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ABSTRACT. We analyzed the Lorentz number for thermoelectric phenomena in the 
case of electronic systems, using the Landauer-Bϋttiker method. For the transmission 
coefficient we will adopt two simple phenomenological forms, constant and linear. 
The case of graphene with a quadratic transmission is also analyzed. 
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Since their discovery thermoelectric effects [1, 2, 3] have attracted 

attention through their theoretical explanation and many applications. At a given 
temperature T, in common conductors, the ratio between the heat conductance 
and the product temperature-electrical conductance is constant and equal to the 
Lorentz number ℒ. This result is a consequence of the fact that both charge and 
heat are carried by the same particles [4, 5], and this ratio is called the Wiedemann-
Franz law [6]. Deviations from the Wiedemann-Franz law indicate departures from 
the Fermi liquid behavior [7]. In mesoscopic systems, Coulomb interaction and 
charge quantization can also lead to departures from the Wiedemann-Franz law [8, 
9]. The importance of the Wiedemann-Franz ratio lies in the fact that the figure of 
merit for thermoelectric conversion ZT  is directly proportional to the inverse of this 
ratio. In this respect it is desirable to maximize the charge flow and to minimize that 
of heat. The thermoelectric response of nanostructures has increased the interest 
in this research area [10, 11]. Recently, the thermoelectric transport properties in 
graphene connected molecular junctions and in interacting quantum dots in 
graphene were studied in Refs. [12, 13]. The effect of magnetic field on thermoelectric  
properties of monolayer graphene was analyzed in [14].  
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In this paper we will calculate the Lorentz number taking into account the 
electronic system and for two simple phenomenological forms of the transmission 
factor (constant and linear). Then we will discuss the Lorentz number for the case 
of graphene with a quadratic transmission. The obtained results can be useful in 
order to find out the efficiency of thermoelectric conversion. 

The Wiedemann-Franz law states that the ratio between electronic thermal 
conductivity (𝐾௘௟) and electrical conductivity (σ) is proportional to temperature: 𝐾௘௟𝜎 = ℒ T                                                                                (1) 
where ℒ is the Lorentz number. In the case of an ideal Fermi gas, βµ≫ 1 (β=1/𝑘஻𝑇, 𝑘஻ - the Boltzmann constant, and µ is the chemical potential), the Lorentz number is: ℒ଴ = గమଷ ቀ௞ಳ௘ ቁଶ                                                                          (2) 
e – is the electron charge.  For mesoscopic systems, in the presence of leads, using 
the Landauer-Bϋttiker formalism, one can express the Lorentz number through the 
energy dependent transmission 𝑇(𝜀) by the following formula:   ℒ = 𝐾௘௟𝜎𝑇 = 𝐿଴𝐿ଶ − 𝐿ଵଶ𝑒ଶ𝑇𝐿଴ଶ                                                           (3) 

where: 𝐿௡ = 𝑔ℎ න𝑑𝜀  𝑇(𝜀) ൬−𝜕𝑓𝜕𝜀൰  (𝜀 − µ)௡                               (4) 

with n= 0, 1, 2. Here g  is the degeneracy (for classical Fermi gas g=gs=2, and for 
graphene g=gsgv=2x2=4, where gs and gv are the spin and valley degeneracies), and 
f(ε) is the Fermi-Dirac distribution function. Using: 𝑓(𝜀) = 12 ൤1 − tanh𝛽(𝜀 − µ)2 ൨                                                (5) 
we obtain: 𝐿௡ = ௚ఉସ௛ ׬ 𝑑𝜀 𝑇(𝜀) (ఌିµ)೙ቀୡ୭ୱ୦ቂഁ(ഄషµ)మ ቃቁమ                                        (6)                             

where h is the Planck constant. In the following we will analyze the Lorentz number, 
using several simple forms for the transmission. 

Case 1: Electronic system with T(ε)=T0 =const. 
In this case: 𝐿଴ = 𝑔𝛽𝑇଴4ℎ න 𝑑𝜀 1ቀcosh ቂఉ(ఌିµ)ଶ ቃቁଶஶ

଴ = 𝑔𝑇଴2ℎ ൤1 + tanh ൬𝛽µ2 ൰൨         (7) 
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When βµ≫ 1 (low temperatures): 𝐿଴ ≅ 𝑔𝑇଴ℎ                                                                                    (8) 

Then: 𝐿ଵ = 𝑔𝛽𝑇଴4ℎ න 𝑑𝜀 𝜀 − µቀcosh ቂఉ(ఌିµ)ଶ ቃቁଶஶ
଴                                    (9) 

or: 𝐿ଵ = 𝑔𝑇଴𝛽ℎ ൜𝑙𝑛 ൤2 cosh ൬𝛽µ2 ൰൨ − 𝛽µ2 tanh ൬𝛽µ2 ൰ൠ                (10) 

which, for βµ≫ 1, reduces to: 𝐿ଵ ≅ 𝑔𝑇଴µℎ  𝑒ିఉµ → 0                                                          (11) 

Finally, L2  is: 𝐿ଶ = 𝑔𝛽𝑇଴4ℎ න 𝑑𝜀 (𝜀 − µ)ଶቀcosh ቂఉ(ఌିµ)ଶ ቃቁଶ                                (12)ஶ
଴  

After integration we obtain:                        𝐿ଶ = 2𝑔𝑇଴ℎ𝛽ଶ ቊ𝜋ଶ6 + 𝑝𝑜𝑙𝑦𝑙𝑜𝑔൫2,−𝑒ିఉµ൯ − 𝛽µ 𝑙𝑛 ൤2 cosh ൬𝛽µ2 ൰൨
+ ൬𝛽µ2 ൰ଶ ൤1 + tanh ൬𝛽µ2 ൰൨ቋ                                                              (13) 

where polylog(n,y) is the polylogarithmic function. In the low temperatures limit, 
βµ≫ 1, L2 becomes: 𝐿ଶ ≅ 2𝜋ଶ𝑔𝑇଴6ℎ𝛽ଶ                                                                        (14) 

Having these results, and in the low temperatures limit, we obtain for the 
Lorentz number: ℒ = 𝜋ଶ3 ൬𝑘஻𝑒 ൰ଶ ≡ ℒ଴                                                           (15) 

Now we will consider the opposite limit when βµ≪ 1.  This case correspond 
to high temperatures or to low electron concentration. In this case we have the 
following approximations: 
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𝐿଴ ≅ 𝑔𝑇଴2ℎ ൤1 + 𝛽µ2 ൨                                                            (16) 𝐿ଵ ≅ 𝑔𝑇଴ ln 2𝛽ℎ ቈ1 − (𝛽µ)ଶ8 ln 2቉                                              (17) 

and: 𝐿ଶ ≅ 𝑔𝑇଴𝜋ଶ6ℎ𝛽ଶ ቈ1 + (𝛽µ)ଷ2𝜋ଶ ቉                                                  (18) 

The Lorentz number becomes: ℒ ≅ 𝜋ଶ3 ൬𝑘஻𝑒 ൰ଶ ቊ1 − 12(ln 2)ଶ𝜋ଶ + 𝛽µ ቈ12(ln 2)ଶ𝜋ଶ − 12቉ቋ        (19) 

After evaluating the numerical factors we get: ℒ ≅ 0.416 (1 + 0.2019 𝛽µ)ℒ଴ ≅ 0.416 ℒ଴                     (20) 
 

Case 2: Electronic system with linear transmission T(ε)=aε. 
In this case, using eq. (4), the Ln terms will be: 𝐿଴ = 𝑔𝑎ℎ𝛽 ൜𝛽µ2 + ln ൤2 cosh ൬𝛽µ2 ൰൨ൠ                                     (21) 

with the approximations: 𝐿଴ ≅ 𝑔𝑎µℎ                                                                               (22) 
for βµ≫ 1, and: 𝐿଴ ≅ 𝑔𝑎ℎ𝛽 ൬ln 2 + 𝛽µ2 ൰                                                          (23) 

for βµ≪ 1. 
For L1 we will obtain: 𝐿ଵ = 2𝑎𝑔ℎ𝛽ଶ ቊ𝜋ଶ6 + ൬𝛽µ2 ൰ଶ + 𝑝𝑜𝑙𝑦𝑙𝑜𝑔൫2,−𝑒ିఉµ൯ − 𝛽µ2 ln ൤2 cosh ൬𝛽µ2 ൰൨ቋ    (24) 

In the case βµ≫ 1: 𝐿ଵ ≅ 𝜋ଶ𝑔𝑎3 ℎ𝛽ଶ                                                                           (25) 

and for βµ≪ 1: 𝐿ଵ ≅ 𝜋ଶ𝑔𝑎6 ℎ𝛽ଶ ൬1 + 6 ln 2𝜋ଶ  𝛽µ൰                                             (26) 
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The last factor is: 𝐿ଶ = ଶ௔௚µ௛ఉమ ൜గమ଺ − ቀఉµଶ ቁଶ + ఉµଶ ln ቂ2 cosh ቀఉµଶ ቁቃ − 2 𝑝𝑜𝑙𝑦𝑙𝑜𝑔൫2,−𝑒ିఉµ൯ −ଷఉµ  𝑝𝑜𝑙𝑦𝑙𝑜𝑔(3,−𝑒ିఉµ)ൠ                           (27) 

In the low temperatures βµ≫ 1, and: 𝐿ଶ ≅ 𝜋ଶ𝑔𝑎µ 3 ℎ𝛽ଶ                                                                         (28) 

and in the opposite limit βµ≪ 1 : 𝐿ଶ ≅ 𝑎𝑔2 ℎ𝛽ଷ ቈ9𝜁(3) + 𝜋ଶ𝛽µ3 ቉                                           (29) 

where ζ(x) is the Riemann’s zeta function. Using the results above the Lorentz 
number in the low temperatures limit βµ≫ 1 becomes: ℒ ≅ ℒ଴ ቈ1 − 𝜋ଶ3 (𝛽µ)ଶ቉                                                      (30) 

In the opposite limit βµ≪ 1, and the Lorentz number is: ℒ ≅ ℒ଴  3 𝑞𝜋ଶ  (1 + 𝑟 𝛽µ)                                                  (31) 

Where q and r are complicated numerical factors given by q=2.1721…, and 
r=0.05638… . The Lorentz number will be: ℒ ≅ 0.66 ℒ଴(1 + 0.05638 𝛽µ) ≅ 0.66 ℒ଴    (32) 

Case 3: Graphene systems (electrons and holes) with quadratic transmission 
T(ε)=a𝜀ଶ. 

In the case of graphene the integral over energies in (4) is taken over the 
entire interval (−∞, +∞) taking into account the holes contribution (from −∞ to 
µ), and the electrons contribution (from µ to +∞). In this way, the first factor L0 will 
be: 𝐿଴ = 𝜋ଶ𝑔௦𝑔௩𝑎3 ℎ𝛽ଶ ቈ1 + 3(𝛽µ)ଶ𝜋ଶ ቉                                            (33) 

the second factor L1: 𝐿ଵ = 𝜋ଶ𝑔௦𝑔௩𝛽𝑎µ24 ℎ ൬2𝛽൰ଷ                                                      (34) 

and the third factor L2: 
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𝐿ଶ = 7𝜋ସ𝑔௦𝑔௩𝑎15 ℎ𝛽ସ ቈ1 + 5(𝛽µ)ଶ7𝜋ଶ ቉                                          (35) 

The calculated Lorentz number will be: ℒ = 215  𝑓 ℒ଴                                                                      (36) 
where: 

𝑓 = 1 + 3 ቀఉµଶ ቁଶ ൤1 + ହ଻ ቀఉµగ ቁଶ൨൤1 + 3 ቀఉµగ ቁଶ൨ଶ                                       (37) 

At the Dirac point (µ=0) the Lorentz ratio becomes: ℒ = 215  ℒ଴ ≡ 4.2 ℒ଴                                                        (38) 
and decreases as one departs from the Dirac point. When βµ≫ 1, the Lorentz ratio 
is: ℒ = ℒ଴                                                                                (39) 

 
For highly doped graphene, with this form of transmission, the Lorentz 

number is similar to the classical result for the Fermi systems. Close to the neutrality 
point the result changes appreciably. It remains to analyze the consequence of 
changing of the Lorentz number on the efficiency of thermoelectric conversion, by 
determining the figure of merit ZT. 
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