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ABSTRACT. This paper compares the uniformity degree of nine spherical grids used in 
magnetic resonance powder simulations. The comparison is based on known mesh 
quality measures, which depend on the grid points and the generated Voronoi regions 
on the unit sphere. According to computations, the distributions of the grids' geometric 
properties characterise better the grids' quality then the global uniformity metrics. 
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INTRODUCTION 
 
 The spherical grids used in magnetic resonance powder simulations have 
been previously assessed using three approaches. The first approach computes 
geometric homogeneity metrics, depending on the grid points' location on the 
unit sphere and the generated Voronoi tessellation [1]. The second approach 
compares the grids based on the quality of their magnetic resonance simulations 
[2,3]. The third approach, used in the context of continuous-wave electron 
paramagnetic resonance (CW EPR) powder simulations, is based on EPR-related 
metrics [4]. These EPR metrics depend on the distribution of the resonance 
magnetic fields inside the grids' Voronoi regions. 
 This paper follows the first approach and computes other uniformity 
metrics than previously reported for nine spherical grids. The metrics are known mesh 
quality measures and have been selected from those presented in references [5,6]. 
 The paper is structured as follows. The Theoretical details section presents 
the uniformity metrics. The Computational details section describes the numerical 
methods and the software used in calculations. The results and the grids' comparison 
are given in the Results and discussion section. Final section summarizes current work. 
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THEORETICAL DETAILS 
 
 For each grid, let Pk, for k = 1,...,N, be the grid points located on the unit 
sphere. Each grid point Pk is characterised by its Cartesian coordinates, given as a 
column vector xk. Let denote by Vk the Voronoi cell generated by Pk on the unit 
sphere. The uniformity metrics computed in this paper are the following [5,6]: 
 

1. The mesh rati 
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where k  is the minimum Euclidean distance between the grid point xk and the 
other grid points [5]: 
 

 jk xx 
kjN,,=jk =

1,
min , for k = 1,...,N. 

 
2. The covariance measure 
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1  . The covariance measure represents the relative standard 

deviation of the k  values. 
 

3. The regularity measure 
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where 

kkk h=  /3 , for k = 1,...,N, 

and hk is the maximum Euclidean distance between the grid point xk and the other 
points of the Voronoi cell Vk: 

 yxk 
axm
kVy

k =h , for k = 1,...,N. 

As in reference [4], each hk value may be approximated with the Euclidean 
distance between the grid point xk and the furthermost vertex of its Voronoi cell. 
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4. The second moment trace measure  
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Mk is the second moment tensor of the Voronoi cell Vk [6]: 
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where Mk is the zeroth moment (the mass) of Vk:  
xd=M
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and kx  is the first moment (the centre of mass) of Vk: 
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 The integral in the expression of the second moment tensor Mk may be 
computed probabilistically, by randomly sampling the Voronoi cell Vk with Nk 
points, yj, for j = 1,...,Nk [6]: 
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 Smaller values of all these uniformity metrics correspond to more uniform 
grids [5]. 
 
 
COMPUTATIONAL DETAILS 
 
 The spherical grids compared in this paper (with abbreviation and size 
given in parenthesis) are the following: Igloo (562) [7], Lebedev (Leb, 590) [8-13], 
Spiral (578) [14], Fibonacci (Fib, 579) [15], the Zaremba, Conroy, and Wolfsberg 
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grid (ZCW, 610) [16-18], the golden ratio-based ZCW (ZCW-n, 578) [4], the 
Alderman-Solum-Grant grid (ASG, 578) [19], SOPHE (578) [20], and EasySpin (ES, 
578) [1,21]. More details about these grids, their generation and random sampling 
may be found in references [1,2,4]. The Voronoi tessellation of the grids was 
computed using the STRIPACK package (R.J. Renka) [22], in the implementation 
available at [23] (stripack.f90, version 2007). For the second moment trace measure, 
the grids' Voronoi cells were randomly sampled using the J. Arvo’s stratified sampling 
procedure for spherical triangles [24,25] and the pseudo-random number generator 
from GNU Octave [26,27]. The random sampling was repeated three times for each 
grid. The spherical grids were sampled with about 392000 random points, as 
described in [4]. The figures were generated within the R software environment [28].  
 
 
RESULTS AND DISCUSSION 
 

1. Distribution of the grids' geometric properties 
 The uniformity metrics presented in this paper depend on geometric 
quantities calculated for all grid points or for all Voronoi cells of a spherical grid. 
The mesh ratio   and the covariance measure   depend on the shortest distances 

k  (k = 1,...,N) between the grid points. The regularity measure   depends on the 

k  values, which are directly proportional to the longest distances hk between the 
grid points and the other points of the corresponding Voronoi cells, and inversely 
proportional to k . The   measure depends on the traces Tk of the second 
moment tensors of the Voronoi cells.  
 Figure 1 shows the distributions of the k , k , and Tk values for the nine 
investigated grids, in beanplot and boxplot representation [28]. In case of Tk, one 
out of three distributions obtained by each grid's random sampling is presented. 
The median, range, and interquartile range (IQR) [28] of the distributions are given 
in Table 1. The grids have close median values for the same type of distribution 
and therefore we focus on the range and IQR values.  

a) The Spiral, Igloo, ZCW, ZCW-n, and Fibonacci grids have less distributed k  
values (lower IQR) than the other grids. This shows that, for these grids, 
the shortest distances between the grid points are highly homogeneous 
on the whole unit sphere. The k  distributions for Spiral, ZCW, and ZCW-
n, however, have high range due to some extreme outliers.  
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Fig. 1. The distributions of the k , k , and Tk quantities in beanplot (left) and boxplot 
(right) representation. The boxplots contain: boxes from the first to the third quartile 
of data (IQR); whiskers up to the most extreme points, but not further than 1.5IQR; a 

horizontal line inside the boxes for the median and a full knot for the mean value; 
open knots for the outliers [28]. 
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Table 1. Statistical quantities for the distributions of the grids' geometric properties 

Grid 
k  k  

median range IQR median range IQR 
Igloo 0.1493 0.0055 0.0012 1.1729  0.2409  0.0635  
Leb 0.1502 0.0745 0.0174 1.0977  0.5383  0.0751  
Spiral 0.1474 0.0642 0.0001 1.1720  1.1124 0.0762  
Fib 0.1422 0.0175 0.0045 1.2371 0.2880  0.0323 
ZCW 0.1385  0.0610 0.0034 1.2371  1.1598  0.0388  
ZCW-n 0.1423  0.0629 0.0045 1.2369  1.1596  0.0327 
ASG 0.1351  0.1104  0.0395 1.2259  0.3482  0.1373  
SOPHE 0.1352  0.0261  0.0109 1.2559  0.4088  0.1886 
ES 0.1383 0.0294  0.0086 1.2154  0.2602  0.0765 
 

Grid Tk 
1

median range IQR 
Igloo 0.0037 0.0008  0.00007  
Leb 0.0037 0.0026  0.00045 
Spiral 0.0036 0.0009 0.00005 
Fib 0.0036 0.0005 0.00004  
ZCW 0.0034  0.0014  0.00003 
ZCW-n 0.0036  0.0015  0.00004 
ASG 0.0036 0.0043 0.00196  
SOPHE 0.0036 0.0018  0.00083  
ES 0.0036  0.0008  0.00006  

1 The statistical quantities are averages of the values obtained from three random samplings of the 
grids. For all grids, the ratio between the standard deviation and the mean for the three samplings 
was 0.01–0.05% for the median, 0.2–5.1% for the range, and 0.1–5.2% for IQR. 

 
 

EasySpin and SOPHE have more distributed data, but a range which is 
more then twice smaller than for ZCW and ZCW-n. 

b) The k  distributions for the Fibonacci, ZCW, and ZCW-n grids have the 
smallest IQR values. Nevertheless, the distributions for ZCW and ZCW-n 
present many outliers and have the highest range. The range is the 
smallest for Igloo, EasySpin, and Fibonacci grids.  

c) The Tk distributions for the Fibonacci, EasySpin, Igloo, Spiral, ZCW, and 
ZCW-n grids have lower range and IQR values than for the Lebedev, 
SOPHE, and ASG grids. In case of SOPHE and ASG, the high IQR values 
indicate a wide spread of the Tk values within the whole range. 
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Fig. 2. The uniformity metrics 

 
 

2. The uniformity metrics 
The four metrics computed in this paper, which are global measures of the 

grids’ uniformity, are presented in Figure 2. For each grid, the second moment 
trace measure   is the average of the values obtained from three random 
samplings of the grid.  

a) The mesh ratio values   agree with the range values of the k  distributions 
(Table 1). According to  , Igloo, Fibonacci, SOPHE, and EasySpin are the 
most uniform� The ZCW, ZCW-n, Spiral, and Lebedev grids have mesh ratio 
values between 5.5 and 6.4 times higher than the Fibonacci grid, while the 
ASG grid has a value about nine times higher.  

b) The covariance measure   differentiates less than the mesh ratio   
between the spiral-based grids Spiral, ZCW, and ZCW-n, on the one hand, 
and the triangular grids SOPHE and EasySpin, on the other hand. Based on 
covariance measure, Igloo and Fibonacci grids are the most uniform and 
the Lebedev and ASG grids the least.  

c) Spiral, ZCW, and ZCW-n have the highest regularity measure  , about 5–6 
times higher than Igloo. From the four metrics investigated, the regularity 
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measure is the single one for which the Lebedev and ASG grids present 
relatively small values.  

d) The Fibonacci grid has the smallest second moment trace measure  . The 
metric is 2–3.5 times higher for Igloo, Spiral, ZCW, ZCW-n, EasySpin, and 
SOPHE, and about 7.5 times higher for the ASG and Lebedev grids.  

 It should be noted that all uniformity metrics except the covariance measure 
  depend on extreme values of some quantities calculated for the grid points or for 
the Voronoi cells of the grids. In some cases, the distributions of these quantities are 
characterised by relatively small IQR values, but present extreme outliers. This is the 
case, for example, for the k  and k distributions of the Spiral, ZCW, and ZCW-n 
grids. Therefore, the distributions of the grids' geometric quantities characterise 
better the grids than the uniformity metrics, as already observed in [4].  
 The comparison of the grids according to the uniformity metrics and 
distributions is summarised in Table 2. The Fibonacci, Igloo, and EasySpin grids 
present low-range distributions and relatively small uniformity metrics in most 
cases. Moreover, the Fibonacci, ZCW, ZCW-n, Spiral, Igloo, and EasySpin grids have 
distributions with relatively low IQR values. As shown in reference [4], the 
Fibonacci, ZCW, ZCW-n, Spiral, and EasySpin grids do also generate low-noise 
simulated CW EPR powder spectra for some spin system symmetries. 

 
Table 2. The spherical grids, in increasing order according to  
the uniformity metrics and the grids' geometric properties 

 

Metric The grids' order 

k  range Igloo, Fib, SOPHE, ES, ZCW, ZCW-n, Spiral, Leb, ASG 
IQR Spiral, Igloo, ZCW, ZCW-n, Fib, ES, SOPHE, Leb, ASG 

  Igloo, Fib, SOPHE, ES, ZCW, ZCW-n, Spiral, Leb, ASG 

  Igloo, Fib, ZCW, ZCW-n, Spiral, SOPHE, ES, Leb, ASG 
 

k  range Igloo, ES, Fib, ASG, SOPHE, Leb, Spiral, ZCW-n, ZCW 
IQR Fib, ZCW-n, ZCW, Igloo, Leb, Spiral, ES, ASG, SOPHE 

  Igloo, ES, ASG, SOPHE, Fib, Leb, Spiral, ZCW, ZCW-n  
 
Tk  range Fib, Igloo, ES, Spiral, ZCW, ZCW-n, SOPHE, Leb, ASG 
 IQR ZCW, Fib, ZCW-n, Spiral, ES, Igloo, Leb, SOPHE, ASG 
  Fib, Igloo, Spiral, ES, ZCW, ZCW-n, SOPHE, ASG, Leb 

 
CONCLUSIONS 
 
 This paper has compared nine spherical grids used in magnetic resonance 
powder simulations, according to the following uniformity metrics: the mesh ratio, 
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the covariance, the regularity, and the second moment trace measure. The metrics 
depend on geometric quantities, such as distances between the grid points or 
between points of the Voronoi cells. For each spherical grid, these quantities have 
some distribution on the unit sphere. Three out of four investigated metrics 
depend only on the distributions' extreme values, which may be some outliers. 
Therefore, the distributions of the grids' geometric properties are better measures 
of the grids' quality than the global uniformity metrics.  
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