and scattenng light, respectively) we can obtain the 1sotropic line profil (I,,) which

" "Babes-Bolvar” University, Faculty of Phsics, 3400 Clig-Napoca, Romania
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offers information only on the vibiational relaxation and anisotiopic one (1,,,,,) from which
we obtain imnformation about rotattonal relaxation |4}
I (@) =1,,(w) ~ _;_1,,” (®) M
L) = 1y () )
By eliminating the contribution of the slit width of the spectrometer and by assuming
a lotentzian shape line, we can obtain the real vibrational widths of the line (full widths at
half maximum, fwhm)
v 3)
wnso™ Too® Lo “
(T,,) betng the line width of the rotational contribution
Vibrational (v,) and rotational (r,,) correlation times ate obtaned by using
Typ = LACE, 4 (5)
The vibrational (G, (1)) and rotational (G,, (1)) correlation funciions, offer another
posstbility to estimate the different relaxation mechanisms
G, (1) = f]lm(m)erp(:wt)dm (6)
Gu () = |1, (w)exp(rwt)dwli, (1) (7
The matn purpose of the present work 1s the Raman study of vibrational and rotational
relaxations for ring breathing vibration (1144 cm™, A, p = 0 05) of liquid pyrrole and carbon
disulfide solutiens and to compare the expersmental correlation function with theoretical

Kubo-Rothschild and Oxtoby equations

2. Experimental. Raman spectrum was oxcited with 488 nm hne (0 3-0 4 w) of a Ar
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laser type ILA 120-] the radiation being passed beforehand through a Glann-Thomson prism
The scattered light collected at 90° was analysed with a double monochromator GDM 1000
and /,, and /,, components were obtained by a 90° rotation of the polaroid situated in the
gathering optics

One of the Raman spectra in liquid pyrrole 1s shown 1n figure 1

Raman Infensity /au

[
000 wavenumber / cm™ 1040

Figure 1. 1, and 1,,, Raman spectra for v, (A,) mode of hiquid pyrrole at 283K, sht width of 0 6 cmt The
intensity are expressed in arbitrary units

The monochromator slit width was set at 06-08 cm™ (fwhm) for both scattering
components The ratio between the shit width and apparent band width of /,, component was
01, so that the finite slit width effect on the determinated I, and r, values could be
neglected In rder to avoid a weak asymmetry of the band, /,, and /, spectra were

measured at every 0.4 cm™ on the high wave number side of the band A distance of § § half-
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widths from the peak center was used 1n order to msuie a flat base line
Founer transforms of 1 and _, spectia weie deconvoluted with the triangle shit
function (obtained with Ar' plasma laser lines) The expenmental vibrational second moment.Af,”
was obtained by using the formula [5]
FYARS J'Im(m)(u) - o VYdo - JS((I)) (w - w,)do (8)

where 1 (w) and S(w) are the normalised 1sotroptc Raman spectra and experimental triangle

slit function respectively

The pyrrole was purified by distilation and used immediately Solvent of "Merk”
uvasol type was used without purtficaion Only CS, was utilised because 1n other solvents
(like CCl,, C,H,OH, CH,CN) the modification of the colour solution during the inllumination

with the laser light was noticed

Dunng the measurements the temperature was constant within = 05 K

3. Resnits and disscution. The Raman band parameters obtatned for v, mode of
pute hiquid pyrrole using the relations (1-5) and neglecting the tnfluence of shit width, are
summarized for different temperatures 1n table 1

In the limit of the experimental errots = 05 cm™ there 15 a comcidence of both
scattering components

The =, values calculated from the slope of In Gy(t) are very close to values obtained
from Iy without slit correction The computation of t,, from the slope of In G, (1) 5 verv

difficult because G,,(t) oscillate after 15 ps

Fig 2 presents vibrational and rotational cotrelation tunctions on loganthmic scale at
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t/ps
303 K for pure hquid pyrrole 0 T 2
From t,, values (see table 1) 1s evident that
~-02F
the reornentational contributton to the band shape
T=203K
pure ligud
increases with temperature, as expected On the -0 o g,
= Gx
other hand, in the it of expenmental errors the
- 08
vibrational comelation times Ty, are temperature g
independent Fig2 Vibrational, rconentational correlation
functions of v, (A;) mode for pure liquid pyrrole
for T=283 K

Table | Raman line parameters for v, node pure liqud pyrrole at several temperatures (line width (fivhm)
correlation time ©

TK Scattening component Clem? T,ps Ty /ps
L, 57

283 18 81
Latnso 70
| R 56

293 19 59
Lo 74
L 57

303 18 33
Lauso 77
Lo 56

313 19 44
Lusso 80
lo 57

333 18 39
Lo 84

Assuming an Arrhentus type relationship for temperature dependence of the rotational
correlation time (6]
T=Adesp(l IRTY 4 =const (V)

The activation energy E, for the reornentation of pytrole molecule 15 estimated 1o be

|
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95 Ki/mol (fig 3)

1085

We will use the T, values 1n order to

conclude about the relattv importance of ’

Eq=25 KI/mol
different relaxatton mechamsm For all the

temperatures  studied the wvibrational

12l

relaxation 1s the most important mechanism 3 1 3T 36 on!
Fig 3 The logarthm of the reonentational correlation
in forming the bande shape tnes (ty,) for v,, (A) mode vs 1/T
In order to understand the evolution of relaxation times and the tnteractions between
pyrrole molecules and solvents, the expenmental vibrational (Gy) and rotational (Gyy)

correlation functions were deternuned for different concentrations of pyrrole in the carbon

disulfide solutions Fig 4 presents the rotational and vibrational correlations functions for

pyrrole 1n CS, at concentrations (molar fractions m.f) 072, 0 46, 0 22 t
/ps
'] 1 2

In solution at short ttmes Gy decays faster
than G,g, and therefore the vibrational relaxation 1s
the main mechanism, responsable for the band

-0k}

shape broadening A parabolic character of the

vibrational correlations functions (Fig 2 and 4) 1s

noticed at short times and the function becomes 6

Fig 4 Vibational and reorientational correlation
almost linear 1n loganthmic scale at long time This functions of v, mode of pyrrole CS, solution
character corresponds respectively to lorentzian function 1n the central section of the line and

to a gaussian 1 the wings In this situation we can apply the relation (4) even the profile 13

not a pure lorentzian shape
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The application of the vibrational dephasing theory developed by Kubo and Rothschild
[7] suplies some additional informations concern'ng the vibrational relaxation processes of thev,
mode in pyrrole According to this theory the vibrational correlations functlons‘ 1s expressed
by
G, (1) = exp[—<m’(0)>{r}[exp(—r/tc) -1]+ tct}] (10)
This vibrational correlation funciion 1s essentially determined by a measurement of
vibrational second moment A4 (in cm?), which gives the mean-sequare frequency
displacement of the instantaneous vibrational frequency w, + w(¢)
<@ (0)> = 4w2e’M, [ps?) 48))
and the modulation time <., which charactenzes the correlation decay of the stochastic
perturbation of o(f)
<w(Ho(0)>/<o?(0)> = exp(-t/t,.) (12)
Two typical situations are dxstingunshed, depending on whether,
<@} (0)>" 1 .<lor>1 (13)
the processes which modulate w(¢) are either "fast" or "slow"
'Equation (10) describes the vibrational dephasing process and the two limiting cases
can be examinated For extremely low modulation (z, — =) or for short times (f<1t,) eq (10)
leads to a gaussian vibrational function
G, (1) = exp[-<w?(0)>1U2] (14)
The half width corresponding to a gaussian spectrum being
e = (2In2)"2 < w?(0) >"xe (15

For a very fast modulation (t,~ 0) or for long times (1>, ), eq (10) becomes a simple
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G, (1) = exp[—< w(0)>1, I]

The half width for a lorentzian spectrum being

rs = <w*(0)>t /n

Another expression for relation (12) has been proposed by Oxtoby [8]

<w(w(0)>/<w?(0)> = sech?(thk,)

which gives the correlation function

G, (1) = exp[— <w?(0)>1.Incosh (t/tc)]

(16)
(17)
(18)

(19)

Theoretical equattonas (10) and (19) were applied to our expertmental correlations

functions The expenmental second moments A7, obtamned from 1sotroptc Raman spectra

(eq 8) were used to calculate <w?(0)> (eq 11)

The theoretical wvibrational correlations functions were computed according to

eq (10,19) by inserting expernimental <w?(0)> and adjusting . for the besi agreement between

the theoretical and experimental correlation functions

Table 2 present the application of Kubo-Rothschild’s and Oxtoby’s equations to v,

mode of pyrrole pure ltquid at different temperatures and for solutions at 283K

Table 2 Application of Kubo-Rotschild’s and Oxtoby’s equations to v

nig

mode pyrolle pure iquid and solutions

Oxtoby Kubo-Rotschild Iy

System T (cm’)
®) [0 Tt |[<e’>'?| 1= | A I o e |<a?Op?] Ty ep

(®s?) | (ps) *tef (em') { (em') | ps *te| (em")
exp| Ox Ox Ox On| KR KR| KR

285 114 | 041 043 133 49 044 040 53 56

pure 293 097 { 048 047 123 49 0352 051 33 59

pvrolle 303 065 { 071 057 100 18 ) 80 064 35 37

313 090 | 070 066 118 66 084 079 802 56
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Solution
mf
072 283 094 | 046 044 121 45 050 048 49 50
046 283 092 | 041 039 119 40 043 041 42 48
022 283 072 | 052 044 89 37 056 047 42 44

With experimental vibrational second moment <w?(0)>

exp?

IS (eq 15) and T} (eq 17)
were calculated These values were compared with the expenmental I';* =T, |

Inspection of table 2 shows that I, values are very close to 'y which implies an
important contribution of lorentzian part in the band shape

The 1. values for pure iquid pyrrole are 0 4-0 8 ps and increase as the temperature
1s raised Thus the correlation decay of stochastic perturbation 1s stow at high temperatures
At high temperatures a polymeiization of pyrrole molecules take probably place In general,
for solution, T, values decrease with dilution due to the decrease of the velocity of fluctuation

The vibrational second moment <w?(0) > decrease with increasing dilution It 1s known
that an increase in the <w?(0)> appears in the systems where the oscillators interact strongly
with the neighboring molecules This means that 1 our case the interaction between pyriole
molecule and surrounding molecules 1s latger in concentrated solution than in diluted one, as
expected, CS, molecule being nonpolar molecule

In condensed phase at low concentration the mam mechamsm of vibiational relaxation
1s the phase relaxation (vibrational dephasing) [9] In addition to the above mentioned
mechanism, 1n concentrated solution, two otler mechanisms may contribute to the broadening

of the tsotroptc Raman spectia resonance energy exchange [10] and concentration fluctuation

(1]

These theories predict a concentration dependence of the line widths of thel, ~ ¢!
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type From table 2 we noticed a decrease of

I'y(exp) values with dilution Fig S present, this g sol <

linear dependence By extrapolating C'2 — 0, the “: J_ _ >

line width due to pure dephasing for CS, solution NE’/

to be 32 cm’ 607 008 08 i an

From relation (13) and inspection of table 2 Fig 5 The expenmental jsotropic Raman line
widths (fwhm) vs square root of mole fraction

we observe that Kubo product <w(0)>'2 7, is carbon disullide soluton.
approximately stmilar for both equatton (10,19) and 1ts value for different temperatures in
pure liqmd pyrrole 043 - 07 indicate an intermediate modulation regime for vibrational
dephasing 7., mode of pyrrole The fact that the Kubo product values are ~ 0 4 in dilution
15 an indication that there 1s a faster modulation regime than 1n pure liquid

In fig. 6 the experimental vibrational correlation functton 1s compared with the
theoretical Kubo-Rothschild’s and Oxtoby’s correlation functions for pure hquid pyrrole and
dilutied 1 CS,

Particulary for short times, the Oxtoby equation fits better than Kubo-Rothschild

equation the expenmental data

4. Conclusions. The results obtained 1ndicate that for the entire ttme scale studied, the
vibiational relaxation 1s the most tmportant mechamsm for v, vibrational mode of pure
pyrrole and 1n CS, solution From Arrhentus type dependence of v, vs /T, an activation

energy of 9 5KJ/mol for pyrmrole molecule was determined
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0 0 1 2 3 4 f/bS
T T

o8k :
_0[.-
T =283K a T=283K
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08} —expenmentol - expecr;ne .\
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-10r - - 4-0x
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Fig 6 Experimental vibrational correlation functions fitted with Kubo and Oxtoby equations
a-purre hiquid
b-carbon disulfide solutions
To simplify the figure only one temperature for pure and CS, solution are presented To stmplify the figure only
one temperature for pure and CS; solution are presented

A pure dephasing line width of 32 cm™ was obtained from the linear dependence
I'y(exp) vs C'*

A better fit with the experimental date is obtained using the Oxtoby equaton 1nstead
of Kubo-Rothschid equation The Kubo product corresponds to an intermediate modulation

regime In diluted solutions this regime 1s faster than n pure hiquid pyrrole

To stmplify the figure only one temperature for pure and CS, solution are presented
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TOTAL CROSS SECTION DETERMINATION BY FAST NEUTRONS
SPECTROMETRY ON AN ISOTOPICALLY ENRICHED "*N TARGET
USING AN *'Am-’Be NEUTRON SOURCE

L. DARABAN’, T. FIAT', E. VARI-NAGY'
Recerved 1007 1993

ABSTRACT. - We have build a method, for measunng the eacrtation function, based on the
analysts of the transmuted spectrum of the fast neutrons generated by ** Am-’Be 1sotoptc
source and using a spectrometer with recoil protons and pulse - shape discnimnation We have
demonstrated that, 1n case of "*N nucleus as target, acceptable values of the total cross sections
can be obtained by means of this method

1 Introduction. In the field of nuclear reactions induced by fast neutrons, a lot of
interest 18 concentrated on the problems which refer to the mechanism of the fast neutrons
interaction with the nucleus, and on the mformation that can be inferred about the nuclear
structure from these interactions

Analysing the experimental data from a statistic point of view, we may observ that the
nucleus of the stable 1sotopes with little natural abundance are of a special interest These
nucleus been less research subject, but, because of the more unstable nuclear structure, they

have a spectacular behaviour during the nuclear processes

2. Experimental. The expernimental methodology for measuring total cross sections
is presented Lately, there have been used "white" neutron sources, based on cyclotrons, lintar
accelerators or tandem generators, to measure excitatton functions o, (E) We used for the fiist
time the ' Am-’Be source spectrum It shou!d be mentioned that these kind of measurements
can be realtsed only with a fast neutrons spectrometer and the use of the Am-Be source needs
a good n-y discrimination

The probability of tnteraction between the fast neutrons and the nucleus 1s

* "Babey-Bolvar" Umversity, Facultv of Phisies, 3100 Clig-Napoca, Romuanta
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characterized by the cross section oy and 1s defined in the following way [1]
dN

=

T "Nnd
where dN 1s the number of interactions between the neutrons and the target nucleus, N 1s the

neutrons number that fall on 1 cm? of target area, n 1s the nucleus concentration per target
volume unit of pure element and d 1s the target thichness In the case of a molecular target
the relation (1) became much complex like 1n relation (16)

When using a thick target, the density of the flux changes with thickness "x" In order
to find out the number of the neutrons penetrating the target, one should give the differential
equation of the layer fullfilling the following requirement for a given thin layer haveng a
thickness dx at a depth X 1n the sample the following equation 1s valid '

dN = -N@» o, d

The solution of the equation (2) has this form
N(x) = N, exp(-n 0, X)

where N, ts the tmtial neutron flux This means that, for finding out the cross section of the
neutrons nteraction with the nucleus 1s sufficient to measure 1h one experiment the decrease
of the neutrons flux N(d)/N,, during the penetration of the target
. N,
N@)
nd
This formula can be turned 1nto another one containtng niore accesible expertmental

Or =

parameters In this way

!
n=iV, vesd A N=ZNg
It results the next formula
Ao
o - — N
Ny c n
S

where N(d) 1s the number of the neutrons which are left after the penetration of the target,
A 1s the alomic mass of the target 1sotope, N, 1s the Avogadro’s numbet, ¢ 1s the 1sotopical
concentration, m 1s the mass of the puwe element and § 1s the transversal section of the target

The relation N/Ng=T 13 called transmussion factor
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If we have the possibility to venfy the energy of the neutrons with a neutron
spectrometer, then we can measure the total cross sections corresponding to atready known
values of the neutrons energy

Measurements are done through the transmission method, by mans of the so-called
"good geometry arrangement” We place the sample in the way of a collimated bundle of
monoenergetic neutrons We measure N, and N 1n order to be able to calculate T [2]

If we want to extract an excitation function having the following form o, =f(E,), then
we register the spectrum of neutrons, measurning both with and without sample, on the whole
energy field, and we calculate, by means of the formula (6), oy for every value of the energy
of the spectrum

Our purpose was to determine the excitation function for *N For that purpose we
used a sample of ’NH,*NO, (double marked), enriched by isotopes up to the concentration
of 98,5% 1n “N

In order to measure the cross sections, we use an ' Amn-"Be source of neutrons of 1C,
generating 10%n/s, enclosed 1n a collimator of borate parafine, a fast neutron spectiometer with
stilbene crystals and a pulse-shape discrimination circuit (fig 1), studied 1n [3-8]

To extract the latelly scattered neutrons, we used a beam stopper The common
methods 18 to put a long metal bar (of Fe, Cu, or Pb) in the place of the sample, through
which the neutrons cannot enter Then, the transmission factor corrected by the background

18.

where N, 15 the laterally scattered neutrons intensity, which arrives 1n the detector

We have performed preliminary studies on the '2C nucleu ustng the spectrum of the
Am-Be source, for improving the measurement method of the total cross sectton at fast
neutrons and we obtained the excitation function of C nucleus This shows broader and
thicker resonances The purpose of these measuiements was to see 1f we could collect nuclear
data 1n a 10° n/s total pencil (the Am-Be soutce gives 10° n/s 1in 4x) Another purpose was
to estimate the neutrons spectrometer 1esolution depending on resonances separation

We collimated the neutrons source with a borated paraiine collimator and we placed
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a neutron detector to 0,5 m distance of the collimator A grafit sample with m/s=3,78 g/cm?
was placed 1n the middle, between the detector and the collimator We regstered the tncident
neutron spectra N(E,) and the transmutted spectra N(E ) 1n 2 hours each other, to have a good
stattsic We made the calibration of the multichannel analyser’s channels in protons energies
and operated the neutron spectrometer with stilbene in the same conditions, but with the gate
in anticoincidance, this means opposite to the neutron signal of the pulse-shape discrimination

arcutt (fig 1), Using the method of calibration in electronic energies with

/ (d H : A[\\ v

v ho [
—VZ7 7 >
m 7 ; o] L fi s 24V

—
+

1

n "
/\ sau U N |
Cl’l C |
/ DB |
I / : n /7 |
I 12 L [\ -
St~ Vr |
b v ot e e et o o v e — 7_..._.___..
6
14 ] 115

Fig 1. The scheme of neutron spectrometer with n-y discrimmination I-The P § D anput, I1. Spectrometnc input,
A.B 1denical outpnt, C -double discrmunation, D - ssmple discrimnation

1 The Am-Be source in borated parafine collimator, 2 Sulbene scinbilation crystal 20830 mm, 3
Fotorwttiplicator gy 19,4 The PSD circutt, 5 The charge preamplifier type 1141 FAN, 6 Power source with
cadre for NIM modules type ST 614, 7 Mner reversor type NE 4618, 8 Linear gate (I) type 1183 FAN, 9
Energy analyser type NI 4664, 10 High voltage power supply type 1138, 11 Spectrometnic amplificr type NE
1698, 12 Liucar gate (I type 1183 FAN, 13 Multichannet analyser 1CA-70, 14 Prnter 15 Potenbometric
recorder
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y sources, these have been turned in proton energles with a luminosity function having the

next form L(E)=CE,~
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Fig 2 The tmosnussion neutrons of the *' Am-Be source neutrons through carbon
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The data-were transferred 1n one computer CORAL 4021 that was working in tandem
with a multichannel analyser ICA-70 Using a program named SPEC-N, we obtained the
incident neutron spectrum Ny(E)), and in a carbon sample transmitted neutrons spectrum N(E,)
(fig2)

Using the relation (6), we calculated pomnt by point, the values of the function o,(E)
and 1n order to find the transmussion factor T, we divided the two spectras Fig 3 shows the
results, in comparation with the results obtained 1n {9} In concluston, we have

a After the calibration of the Am-Be source spectrum with garnma sources, (without
controll by the monoenergetics neutrons), there are appeaning deviatton from the real energy
of the neutrons until 0,5MeV This s illustrated by the position of the carbon’s resonances

b The absolute values of the cross section are not 1n accordance with the data given
in hterature [9], these have the tendency to be systematically less in the two neutron peaks
region and systematically greater where we have less neutrons

The "good geometry" condition requite that the value of the transmission factor to be
cc 0,5 for each energetics group So, in order to determtne the excitation function, we can’t
use the continuous spectrum the way 1t’s shaped in fig3, so only by measunng the
transmission factor 1n the eneigy region

Also, troducing a set of changed values set ([.1,Et1) mn the SPEC-N program, we
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Fig 3. The continous line - the results indicated by [10] The broken line - the measurements effectued on the
Am-Be source.

adjusted the luminosity function L(E,) depending on the shift established comparatively with
the carbon’s resonances In that way, we used the carbon resonances for the recalibration of

the neutron spectrometer, we obtained for a stilbene crystal with 3 cm diameter and 2 ¢cm

1,404
LE) - 0,184 E,

With this measurement techmque, perfected on the 'C nucleus, we obtained the fin .

I~



L DARABAN.T FIAT, E VARI-NAGY

aybarns)

9
En(MEV)

correct values of the excitation function (using an Am-Be source) (fig 4)
By using fig4, we can study the resolution of our neution specirometer with the
stilbene crystal By the way this spectrometer solves the carbon resonances at 2,08 MeV or

2,45 MeV, you can see that the equipment (built and perfected tn our laboratory) has a
resolution of 0,2 MeV, we can estimate the equipment measurement erro1,by using the results

from the fig 4, too 10%

3 Total cross section determination of N In order to calculate the total cross
section of N, we measured the 1nitial neutronic spectrum of the *'Am-’Be source and the

spectrum transmitted through the sample double marked with '*N (eniiched at 98,5% in "*N)
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In order to venfy the contnibution of the oxygen and hydrogen of the NH,NO, sample, we
also registered the spectrum transmitted through the natural sample, having the same mass and
containing "N, as well as the spectrum of the laterally scattered neutrons (fig 5)

1t 1s true that the curves of fig 5 are close, but, as a result of our expenence with the
program SPEC-N, we found that the difference was stell therte, because the sample marked
with "N absorbs more 1ntenstve the neutrons than the natural sample

Knowing these curves, the excitation function of N, as well as the major 1sotopical
concentiation C, g, C,4y and respectively, the minor isotopical concentration C, 5y, C,4y of the
5N and "N from the sample, we are able to calculate the microscopic cross section of N
for the maximal values of the spectrum 1n fig 5, where we had a better statistics

The macroscopic cross section of the chemical compound NH,NQO,, can be defined in
accord with [3], in the following way

BAE) = nisy 0ys(E) + ny 0y (E) + 1g 0 (E) + "‘1’4N Oyn (E)

where n, 1s the concentration of the 1 nucleus 1n 1 cm®, n,” 1s the concentration of the minor
1sotope, and o(E,) ts the cross section according to the value E, of the neutrons

From the relations (3) and (9), we can obtain the next relation

N, (E,
55 = L e
d  NE)
We can extract the neutron background, which 1s exactely the spectrum measured with the

beam stopper, using the relation (7)

CARRCA

1
BE) =3 N(E) - NE,)

If we couple the relations (9) and (11), then we will obtain a -elation for the microscopic
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We need to know the excitation functions of the oxygen, hydrogen and nitrogen - 14 (minor
in this sample on this energetic domain) and the nucleus numbers 1n one volume unit ng, n,
and n’

But the utilisation of relation (12) 1s not the most comfortable way to measure the
cross section of the >N with minimum error Thercfore, we made a measurement 1n the same
conditions on one natural sample NH,NO,, having the same mass and geometrical form (the
natural 1sotoptcal concentration of ’N 1s 0,37%). We wrote for this sample a simular relation

to (12) After that, we made the differences of the two relations

oy L N S NE)
) = ol e Mol ~ NE)

_ 14 15
L L M M) (P
dng, N,NE) - N(E)

By sy

15 /

14 /
o I Ry T )
15

By Misy By

Because we worked with samples having the same mass, we can prove that

(iuli - fﬁ) o) = 003 0,(E,)

Ryuy  Pysy
(1 will be neglected)
14 15
(l - i) og(E,) = 0,06 o,(E,)
Baw Py
Relation (13) becomes

(ol (o}f
(1 - #) O1sn(E) ( - Ci”) oinlE) *
14N 15N

1 lnNO(E") - Nb(E") _ 1 i No(En) - N(E)
dngy Ny - N(E) dngy  NlE) - N(E)
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In that way, knowing the microscopic cross section of "N, we can find the microscopic cross
section of N If we consider that the thicknesses of the sample are the same, using formula

(2) we can turn relation (15) 1nto another one, more useful

c; c|
(1 S} oy - (1 - S} ey

v 154

1 Ay In No(£,)-Ny(E) _
ericted Choy Nioy(E, — Ny(E)

m

N, =

_ 1 Ay lnjiréEn) - N(E) _
N m,,‘mmJ Cisw  NiglZ) - N(E)

where Ny(E,) represented the spectium measured by mears of the beam stopper, N ,(E,) 15
the spectrum transmitted through the natural sample, and A,y and A, aie the respective
isotopical masses

We have made the calculation with relation (16), using the spectras from fig 5 We
found out that the only sure values aie those from the region of the two intense groups of the
neutrons This value 1s fulfiels the "good geometry" condition for the tiansmusston factor

The values obtained by, using formula (16) were placed over the excitation function
gtven by [11, 12}, our points being marked by * Regarding the order of magnitude the results

proved to be 1n accordance with the results grven by |11, 12] (fig 6)
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SPECTROSCOPIC INVESTIGATION OF THE INFLUENCE
OF MELTING TEMPERATURE ON THE REDOX EQUILIBRIUM
OF URANIUM IONS IN 0.95Na,B,0,-0 05A1,0,0 02UO, GLASS

E. CULEA and L. MILEA®
Recerved 15 06 1993

ABSTRACT. - The mfluence of the melting temperature on the redox equilibrum of uramum

ions 1n the 0 93Na,B,0,-0 05A1,0,-0 02UQ, glass was studied using optical spectioscopy The

obtained optical data prove that increasing melting temperature determine the redaction of the

U 1ons to U* 1ons m the studied glass

1. Introduction. Since glass 1s used to immobilization ¢f nuclear waste [1,2] the study
of glasses containing radionuchdes becomes important Uranium 1s one of the important
radionuclides that appears 1n nuclear wastes As was previously reported[3,4] uranium 1ons
appear 1n oxide glasses in different valence state, such as U, U"® and U"* The study of redox
equilibrium between these valence states s of considerable interest

This paper presents the results of a spectroscopic investigation of the influence of the

melting temperature on the redox equilibrium of uranium tons 1n the 0 93Na,B,0,-0 05A1,0,-
0 02U0, glass

2. Experimental Method. Samples were prepared using reagent grade boras
Na,B,0, 10H,0, ALO, ("Reactivul" Romama) and uranyl mtrate UO,(NO,),6H,0
("Chemapol" Czechoslovakia) First a borax glass was obtained by melting borax at 1000°C

for 30 minutes UQO,; was obtained by thermal decomposition of the uranyl mitiate lhan,

adequate amounts ol Na,B,0,(powdered glass), UO, and ALLO, weie melted to obtawn the

" Techmeal Untver sty of Chy-Napoca, 3400 Cly-Napoca, Romana
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0 93Na,B,0,-0 05A1,0,-0 02UQ, glass The samples were prepared using five different melting
temperatures, namely 800, 900, 1000, 1100 and 1200°C The melts were equilibrated at these
temperatures for 2 hours Glass samples were obtained as slabs (20x8x3 mm) by pouring the
melts 1n a stainless steel piece having an appropriate grove

Optical absorption spectra for the wisible and UV region(10,000-30,000cm™) were
recorded using a Specord UV-VIS(Germany) spectrometer To obtain the optical spectra the
glass slabs were polished on two opposite sides

3. Resuits and Discussion, All the samples contaiming UQ, were yellow This suggests
the presence of uranum tons mainly as U®", probably in UQ,* (uranyl) form

The 0 02UO, content of the studted samples permits to obtamn optical absorption spectra
with well resolved spectral features A representative absorption spectrum of the
0 93Na,B,0,-0 05A1,0,-0 02UO, glass for the UV and visible regton 1s presented 1n figuie 1

(spectrum 1)
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Fig 1 Optical spectra of 0 93Na,B,0,-0 05A1,0,-0 02UO, (curve D) and 0 93N4,B,0,-0 05ALO, (cun e 2) glasses
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Spectrum 2 1n this figure corresponds to the basic 0 93Na,B,0,-0 05AL,0, glass The
comparnson of the two spectra proves that the spectral features exhibit by spectrum 2 belong
to the uramum 10ns The spectroscopic features evidentiated by this spectrum are charactertstic
for oxide glasses containing uranium 1ons[3,4] |

The most important features of the 0 93Na,B,0,-0 05A1,0,-0 02UQ, glass appear at about
16,000cm™( assigned to U 1ons), 20,700cm™( assigned mainly to U* 1ons), 23,200cm™(
assigned mainly to U*"10ns), and from 24,100cm™( assigned to U®' 1ons) The assignements
were made according to some previously reported data concerning some borosilicate and
borate glasses|3,4] We note that the positions of the absorption bands belonging to the U**
and U®" ions observed for the 093Na,B,0,-0 05A1,0,-0 02UQ, glass are close to those
reported for other borate and borosilicate glasses This suggests the fact that the coordination
sites of uranium valence states seem to be independent of glass composition

The vanation of the melting temperature generates some changes of the spectral features
These changes are shown in figure 2
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Fig 2 Changes produced in the optical spectra of the 0 93Na,B,0,-0 05A1,0,-0 02UQ; glass by increasing the
melting temperature ( 1 for 800°C, 2 for 900°C, 3 for 1000°C, 4 for 1100°C and 5 for 1200°C)
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Thus increasing melting temperature generates the increase of the bands from 16,000 and
23,200cm™ and the decrease of the shoulder from 20,700cm™ T hése changes indicate an
increase of the amount of U' 1ons 1n the samples with increasing the melting temperature
The incrcase of the melting temperature of the samples seem to determine the reduction of
the uwiantum 10ns according to the equation
4U%" (melt) + 40%(melt)= 4U"* + 20,(gas) (1)
It 1s possible that this process implies not only U'® and U"* 10ns but also U*' ions ai d follows
a two step process, according to the equations
4U%" (melt) + 20%(melt) = 4U " *(melt) + O (gas) - (2)
4U"*(melt) + 20%(melt) = 4U""(melt) + O,(gas) 3)
Our spectroscopic data did not permit to evidentiate the piesence of U*' 1ons However we
do not exclude the possibility of appeatence of U*' 1ons, but we estimate that the 5+ valence
state 1s probably less stable in the studied glass than 6+ and 4+ ones
4. Conclusions. An optical spectroscoptc 1nvestigation was made on the
0 93Ng,B,0,-0 05A1,0,-0 02UO; glass 1n order to study the influence of the melting
temperature on the redox equilibrium of the uranium 1ons The obtained data indicate that the

increasing melting temperatures determine the reduction of the U®' 1ons to U*' 1ons
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