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COLLECTIVE BEHAVIOR OF COUPLED QUANTUM 
MECHANICAL OSCILLATORS 
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ABSTRACT. A simple model of coupled oscillators is investigated from the perspective of 
quantum mechanics. The classical model of two oscillators connected by a common 
platform can be easily solved analytically, but the quantum system requires a numerical 
approach. We assume that both the oscillators and the platform are quantum objects in 
their respective ground states at start and they evolve in time as a connected system. By 
following numerically this time-evolution we investigate the dynamics of the oscillators 
and calculate an order parameter that characterizes their correlated time-evolution. We 
study the order parameter as a function of the oscillators initial state and compare 
the findings with the equivalent classical system. Interestingly, for a given parameter 
region we found an enhanced collective behavior in the quantum mechanical system. 

Keywords: nonlinear dynamics, collective behavior, quantum synchronization, coupled 
oscillators 

INTRODUCTION 

Systems of coupled oscillators have provided great demonstrations of 
complex behaviour emerging from the interaction of simple system. Classical coupled 
oscillators have been thoroughly studied from the earliest observations of 
spontaneous synchronization by Huygens [1], and still are of great interest to 
physicists. Recent experimental studies conducted using metronomes on a 
moving platform [2] or a freely rotating platform [3], as well as detailed numerical 
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studies of systems of pendulus [4], show that the possibility of spontaneous 
in-phase and anti-phase synchronization is an inherent property of such type of 
systems. On the other hand, it is easy to demonstrate that emergent synchronization 
only occurs in systems with driving and damping present, and depends on the 
system’s parameters [5]. The simplest system of two oscillators attached to a 
common platform without driving or friction is exactly solvable and its degree of 
synchrony depends only on the initial positions of both oscillators. 

If we take a closer look at this simplest system of coupled oscillators 
within the formalism of quantum mechanics, many of the classical properties of 
the oscillator systems translate into similar properties in the analogous quantum 
mechanical system. For instance, Y. F. Chen [6] demonstrated that the stationary 
coherent states of certain coupled oscillator systems possess the same shape as 
the classical trajectories of the system. If this holds true for the system we’ve 
selected here, we should observe similar dynamics in the quantum system and 
the classical one. Spontaneous synchronization should not be observed without 
energy dissipation or driving and the correlation between oscillators should follow 
a similar pattern with the classical case, being highly dependent on initial conditions. 
The system of coupled oscillators with dissipation has been studied by G. L. Giorgi 
et. al. [7] and indeed they have observed synchronization occurring between the 
oscillators average coordinates in a case they are connected to a common heat 
bath. This collective behavior depends mostly on the relevant physical parameters 
of the system, rather than the initial conditions. The case with driving has also 
been studied by Zhirov and Shepelyansky [8], and they established conditions for 
emergent synchronization in such systems. 

Our aim here is quite modest, we intend to numerically study the collective 
behavior in a system of coupled quantum oscillators, using Pearson correlation between 
the expectation values of the oscillator coordinates as order parameter. As a quantum 
counterpart of the system considered by McDermott and Redmount [9], we assume that 
the oscillators and the platform they are attached to are initially independent quantum 
oscillators. They are initialized using their ground state wave functions shifted to 
match the desired starting positions. We intend to compare the numerical findings with 
the exact results obtained in the equivalent classical system. 

 
 

CLASSICAL SYSTEM OF COUPLED OSCILLATORS 
 
We consider a system of two oscillators with masses m coupled by springs of 

spring constants k to a common platform with mass M (Fig. 1). We denote by 1x  and 

2x  the spring deformation values and by 3x  the absolute coordinate of the platform. 
We assume the ideal case where friction and driving are absent.  
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Fig. 1. The coupled oscillator system considered in our study. 

The Lagrange function for this system is  
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where the first term is the kinetic energy of the platform, the second and third 
terms stands for the kinetic energy of the oscillators relative to the chosen inertial 
reference frame, and the last two terms are the potential energies of the oscillators. 
The Euler-Lagrange equations of motion are: 
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Eliminating the 3x  terms, we can derive a system of coupled differential 
equations yielding the dynamical evolution of the two massesm : 
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This system allows for an exact analytical solution. Assuming the initial 
positions of the oscillators axx  )0(,1)0( 21  and that they are in rest relative to 
the platform 0)0(,0)0( 21  xx  the exact solutions for )(1 tx  and )(2 tx  are:  
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The Pearson correlation coefficient will be used as a measure of the 
synchronization level for the two oscillators. This coefficient will not distinguish 
between strong (phase-locked) and weak forms of synchronization. It will be denoted 
by r and it takes values between [−1,1]. For a completely in-phase synchronized state 

1r  and for a completely anti-phase synchronized state 1r :  
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Here we denoted by 
t

x  the time-average of quantity x . Taking into account 
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t
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tt   for all 0,0    by simple 

algebra one gets a result independent of km, andM :  
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Fig. 2. Pearson correlation of the two classical oscillators coordinate as a function of  

the initial position of one of the oscillators ( 0)0(,0)0(,1)0( 211  xxx   

and ax )0(2 , no friction and no driving). 
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We conclude that in this simple classical system, the synchronization level r 
(measured through the Pearson correlation) of the oscillators depends only on 
their initial relative phases and does not depend on any other physical parameters 
of this system. There is no phase-locked synchronization, unless the oscillators 
start completely in-phase or completely in anti-phase. The universal )(ar curve is 
plotted in Fig. 2.  

 
QUANTUM OSCILLATORS 

 
The Hamiltonian operator of the corresponding quantum mechanical 

system writes as:  
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In order to study the evolution of this system, we make the assumption 
that all three masses start in the beginning as independent quantum oscillators 
initialized using their ground states wave functions centered around the mean 
coordinates: 022011 , xxxx   and 033 xx  , respectively. The wave function 

of such system would be )()()(),,( 3032021013210 xxxxxx  , where  
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This initial wave function can be represented as a linear combination of 
the eigenstates n of the Hamiltonian (7):  

),,(),,( 3213210 xxxCxxx n
n

n      (9) 

The coefficients nC  are given as:  

Cn  n
* (x1,x2,x3)0(x1,x2,x3)dx1dx2dx3    (10) 
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Now that we can represent the initial wave form as a combination of 
eigenstates, we can calculate the evolution of the system using the eigenstates 

n  and energy eigenvalues nE  
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In order to obtain the correlation between the coordinates of the two 
masses m , we must find the expectation values of 1x  and 2x :  

xi(t) 
 *(x1,x2,x3, t) xi(x1,x2,x3,t)dx1dx2dx3  (12) 

We will treat the expectation values as equivalent to classical coordinates 
of the system. Similarly with the classical system, we choose the Pearson 
correlation coefficient as a measure of synchronization between the oscillators. In 
this approach the quantum mechanically computed order parameter is:  
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where 


 )(txX ii  is obtained from (12). For an alternative calculation instead of 
this semi-classical Pearson correlation, one could use one where all the averages 
are quantum mechanically calculated 
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with:  
x1x2(t) 
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In our calculations we used classical averages for )(21 txx  and )(2 txi , as 

quantum mechanical averages calculated from (15) coincide very closely with the 
classical averages for this system, yet bring in extra error due to the integration.  

 
NUMERICAL APPROACH TO THE QUANTUM MECHANICAL PROBLEM 

 
The first task is to obtain the eigenvalues and eigenvectors for the 

Hamiltonian (7). For this, we have to solve the stationary Schrödinger equation in 
three dimensions, which can be done only numerically. The simplest way to do 
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this is to confine the problem into a three-dimensional box where each spatial 
dimension of length L  is represented by N  equidistant points. This way we view 
the coordinate space as a three dimensional grid and we seek the solution for the nodes 
of this grid. As the grid is finite and uniform, instead of using three coordinates for the 
nodes of the grid, we can use only one index n  ranging from 1 to 3N , which allows 
us to treat the wave function in this space as a one dimensional vector:  
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The global index n  replaces the three oscillator coordinate indices 
21

, xx ii  

and 
3x
i  in such a way that the resulting one dimensional vector   can later be 

restored into its three dimensional form in the following way:  
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In such case the coordinates 321 ,, xxx  can be obtained as:  
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On this equidistant grid the second order derivatives can be calculated 
using the following three-point formulas  
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Thus, we can write the Hamiltonian as a 33 NN   matrix, and the Schrödinger 
equation as a matrix eigenproblem:  
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which can be solved by a standard algorithm using for example the Mathematica 
software. 

After we’ve obtained the eigenvectors, we can transform them back into the 
three dimensional form. Using the initial states (8), the evolution of the system can be 
calculated according to (11) and (10). Naturally in equation (10) we replace the integrals 
with sums according to the used numerical integration algorithm. 

 
COLLECTIVE BEHAVIOR IN THE QUANTUM MECHANICAL SYSTEM  

 
In order to apply the numerical method to the quantum system, we need to 

establish the units for all variables. For convenience of the calculations we choose a 
system where 1 . The simulated space is a cube with side up to 40N . The 
masses of the oscillators are equal, mmm  21 , the spring constants are also equal, 

121  kk , and the platform’s mass is fixed at 1M . 
With these values we can simulate the evolution of the system, as shown in 

Fig. 3. Note that the initial Gaussian wave packet disperses over time due to the 
coupling of the oscillators. However, this dispersion still allows for treating the wave 
function as a packet. The expectation values of )(1 tx  and )(2 tx  according to (12) 
are essentially coordinates that we can treat as classical positions of the oscillators for 
the purpose of calculating the degree of synchronization. As an example a particular 
time-evolution for these quantities is given in Fig. 4.  

  
Fig. 3. Evolution of the system’s wave function in the 21, xx  coordinate plane.  
The line is the trajectory of the expectation value of the system’s coordinates. 
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As we are interested in the following in the dependence of the degree of 
synchrony on the initial positions of the oscillators, for computational convenience we 
fixed the initial position of one of the oscillators at 101 x  and vary that of the 
other oscillator’s initial position between −1 and 1.  
 

  
Fig. 4. Trajectories of the expectation values of 1x  and 2x  calculated with initial positions 

301 x  and 602 x . The decrease in amplitude is due to the dispersion of the wave function. 

 
Finite size effects due to the discretization of the space has a minimal influence 

on the obtained results. This is nicely visible on Fig. 5, where for 1m  we present the 
computed Pearson-type correlation for different discretization )40;30;10( N . This 
result suggests, that 40N  is an acceptable discretization, and such system sizes 
could still be handled by our Mathematica code. 

  
Fig. 5. Correlation curves with varying discretization number N and 1m  
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On Fig. 6 we present the results for the correlation parameter as a 
function of the initial position of one of the oscillators, considering different m  
values. The observable trends are rather similar with the classical case: the oscillators 
move in a synchronicity if they start from similar coordinates and the motion is in 
anti-synchrony if they start in anti-phase. Beside this general trend, there are 
however visible differences between the quantum-mechanical and the classical 
curve. The collective behavior of the quantum-mechanical system is highly dependent 
on the mass ratio between the platform and the oscillators, whereas the classical 
system does not depend on it at all. In the quantum mechanical system, for small m 
values there is a large jump in the order parameter in the vicinity of the 002 x  
point. Transition from the synchronized to anti-synchronized dynamics is much 
steeper, which means that the correlated and anti-correlated trends are much more 
pronounced in the quantum-mechanical system. This means, that even for a small 
amount of synchrony in the initial state, the system will move in a largely synchronous 
manner. The same is true for the initially anti-synchronized states.  
 

  
Fig. 6. Pearson correlation as a function of the initial position of one of the oscillators. 

Results for different m  values and 40N .  
 
CONCLUSIONS 

 
Unlike the classical system of coupled oscillators, which can be solved 

exactly, the quantum mechanical system could be handled only by numerical 
approximations. The presented results could be affected thus by border artifacts 
and other numerical errors. In spite of such limitations of the results, we feel that 
several interesting conclusions can be drawn. 
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First, we observed that the quantum mechanical system behaves much 
like the classical one in terms of the overall results regarding the initial positions 
of the oscillators: we obtained a collective behavior resembling synchrony if the 
oscillators start from similarly oriented displacements and a dynamics resembling 
anti-synchrony if they started from oppositely oriented initial positions. In 
difference with the classical coupled oscillator system, in the quantum mechanical 
system the transition between the positively and negatively correlated states 
(synchrony and anti-synchrony) is much sharper when the mass of the oscillators 
)(m  is not too large relative to the mass of the coupling platform )(M . In this 

limit the results indicate that the level of correlations and anti-correlations are 
more pronounced, which means that the quantum-mechanical system exhibits a 
stronger and more stable collective behavior than its classical counterpart. A 
noticeable difference relative to the classical system is the dependence of the 
observed trends as a function of Mm / . 
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