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ON THE STRUCTURE AND STABILITY OF NEUTRON STARS.
A GENERAL RELATIVISTIC APPROACH

A.S. MARE?, A. MARCU®"

ABSTRACT. The structure of Neutron Stars (NS) is still unclear and for this reason
this paper serves as an attempt to couple the Tolman-Oppenheimer-Volkoff (TOV)
equations with a polytropic Equation of State (EoS). For different EoS models
coupled with the relativistic TOV equations it could be calculated the critical mass
and radius for a neutron star, underlining consequences of the type of EoS used
on the mass-radius stable configurations of the NS. Another briefly investigated
topic in this paper is to see if the positive cosmological constant bears any role in
the evolution of the neutron star.
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INTRODUCTION

After a relatively massive star(~10 — 28 M,) burns out its fuel one of the
possible outcomes is the star to become a celestial entity known as a Neutron
Star. The remaining matter is a very dense, collapsed core, with masses between
0.9-1.9 M, and a radius just about 10 km [2]. The core is at several times nuclear
density and may be composed of exotic matter. In the interior is superconducting
and superfluid, with transition temperatures around a billion degrees Kelvin, the
only thing stopping gravitational collapse being neutron degeneracy pressure. This
structure represents a key interest in physics, because it gives one the chance to
study matter in exotic states, which will probably never be available to scientists
in controlled environments here, on Earth.

9 Babes-Bolyai University, Faculty of Physics, 1 Kogadlniceanu str., 400084 Cluj-Napoca, Romania
* Corresponding author: alexandru.marcu@phys.ubbcluj.ro



A.S. MARE, A. MARCU

10 T
- Unstable

Chandrasekhar limi

| i [
Neutron stars *)-t* Unstable \ White dwarfs —
\
LS
t \
\ .

@ ’l.
E Mo— ._J°.
= R, e e i
0.1} R, ]
Pure Fe%6
Pure neutrons
0.01 ! L ! |
1 10 100 1000 10000
R(km)

Fig. 1. Different configurations for stellar equilibrium. Note that transitions between
stability and instability occur at the maxima and minima points of the curve [1].

The aim of this paper is to tackle the structure problems of this types of
stars by analyzing them in a general relativistic framework, using the Tolman-
Oppenheimer-Volkoff equations in order to study the internal structure and stable
configurations of neutron stars (Figure 1) and the influence of the cosmological
constant upon the star. In our approach we used the non-interacting Fermi gas
model and, as an ingredient, the introduction of nucleon-nucleon interactions in
order to obtain a realistic model.

THEORETICAL DETAILES

Neutron Stars are relativistic objects and for this reason, their structure
must be analyzed in a general-relativistic framework. Starting from the Einstein
Equations [1],

8nG
GMV = c_“T“v (1)
where G*V is the Einstein tensor, describing the curvature of space-time, and THY
is the stress-energy tensor, describing matter/energy sources of space-time

curvature. The stress-energy tensor, in the case of an ideal fluid, takes the form:
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where p is the baryon rest mass density, € is the specific energy density, p is the fluid
pressure, and g1V is the 4-metric. In the case of vanishing space velocity u' = (0,0,0)
and T*V=0(in vacuum) we adopt the form of the interior Schwarzschild metric:

-1
ds? = —e?9Mc2dt? + (1 —ZGTL(T)) dr? + r2dQ? (3)

c2

2GM
rc2
and m(r) is the gravitational mass inside the radius r. For this model, m(r)=M(r) is

the total mass inside the sphere of radius R.
In this framework the Tolman-Oppenheimer-Volkoff equations are [1]:

v _ _ M{l + M} {1 + 47”31’(7‘)} {1 _ ZGM(r)}_1 4)

where, e®(r) is the lapse function, ®(r) = %ln(l — =) is the metric potential

dr c2r2 e(r) M(r)c? c2r
aM 2 @
;—4711‘ p(1+cz) (5)

dd m+47rr3cﬂ2

Ea i) ©

In (4) the first two factors in curly brackets, represent special relativity
corrections of order ”/Cz (these factors reduce to 1 in the non-relativistic limit)

and the last factor is a general relativistic correction. The correction factors are all
positively defined. To solve these equations is important to invoke the balance
between gravitational forces and internal pressure, the pressure being a function
of the Equation of State (EoS). It is necessary to find the conditions to withstand
the gravitational attraction (and so the structure equations imply there is a
maximum mass that a star can have). Finding the most appropriate and complete
EoS will be one of the goals pursued in this paper.

White Dwarfs. Fermi EoS

For free electrons, knowing the number of states, dn, available at momentum
k per unit of volume, the electron number density can be calculated [1]:
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_ _ki
n= 3m2h3 (7)

where ke is the Fermi energy, a quantity that varies according to the star’s total
mass.

Because the electrons are neutralized by protons, accompanied by neutrons,
one can neglect the electron mass, me, with respect to nucleon mass my and so
the total mass density of the star is:

p =nmyf (8)

where 8 = A/Z is the number of nucleons per electron.
From (7) and (8) yields:

ke = 17 |(322) (9)

pmy

In the total energy expression the contributions of nucleon masses is
proportional with p.

e = pnmy + €.~ (kp) (10)

In the relativist case ( kg > m, ) the pressure is [8]:

plker) = gopss o T(e2c? +me®) 2 ktdk = (11)
simplifies as seen in [8]:
€ % 3 hc (3m?p 4/3 4/
plke) = Lf7ewddu = 5 (5L) T = Kee'ls (12)

4/3

where Kp = he (37‘[2)

1212 \myR
For a star having a simple polytropic EoS p = kpY~ke? itis clear now, from
(12), that the relativistic electron Fermi gas has a polytropic EoS with y = 4/3.
In a similar way one can establish another polytropic EoS for non-interacting
electron Fermi gas model in a non-relativistic case (ke<<m,) that yields :

K = (22 13)

15m2m, \myc2p
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Now the TOV equations(4)(5) can be used, coupled with one of the EoS, to
obtain the relationship between p=p(r) and M=M(r) for White Dwarfs(WD). This
paper refers to the structural study of neutron stars, but it's simpler to use (8)-
(13) for WD (electron degeneracy) and shift to neutrons for the neutron star EoS.

A. Neutron Stars. First EoS model: Fermi neutron gas

Other than (4), we need a EoS for the pure neutron star therefore, our
first choice is a Fermi gas model for neutrons instead of electrons.

a. Non-Relativistic Case

For the neutron star the value of Kyris:

2 2 \5/3
Kyp = —o—(-2)  =6484x107%¢

T 15m2my \Bmpyc?

cm?

(14)

ergs2/3

b. Relativistic Case

The EoS is still polytrope with y = 1 [8].

The central pressures expected when computing this case are greater
than 10™“. The problem that arises for this EoS because the pressure p(r) has
never computing zero value and the loop on 7 runs through the whole range, thus
giving enormous values for the radii when compared with the expected results. In
order to fix this, we need to find a EoS that works for every value of the relativity

parameter % We can do this by trying to fit the energy density as two
N

transcendental functions of pressure [8].

€(p) = Bygp'® + BxD

The values of B can be calculated using Mathematica’s build in fitting
function:

Bnr=2.4216, Br=2.8663 (15)

Eq. (4) can be integrated from r = 0 to r = R, knowing that p(R) = 0 and
using the EoS from above. The initial values are p(0) > 0; M(0) = 0.
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Non-Relativistic Relativistic
Po R(km) M(M,) Po R(km) M(M,)
107 15.0 1.0370 102 13.4 0.7166

Using general relativistic corrections, one can see a significant difference
between in the star’s maximum mass and radius, for a given central pressure
(Figures 2 and 3).
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Fig. 2. p(r) for a neutron star with central pressure of 0.01
with a non-interacting Fermi EoS fit.
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Fig. 3. M () for a pure neutron star with central pressure of 0.01 using
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It can be seen in Figure 3 that for radii bigger than r = 4 km, general
relativistic (GR) corrections are by all means not negligible, the allowed masses
being significantly smaller when using a GR framework.

B. Second EoS model: non-interacting Fermi gas with p* and e’

The presence of protons and electrons in a neutron star is due to the
weak decay:

n-p+e +7v, (16)

If this situation is so, and knowing that neutrons have a lifetime of about
15 minutes, then the following question arises: why don’t all the neutrons inside
the star decay into protons and electrons? Because all the available low-energy
levels for the decay proton are already filled up by other protons present and the
Pauli exclusion principle kicks, in preventing the neutron beta decay [1].

kF,p = kF,e (17)
Hn = Pp T Ue (18)

Charge neutrality is ensured through (17) and weak interaction equilibrium
through (18). Integrals for the total pressure and energy density are [8]:

kri -1
pikes) = [0 +m)” /2k*dk (19)
_ (kricp2 1,12
ei(kF,i) = fO (k + ml-) 2k=dk (20)
where m;i(i=1,..N) is the mass of every individual nucleon and N is the total
number of nucleons.
Using Mathematica we can generate a table of values for €;,p; over a
range of k., that can be fitted to the same form used in (15).

The new coefficients obtained are:

Byg = 2.572 Bg=2.891 (21)
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It can be observed that the coefficients are very similar to those in the
case of a pure neutron star and, in fact, the results are extremely similar to that
case. We continue on to a more exact EoS, including nuclear interactions.

C. Third EoS model. Prakash EoS

In our attempt to introduce nucleon-nucleon interaction we started by
developing a simple model for the nuclear potential that reproduces the characteristics
of nuclear matter[4].

We know from the von Weizacker mass formula [8] that for symmetric nuclear
matter (N=Z) the equilibrium density no= 0.16 nucleons/fm?3, that when compared
with my = 939 MeV/c? tells us that we can use a non-relativistic approach.

E
Ebinding = Z_ my = —16MeV (22)

We want our potential to respect (22) by introducing the nuclear
compressibility Ko that is not exactly determined to this day, but it is known to
take values between 200-400MeV, and the symmetry energy which brings a
contribution of about 30 MeV above the minimum at no [8].

a. Symmetric nuclear matter

For symmetric nuclear matter we have:
n, = n, (23)
n=n,+ n, (24)

The potential will be constructed with the aid of two functions and three
parameters and the nuclear potential will be included in the energy density.
The potential in e(n) will be [8]:
em) _ 3nr%kE | A

B
my + < “u+—u’ (25)
52mpy 2 o+1

n
whereu = —
n
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In (25) the first term represents the rest mass energy and the second is
the average kinetic energy/nucleon.

The kinetic energy term will be abbreviated as (E2) = 22.1 MeV for
klg = kp(no).

We can find out the values of A,B and o

((Eﬁ) + E+ 551" Ebinding (26)
2 A Bo
—(EO — — (27)
3< Pt 2 o+1
10 K

Solving this system we get the values for A, B, 0 in terms of Ky as seen in
Table 1.

Table 1. Values obtained by solving the system (26)(27)(28) using
Wolfram Mathematica for different values of the compressibility Ko.

Ko(MeV) A(MeV) B(MeV) o
200 -366.188 313.348 1.16117
250 -193.367 140.527 1.39891
300 -149.617 96.7769 1.63665
350 -129.658 76.8176 1.8744
400 -118.232 65.3916 2.11214

The pressure is [8] (Figure 4)

d

2 5 A B
p(n) = n?— (E) = ng [E(Efp’)u /3 + Su?+ f u"“] (29)

o+1
where u=n/nq,

We can see that the minima is located at u=1 (Figure 4) and has the same
depth of -16MeV independent of the compressibility. The second derivatives of
these curves correspond to the nuclear compressibility (Ko).
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Fig. 4. The average energy/nucleon minus it’s rest mass as a function of

u=nL for different values of Ko.
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Fig. 5. Dependence of pressure on u.

Figure 5 shows that the pressure is negative for values of u between [0,1]
which denotes instability for u<1(n<no).
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b. Non-symmetric Nuclear matter

We tackle the non symmetric nuclear matter by introducing a parameter,
a, to represent the neutron and proton densities [4]:
1+a 1-a
Ny = —-n n,=—n (30)
where n = n, + n,.
a is real and has a range from 0 to 1, being 1 for pure neutron matter and 0 for
symmetric nuclear matter discussed above.

nn_np _ N-Z
n oA

a= (31)
Following Prakash[4] we can expect the isospin symmetry breaking
interaction to depend through proportionality to a?, where p is an integer.
Taking into account the kinetic energy contributions of neutrons and
protons results:
2

3 kIZ:‘,n kF.P

exg(n,a) = s 2my + ny (32)

2mpy

where my = mp.
The kinetic energy parametrized by a [4] has the expression:

exs(n @) = (B )5 [+ )75 + (1-a)’f3] (33)

. 3 h? (3m?n 2/3 . L .
with (Ep ) = EM(T) being the mean kinetic energy of symmetric nuclear

matter
The excess kinetic energy has the form [8]:

1 2 5
Bexp(n,@) = niEp ) 3[(1+ @) — A -] -1} (38
Making a = 1(pure neutron matter) yields:

Aexg = n(Eg)(22/3 — 1) (35)
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If we expand to leading order in a, we reach all our goals keeping the
terms of order @?. Assuming a quadratic approximation in a, for the potential
contribution, the total energy per particle will be [8]:

E(n,a) = En,0) + a?S(n) (36)

The isospin symmetry breaking is proportional to a?[4], therefore we
assume a form for S(u):

S) = (2§ - 1)% (Ep) <u§ - F(u)) + SoF () (37)

where F(u) is a arbitrary function. The following conditions must be satisfied: F(1) = 1
because S(u=1) = Sg and F(0) = 0. If choosing to use F(u)=u form [4] and [8], then So
(the bulk symmetry energy parameter) is 30 MeV (Figure 6).

From Figure 6 it can be seen that, in the vicinity of u=1, the average energy
per neutron is independent of the values of the compressibility(Ko).

KO

— 200 MeV
250 MeV
300 MeV
— 350 MeV
400 MeV

Efn,alfa=1)-mN

08 2

Fig. 6. Average energy per neutron minus it’s rest mass as a function of u=n/ng
for different values of compressibility(Ko).
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The pressure [8],[4] in this case yields (Figures 7 and 8):
d
p(n,x) = uae(n, a) — e(n,a) (38)

2
23—

p(n,x) = p(n,0) + nya? [ - L(EQ) (Zug — 3u2) + Souz] (39)

KO

— 200 MeV
250 MeV
300 MeV
— 350 MeV
400 MeV

Fig. 7. Pressure as a function of u=n/no for different values of K ranging from
[200-400]MeV

Figure 7 shows that the pressure increase smoothly from u=0, we have a

monotonic, non-negative pressure. This suggests that we can try another polytropic

fit.
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By fitting the data in Mathematica, we have obtained:

Ko =3.54842 x 10*
y =21

Using this polytropic equation now we can repeat the procedures shown
above to see the maximum mass and radius of a neutron star using Fermi gas with
nucleon-nucleon interactions.

35
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L L
10 15 0

Fig. 8. Mass dependency on r for both relativistic and non-relativistic
TOV equation using Prakash EoS

In Figure 8, we have obtained similar curves for r < 7 km, but for radii over
7 km, general relativistic effects can not to be neglected, similarly with the Fermi
EoS (Figure 3), the actual allowed mass is smaller than it’s Newtonian mass.

Figure 9 shows, for general relativistic case, a much steeper decrease in
pressure slope for r > 4km.
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Fig. 9. Pressure dependency on r using Prakash EoS.

RESULTS AND DISCUSSION

—Prakash EaS
=—Fermi EoS

10 15 20

Fig. 10. The mass M(in M,) and radius R(in km) for pure neutron stars using
a Fermi EoS(blue) and using Prakash EoS.
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From Figure 10 one can see that stars that have low-mass and large radius
are solutions of the TOV equations for small central pressures. The maxima of this
graph occurs at R=11(Fermi EoS) and R=13.6(Prakash EoS) and stars that are
positioned to the right of the maximum are stable, while those on the left suffer
from gravitational collapse. Thus we can conclude that changes in energy density
and pressure are caused by changes in density (given that the thermal component
in stars that are cold is negligible). Also it can be seen that including nucleon-
nucleon interactions into the EoS has a strong effect on the stability of the star,
increasing the maximum mass that a stable neutron star can have.

Including the cosmological constant

For a non-zero cosmological constant the modified Einstein Equations
solution get a modified version of equation (4) [8]

dp Ge(r)M(r) p(r) anr3p(r) Ar3 26M(r)\ "1
ar  c?r2 (1 + %) (1 + M(r)c? - ZGM(T)) (1 ez ) (40)

where A = 1,76 x 10752 (m) [9].

Using (40) instead of (4) in our simulations we concluded that there is no
noticeable difference in the variation of the pressure and energy density as a
function of r(Figures 9 and 10).

CONCLUSIONS

The structure of neutron stars is to the day a very active topic in theoretical
and computational physics. Our goal was to construct an Equation of State as simple
and efficient as possible, starting with some idealistic approximations and to compute
and analyze the consequences. This model is still upgradable, for instance the
assumption that inside the neutron star is a QCP(quark-gluon plasma) can be used
and then a polytropic EoS of this type won't fit anymore.

80



ON THE STRUCTURE AND STABILITY OF NEUTRON STARS. A GENERAL RELATIVISTIC APPROACH

REFERENCES

[1] S. Weinberg, “Gravitation and Cosmology: Principles and Applications of General
Theory of Relativity”, S. Weinberg, John Wiley & Sons Inc, 1972.

[2] J.R. Oppenheimer, G.M. Volkoff, Physical Review Letters Vol.55, Pg.374-381, 1939.

[3] J.M Blatt, V.F. Weisskopf, “Theoretical Nuclear Physics”, John Wiley & Sons, 1952.

[4] T.L. Ainsworth, E. Baron, G.E. Brown, J. Cooperstein and M. Prakash, Nucl. Phys. A464
(1987) 740-768.

[5] Jan Helm, “New Solutions to the TOV equation and on Kerr space-time with matter and
the corresponding star models”, 2014.

[6] P. Haensel, A.Y. Potekhin, D.G. Yakovlev, “Neutron Stars | Equation of State and
structure”, Springer 2007.

[7] Nicolas Chamel and Pawet Haensel, Living Rev. Relativity 11, 2008.

[8] Richard Silbar, Sanjay Reddy, “Neutron stars”, 2004.

[9] S. Marongwe, International Journal of Astronomy and Astrophysics, Vol. 3 No. 3, 2013,
pp. 236-242.

[10] M. Prakash and K.S. Bedell, Phys. Rev. Rapid Communications C32 (1985) 1118-1121.

81








