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LORENTZ NUMBER WITH
PHENOMENOLOGICAL TRANSMISSION

I. GROSU!

ABSTRACT. We analyzed the Lorentz number for thermoelectric phenomena in the
case of electronic systems, using the Landauer-Bittiker method. For the transmission
coefficient we will adopt two simple phenomenological forms, constant and linear.
The case of graphene with a quadratic transmission is also analyzed.
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Since their discovery thermoelectric effects [1, 2, 3] have attracted
attention through their theoretical explanation and many applications. At a given
temperature T, in common conductors, the ratio between the heat conductance
and the product temperature-electrical conductance is constant and equal to the
Lorentz number L. This result is a consequence of the fact that both charge and
heat are carried by the same particles [4, 5], and this ratio is called the Wiedemann-
Franz law [6]. Deviations from the Wiedemann-Franz law indicate departures from
the Fermi liquid behavior [7]. In mesoscopic systems, Coulomb interaction and
charge quantization can also lead to departures from the Wiedemann-Franz law [8,
9]. The importance of the Wiedemann-Franz ratio lies in the fact that the figure of
merit for thermoelectric conversion ZT is directly proportional to the inverse of this
ratio. In this respect it is desirable to maximize the charge flow and to minimize that
of heat. The thermoelectric response of nanostructures has increased the interest
in this research area [10, 11]. Recently, the thermoelectric transport properties in
graphene connected molecular junctions and in interacting quantum dots in
graphene were studied in Refs. [12, 13]. The effect of magnetic field on thermoelectric
properties of monolayer graphene was analyzed in [14].
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In this paper we will calculate the Lorentz number taking into account the
electronic system and for two simple phenomenological forms of the transmission
factor (constant and linear). Then we will discuss the Lorentz number for the case
of graphene with a quadratic transmission. The obtained results can be useful in
order to find out the efficiency of thermoelectric conversion.

The Wiedemann-Franz law states that the ratio between electronic thermal

conductivity (K,;) and electrical conductivity (o) is proportional to temperature:

K,
7“"1 =LT 1)
where L is the Lorentz number. In the case of an ideal Fermi gas, Bu> 1 (B=1/kyT,

kg - the Boltzmann constant, and L is the chemical potential), the Lorentz number is:

f=T () <z>

e —is the electron charge. For mesoscopic systems, in the presence of leads, using
the Landauer-Bittiker formalism, one can express the Lorentz number through the
energy dependent transmission T'(¢) by the following formula:
L, _Ka_ Lol =13 -
oT e?TL?
where:

d
L= [de 1) (- L) - wr @)
with n=0, 1, 2. Here g is the degeneracy (for classical Fermi gas g=gs=2, and for
graphene g=g.g,=2x2=4, where g;and g, are the spin and valley degeneracies), and
f(g) is the Fermi-Dirac distribution function. Using:

fle) = %[1 — tanhﬁ(g _ H)]

— 7 )

we obtain:

_ 9B (="
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where his the Planck constant. In the following we will analyze the Lorentz number,
using several simple forms for the transmission.

Case 1: Electronic system with T(€)=Tp=const.
In this case:

Ly = gf:;" fooo de (COSh [@DZ = ‘92—7};0 [1 + tanh (%)] (7)
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When Bu>> 1 (low temperatures):

9Ty
Ly ==— 8
0= ®
Then:
9BTo (% E—H
1= ; £ ( N [B(e—u)])z 9
cosh |=——
or:
T
Ly = % {ln [2 cosh (%)] — %tanh (%)} (10)
which, for Bu>> 1, reduces to:
T,
L, =20 o g (11
Finally, L, is:

_ 98T, (e -w?

Tl Gl

(12)

After integration we obtain:

29T, (m?
L, = hgﬁzo {% + polylog(Z, —e‘B“) —Buln [2 cosh (%)]

2
+ (@) [1 + tanh (ﬁ)] (13)
2 2
where polylog(n,y) is the polylogarithmic function. In the low temperatures limit,
Bu> 1, L, becomes:

2m2gT,
= 14

Having these results, and in the low temperatures limit, we obtain for the

Lorentz number:
n? kg\®
£=5(3) =4 (15)

Now we will consider the opposite limit when Bu< 1. This case correspond
to high temperatures or to low electron concentration. In this case we have the
following approximations:
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The Lorentz number becomes:

L

IR
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After evaluating the numerical factors we get:

£ =0416 (1+0.2019 )L, = 0.416 L,

12(In 2)2

2

Case 2: Electronic system with linear transmission T(g)=as.

In this case, using eq. (4), the L, terms will be:

for B> 1, and:

for Bu«k 1.

=S s (2]

with the approximations:

For L, we will obtain:

2ag

Ll:h_ﬁz

(el
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In the case B> 1:

and for fu«k 1:
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The last factor is:
L= 2222 ()" i o cosh (2] - 2 pobtog(z, o) -

hp? 2
% polylog (3, —e‘ﬁ“)} (27)
In the low temperatures Bu> 1, and:
n?gap
L, = ——— 28
2 3 hﬁz ( )
and in the opposite limit fu<« 1:
2
ag nepp
L, = 9 29

where {(x) is the Riemann’s zeta function. Using the results above the Lorentz
number in the low temperatures limit Bu>> 1 becomes:

TL'Z
L=L, [1 -3 (ﬁ’u)z] (30)

In the opposite limit Bu< 1, and the Lorentz number is:
3q

Where g and r are complicated numerical factors given by g=2.1721..., and
r=0.05638... . The Lorentz number will be:

L =0.66 Ly(1 + 0.05638 Bp) = 0.66 L, (32)

Case 3: Graphene systems (electrons and holes) with quadratic transmission
T(e)=ae?.

In the case of graphene the integral over energies in (4) is taken over the
entire interval (—oo, +00) taking into account the holes contribution (from —oo to
), and the electrons contribution (from p to 4+00). In this way, the first factor Lo will
be:

m?gsgval,  3(BW?
Ly = 1 33
0 3 hﬁz [ + TL'Z ( )
the second factor L;:
T[nggv.gau 2\’
Li=——m|= 4
1 24 h (ﬂ) 3Y

and the third factor L;:
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Tntgsgval.  S(BW?
Ly=——"—"——F+—|14+——— 35
27 15 hB4 712 (35)
The calculated Lorentz number will be:
21
L=="fL (36)
where:
143 (ﬂ)2 [1 + E(ﬂ)z]
2 7\1m
f= = 37)
i
[1 +3(2) ]
At the Dirac point (u=0) the Lorentz ratio becomes:
21
L=—Ly=42CL, (38)

5
and decreases as one departs from the Dirac point. When Bu>> 1, the Lorentz ratio

is:
L=L (39)

For highly doped graphene, with this form of transmission, the Lorentz
number is similar to the classical result for the Fermi systems. Close to the neutrality
point the result changes appreciably. It remains to analyze the consequence of
changing of the Lorentz number on the efficiency of thermoelectric conversion, by
determining the figure of merit ZT.
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