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ABSTRACT. Using the linear response theory, we analyze Friedel oscillations in a 
one-dimensional non-interacting electron gas in the presence of two impurities 
with different potential strengths. The impurities potentials are modeled using 
Dirac delta function, as well as Lorentzian and Gaussian distribution functions. Our 
findings show that the density oscillations are strongly sensitive to both the 
distance between the impurities and their respective potential strengths. 
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INTRODUCTION 

 
Friedel oscillations describe the oscillatory behavior of electron density 

around impurities in a material, arising from the quantum character of electrons and 
their interactions with the crystal lattice [1,2]. The electron density exhibits periodic 
oscillations as a function of distance from the impurity, with the wavelength depending 
on the Fermi wavevector. The amplitude of the oscillations decreases with increasing 
distance from the impurity, and temperature can reduce the amplitude of the 
oscillations. The specific form of the oscillations is affected by the shape and the 
curvature of the Fermi surface. Impurities in the crystal scatter electrons leading to 
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perturbations of the electron density. The scattered electrons interfere giving rise 
to a standing wave pattern. Due to the Pauli exclusion principle, scattered electrons 
avoid regions where there are already other electrons, leading to formation of 
density oscillations. The distance dependence of charge oscillations is influenced by the 
dimensionality of the system. These oscillations can affect the electrical conductivity 
of materials, particularly in low dimensional systems, with graphene a special case [3]. 
The problem of Friedel oscillations in one-dimensional non-interacting electron gas 
in the presence of a single impurity was analyzed by Giuliani et al. [4], and later further 
extended to two impurities and a chain of dense impurities [5-7]. The Friedel 
oscillations have been theoretically studied in two-and three-dimensional electron 
Fermi liquids [8]. Additionally, Friedel oscillations in a nanowire symmetrically 
connected to two macroscopic electrodes with different chemical potentials have 
been investigated using the nonequilibrium Keldysh Green functions formalism [9]. 
The problem of Friedel oscillations in superconductors was also discussed within the 
framework of Bogoliubov-de Gennes theory [10]. More recently, Friedel oscillations 
in the presence of a non-Hermitian, imaginary impurity, have been studied using 
non-Hermitian linear response theory [11]. These theoretical results can be connected 
to experimental measurements, such as nuclear magnetic resonance [12], Mössbauer 
spectroscopy [13], scanning tunneling microscopy [14], and X-ray diffraction [15]. 

In this paper we analyze Friedel oscillations in a one-dimensional non-
interacting electron gas, induced by two large impurities, modeled using Lorentzian 
and Gaussian distribution functions. The impurities have different potential strengths. 
The main goal of the present work is to study the effect of asymmetry in potential 
strengths on the Friedel oscillations. Additionally, we compare the numerically 
obtained results for the two models with the exact analytical results derived when 
the impurities are described by Dirac delta potentials. 

 
MODEL 

The two impurities are first modeled with a Dirac delta function [4,5,7] of 
different potential strengths (𝐶𝐶1 and 𝐶𝐶2): 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷 (𝑥𝑥) = 𝐶𝐶1𝛿𝛿(𝑥𝑥) + 𝐶𝐶2𝛿𝛿(𝑥𝑥 − 𝑎𝑎),   (1) 

where 𝑥𝑥 and 𝑎𝑎 represent the distance from the perturbing impurity and the distance 
between impurities, respectively. We approximate the Dirac delta potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷 (𝑥𝑥) 
with a Lorentzian distribution function 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿 (𝑥𝑥) = 𝐶𝐶1
𝜋𝜋

𝜀𝜀
𝑒𝑒2+𝜀𝜀2

+ 𝐶𝐶2
𝜋𝜋

𝜀𝜀
(𝑒𝑒−𝑎𝑎)2+𝜀𝜀2

,   (2) 



FRIEDEL OSCILLATIONS IN A ONE-DIMENSIONAL NON-INTERACTING ELECTRON GAS  
IN THE PRESENCE OF TWO IMPURITIES 

 

 
51 

for small values of 𝜀𝜀 (𝜀𝜀 → 0+), and a Gaussian distribution function 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐺𝐺 (𝑥𝑥) = 𝐶𝐶1
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
𝑥𝑥2

2𝜎𝜎2 + 𝐶𝐶2
𝜎𝜎√2𝜋𝜋

𝑒𝑒−
(𝑥𝑥−𝑎𝑎)2

2𝜎𝜎2 ,   (3) 

when 𝜎𝜎 → 0+, respectively. 
 In the linear response theory, the dependence of the electron density 
deviation on the distance is expressed as follows [4-8]: 
 

𝑛𝑛(𝑥𝑥) = ∫ 𝑑𝑑𝑑𝑑
𝜋𝜋

∞
0 𝜒𝜒0(𝑞𝑞)𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞)cos (𝑞𝑞𝑥𝑥),   (4) 

where 𝜒𝜒0(𝑞𝑞) is the static Lindhard response function for one-dimensional non-
interacting electron gas (ħ = 1): 

𝜒𝜒0(𝑞𝑞) = 2𝑚𝑚
𝜋𝜋𝑑𝑑

ln �2𝑘𝑘𝐹𝐹+𝑑𝑑
2𝑘𝑘𝐹𝐹−𝑑𝑑

�,        (5) 

where 𝑚𝑚 is the electron mass, and 𝑘𝑘𝐹𝐹  stands for the Fermi wave number. The 
Fourier transform of the perturbing impurities potential 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑞𝑞) is  

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷 (𝑞𝑞) = 𝐶𝐶1 + 𝐶𝐶2cos (𝑞𝑞𝑎𝑎),              (6) 

for the Dirac delta function. In the case of the Lorentzian and Gaussian distribution 
function based models, the Fourier transforms of the potentials are expressed as 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿 (𝑞𝑞) = [𝐶𝐶1 + 𝐶𝐶2cos (𝑞𝑞𝑎𝑎)]𝑒𝑒−𝜀𝜀|𝑑𝑑|,   (7) 

and 

𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝐺𝐺 (𝑞𝑞) = [𝐶𝐶1 + 𝐶𝐶2cos (𝑞𝑞𝑎𝑎)]𝑒𝑒−
𝜎𝜎2𝑞𝑞2

2 ,   (8) 

respectively. Using Eqs. (4)-(6) and applying the method outlined in Refs. [5-7], the 
electron density deviation can be analytically calculated as 

𝑛𝑛(𝑥𝑥) = −2𝑚𝑚
𝜋𝜋
�𝐶𝐶1𝑠𝑠𝑠𝑠(2𝑘𝑘𝐹𝐹𝑥𝑥) + 𝐶𝐶2

2
[𝑠𝑠𝑠𝑠[2𝑘𝑘𝐹𝐹(𝑥𝑥 + 𝑎𝑎)] + 𝑠𝑠𝑠𝑠[2𝑘𝑘𝐹𝐹(𝑥𝑥 − 𝑎𝑎)]]�,   (9) 

where 𝑠𝑠𝑠𝑠(𝑥𝑥) is the shifted sine-integral function, with 𝑥𝑥 > 𝑎𝑎. In the case where 
𝐶𝐶1 = 𝐶𝐶2, the expression for 𝑛𝑛(𝑥𝑥) from Eq. (9) reduces to that found in Ref. [5]. The 
distance dependence of the electron density within the Lorentzian distribution 
function model is expressed as 
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𝑛𝑛(𝑒𝑒)=2𝑚𝑚𝜋𝜋 �𝐶𝐶1𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

∞
0 ln�1+𝑑𝑑1−𝑑𝑑� cos(2𝑘𝑘𝐹𝐹𝑒𝑒𝑥𝑥)𝑒𝑒−2𝜀𝜀𝑘𝑘𝐹𝐹𝑑𝑑

                                         + 𝐶𝐶2𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

∞
0 ln�1+𝑑𝑑1−𝑑𝑑�cos (2𝑘𝑘𝐹𝐹𝑒𝑒𝑥𝑥)cos (2𝑘𝑘𝐹𝐹𝑎𝑎𝑥𝑥)𝑒𝑒−2𝜀𝜀𝑘𝑘𝐹𝐹𝑑𝑑�,

     (10) 

while for the Gaussian distribution function model, it reads 

𝑛𝑛(𝑒𝑒)=2𝑚𝑚𝜋𝜋 �𝐶𝐶1𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

∞
0 ln�1+𝑑𝑑1−𝑑𝑑� cos(2𝑘𝑘𝐹𝐹𝑒𝑒𝑥𝑥)𝑒𝑒−2𝜎𝜎

2𝑘𝑘𝐹𝐹
2𝑑𝑑2

                                                     + 𝐶𝐶2𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

∞
0 ln�1+𝑑𝑑1−𝑑𝑑�cos (2𝑘𝑘𝐹𝐹𝑒𝑒𝑥𝑥)cos (2𝑘𝑘𝐹𝐹𝑎𝑎𝑥𝑥)𝑒𝑒−2𝜎𝜎

2𝑘𝑘𝐹𝐹
2𝑑𝑑2�,

 (11) 

with a new variable 𝑦𝑦 = 𝑞𝑞/2𝑘𝑘𝐹𝐹. Eqs. (10) and (11) are numerically evaluated. 
 
RESULTS AND DISCUSSION 

In this section, we present our results for one-dimensional non-interacting 
electron gas in the presence of two impurities, modeled by Dirac delta potentials, 
as well as Lorentzian and Gaussian distribution functions. The Fermi wave number 
is used as the energy unit, i.e., 𝑘𝑘𝐹𝐹 = 1.  

We first model the asymmetry in potential strengths as 𝛾𝛾 = 𝐶𝐶2/𝐶𝐶1 with 
potential strength of the impurity located at 𝑥𝑥 = 0 fixed, i.e., 𝐶𝐶1 = 𝐶𝐶. For simplicity, 
we introduce a normalized electron density 𝑅𝑅(𝑥𝑥) = 𝑛𝑛(𝑥𝑥)/(2𝑚𝑚𝐶𝐶/𝜋𝜋). 

In Figures 1(a)-(c), we plot 𝑅𝑅(𝑥𝑥) as a function of the distance 𝑘𝑘𝐹𝐹𝑥𝑥 for a 
single impurity within the three models discussed above, for different values of the 
scale parameters 𝜀𝜀 and 𝜎𝜎, respectively. We observe that the analytical results obtained 
for the Dirac delta potential can be well approximated using either a Lorentzian or 
Gaussian distribution function when their scale parameters, 𝜀𝜀 and 𝜎𝜎, are small. 
Additionally, it can be seen that when we use a Gaussian distribution function to 
approximate the impurity potential, our results will converge faster to the analytical 
result obtained for Dirac delta potential, as the half-width at half-maximum approaches 
zero. At the same time, the approximation of the impurity potential using a Lorentzian 
distribution function converges more slowly to the analytical result as the half-width at 
half-maximum decreases. This tendency can be clearly seen from the Fourier 
transforms of the potentials, given by Eqs. (6)-(8), respectively. 

In Figures 1(d)-(f), the normalized density 𝑅𝑅(𝑥𝑥) is plotted as a function of 
the distance 𝑘𝑘𝐹𝐹𝑥𝑥 for both one impurity and two impurities with different values of 
the potential strength parameter 𝛾𝛾 = 𝐶𝐶2/𝐶𝐶1 (where 𝐶𝐶1 = 𝐶𝐶) when the distance 
between impurities is 𝑘𝑘𝐹𝐹𝑎𝑎 = 0. We observe that the magnitude of the oscillations 
increases with the addition of a second impurity, while their phase remains 
unchanged at 𝑘𝑘𝐹𝐹𝑎𝑎 = 0, consistent with the findings in Ref. [5]. In addition, we find 
that the amplitude of the oscillations decreases or increases as the potential strength 
of the second impurity decreases or increases, respectively [see Figures 1(d)-(f)]. 
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Fig. 1(a)-(c): 𝑅𝑅(𝑥𝑥) = 𝑛𝑛(𝑥𝑥)/(2𝑚𝑚𝐶𝐶/𝜋𝜋) as a function of 𝑘𝑘𝐹𝐹𝑥𝑥 for a single impurity (𝛾𝛾 = 0) at 
𝑘𝑘𝐹𝐹𝑎𝑎 = 0 within different models. The black solid line corresponds to the analytical result 
obtained using the Dirac delta potential. The parameter values are indicated in the figures. 
(d)-(f): 𝑅𝑅(𝑥𝑥) as a function of 𝑘𝑘𝐹𝐹𝑥𝑥 for one impurity (black solid line) and two impurities (green 
solid line), calculated analytically for 𝑘𝑘𝐹𝐹𝑎𝑎 = 0 with 𝑘𝑘𝐹𝐹 = 1. The dotted lines represent the 
results based on the Lorentzian and Gaussian distribution function models, with different 
values of the scale parameters 𝑘𝑘𝐹𝐹𝜀𝜀 and 𝑘𝑘𝐹𝐹𝜎𝜎. The asymmetry in potential strengths is indicated 
in the figures. 

 
Figures 2(a)-(f) show the results for 𝑅𝑅(𝑥𝑥) as a function of the distance 𝑘𝑘𝐹𝐹𝑥𝑥 for one 
impurity and two impurities, when varying potential strength parameter 𝛾𝛾 = 𝐶𝐶2/𝐶𝐶1 
(where 𝐶𝐶1 = 𝐶𝐶) with finite values of the distance between impurities, 𝑘𝑘𝐹𝐹𝑎𝑎 ≠ 0. By 
changing the distance between the impurities and the potential asymmetry 𝛾𝛾, a 
phase shift in the oscillations can be observed for smaller values of 𝑘𝑘𝐹𝐹𝑥𝑥 [see Figures 
2(a)-(c) for 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/4], due to the interference effects, as noted in Ref. [5]. A possible 
asymmetry in potential strengths has less impact on the magnitude of the oscillations at 
𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/4, in contrast to the 𝑘𝑘𝐹𝐹𝑎𝑎 = 0 case. A further increase in the distance 𝑘𝑘𝐹𝐹𝑎𝑎 
can lead to the formation of an antiphase between the oscillations caused by the two 
perturbing impurities and those caused by a single impurity [see Figures 2(d) and (f) for 
𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/2]. Note that the magnitude of the oscillations is significantly reduced in 
the presence of a second impurity with 𝛾𝛾 = 1 and 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/2. A deviation in potential 
strengths (𝛾𝛾 ≠ 1) can strongly influence the amplitude of the oscillations at 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/2. 
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Fig. 2: The normalized density 𝑅𝑅(𝑥𝑥) = 𝑛𝑛(𝑥𝑥)/(2𝑚𝑚𝐶𝐶/𝜋𝜋) as a function of distance 𝑘𝑘𝐹𝐹𝑥𝑥 for one 
impurity (black solid line, 𝛾𝛾 = 0) and two impurities (green solid line), calculated analytically. 
The dotted lines represent the results based on the Lorentzian and Gaussian distribution 
function models, with different values of the scale parameters 𝑘𝑘𝐹𝐹𝜀𝜀 and 𝑘𝑘𝐹𝐹𝜎𝜎. The distance 
between impurities 𝑘𝑘𝐹𝐹𝑎𝑎 is: (a)-(c) 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/4 and (d)-(f) 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/2. The asymmetry in 
potential strengths 𝛾𝛾 is indicated in the figure. 

 
Figures 3(a)-(c) present the results for 𝑅𝑅(𝑥𝑥) as a function of the distance 

𝑘𝑘𝐹𝐹𝑥𝑥 for one impurity and two impurities for different values of the distance between 
impurities 𝑘𝑘𝐹𝐹𝑎𝑎  when the potential strengths (𝐶𝐶1 and 𝐶𝐶2) are differently varied. 
We note that in the presence of two impurities, when the distance between them 
is 𝑘𝑘𝐹𝐹𝑎𝑎 = 0, Eq. (9) for the density variation 𝑛𝑛(𝑥𝑥) reduces to 𝑛𝑛(𝑥𝑥) = −(2𝑚𝑚/𝜋𝜋)(𝐶𝐶1 +
𝐶𝐶2)𝑠𝑠𝑠𝑠(2𝑘𝑘𝐹𝐹𝑥𝑥). Thus, this system with two impurities can be viewed as a single 
impurity located at 𝑎𝑎 = 0, with a potential amplitude of 𝐶𝐶1 + 𝐶𝐶2. This can be seen 
by changing the values of 𝐶𝐶1 while keeping 𝐶𝐶2 fixed, or varying 𝐶𝐶2 while keeping 𝐶𝐶1 
fixed in a similar manner, the oscillations show equal deviations from the results 
corresponding to the symmetrical 𝐶𝐶1 = 𝐶𝐶2 case [see Figure 3(a)]. Note that the 
large-distance (𝑥𝑥 ≫ 𝑎𝑎) behavior of the electron density deviation 𝑛𝑛(𝑥𝑥) [4-7] is 
obtained as 𝑛𝑛(𝑥𝑥)~[𝑚𝑚(𝐶𝐶1 + 𝐶𝐶2)/𝜋𝜋𝑘𝑘𝐹𝐹] cos(2𝑘𝑘𝐹𝐹𝑥𝑥) /𝑥𝑥. 
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Fig. 3: The normalized density 𝑅𝑅(𝑥𝑥) = 𝑛𝑛(𝑥𝑥)/
(2𝑚𝑚𝐶𝐶/𝜋𝜋) as a function of 𝑘𝑘𝐹𝐹𝑥𝑥 for one impurity 
(black solid line, 𝐶𝐶1 = 𝐶𝐶 and 𝐶𝐶2 = 0) and two 
impurities, calculated analytically. The distance 
between the impurities is: (a) 𝑘𝑘𝐹𝐹𝑎𝑎 = 0, (b) 
𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/4 and (c) 𝑘𝑘𝐹𝐹𝑎𝑎 = 𝜋𝜋/2, with 𝑘𝑘𝐹𝐹 = 1. 
The asymmetry in potential strengths is indicated 
in the figure. 
 
 
 

In the case of 𝑘𝑘𝐹𝐹𝑎𝑎 ≠ 0, the density oscillations become highly sensitive to 
any asymmetry appearing in potential strengths. Depending on the values of 𝑘𝑘𝐹𝐹𝑎𝑎, 
the magnitude of the oscillations can be amplified by varying the potential strengths. In 
addition, for 𝑘𝑘𝐹𝐹𝑎𝑎 ≠ 0, the large-distance behavior of the electron density deviation 
𝑛𝑛(𝑥𝑥) is expressed as  

 𝑛𝑛(𝑥𝑥)~ 𝑚𝑚
𝜋𝜋𝑘𝑘𝐹𝐹

�𝐶𝐶1
cos(2𝑘𝑘𝐹𝐹𝑒𝑒)

𝑒𝑒
+ 𝐶𝐶2 �cos(2𝑘𝑘𝐹𝐹𝑎𝑎) cos(2𝑘𝑘𝐹𝐹𝑒𝑒)

𝑒𝑒
+ 𝑎𝑎 sin(2𝑘𝑘𝐹𝐹𝑎𝑎) sin(2𝑘𝑘𝐹𝐹𝑒𝑒)

𝑒𝑒2
��, (12) 

which reduces to the results in Ref. [5] when 𝐶𝐶1 = 𝐶𝐶2. Note that, in the symmetrical case 
(𝐶𝐶1 = 𝐶𝐶2), at large distances and for values of 2𝑘𝑘𝐹𝐹𝑎𝑎 = (2𝑛𝑛 + 1)𝜋𝜋 (where 𝑛𝑛 is a positive 
integer), the density oscillations vanish [5]. In the case of asymmetrical potential 
strengths, for 2𝑘𝑘𝐹𝐹𝑎𝑎 = (2𝑛𝑛 + 1)𝜋𝜋, the large-distance behavior of the density 𝑛𝑛(𝑥𝑥), as 
given by Eq. (12), reduces to the form 𝑛𝑛(𝑥𝑥)~[𝑚𝑚(𝐶𝐶1 − 𝐶𝐶2)/𝜋𝜋𝑘𝑘𝐹𝐹] cos(2𝑘𝑘𝐹𝐹𝑥𝑥) /𝑥𝑥, which 
remains finite as long as 𝐶𝐶1 ≠ 𝐶𝐶2. 
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CONCLUSIONS 
 

 In this work, we have investigated Friedel oscillations in a one-dimensional 
non-interacting electron gas induced by a single impurity and by two impurities 
with different potential strengths. The impurities have been modeled using a Dirac 
delta potential, as well as Lorentzian and Gaussian distribution functions. We have 
shown that the analytical results obtained with the Dirac delta potential can be well 
approximated using either a Lorentzian or Gaussian distribution function model. 
We have found that by further adding an impurity to a single-impurity system, the 
magnitude of the density oscillations can be significantly increased by appropriately 
adjusting the value of the distance between impurities. We have established that 
any asymmetry in the potential strengths of the impurities can strongly influence 
both the magnitude and phase of oscillations, depending on the values of the 
distance between the impurities.  
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