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ABSTRACT. We analyzed the phonon spectrum of graphene. The flexural phonon 
contribution on thermal properties of graphene is discussed. The thermal 
conductivity has been calculated using the Boltzmann equation in the relaxation 
time approximation. The temperature dependence of the thermal conductivity and 
of the phonon specific heat has been calculated in the low temperatures domain. 
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Phonons play a fundamental role in the physics and the characterization of 

graphene and carbon nanotubes. Phenomena as charge, spin, and heat transport, 
infrared and Raman spectra, electron-phonon scattering, and related effects as 
electric conduction can be understand, in most situations, by phononic spectrum. 
The simplest calculation of phononic spectra is based on the continuum elastic 
theory based on the known isotropy of the honeycomb lattice. Many experimental 
data as thermal conductance and specific heat have been explained using models 
of the harmonic theory for the lattice dynamics. In two dimensional (2D) systems 
the lattice long range order is destroyed by the thermal fluctuations, known as the 
Mermin-Wagner theorem [1-5], reconsidered for flexural phonons [6]. If the dynamics 
of lattice is treated in the harmonic approximation the concept of “phonon” is 
introduced and used to describe the thermal properties [7]. Although the exact 
dispersion law of the acoustic modes is apparently irrelevant in the quantified thermal 
conductance [8], the quadratic dispersion of the flexural modes is important in 
describing the low-temperature specific heat [9]. Most of the results [10-12] cover 
a wide temperature interval and provide approximative estimation of the power 
low of the T-dependence, but only few works [9, 13] extended the temperature 
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range down to 0.1 K and provide a more precise analysis and proposed 𝐶(𝑇) ∼ 𝑇1/2. 
The out-of-plane distortions, called flexural phonons, are important for the theory 
of transport in graphene because of the anharmonicity effect [14, 15]. The 
anharmonic coupling of flexural phonons to the in-plane modes give the stable 2D 
graphene to rippling. An important effect of anharmonicity is the enhancement of 
dispersion relation of the long- wavelength flexural modes. The effect of anharmonicity 
has been considered by Mariani and von Oppen [17] using an effective energy 
functional including corrections to the harmonic potential that are lowest order in 
the wave vector, which then couple to flexural modes. Using the Renormaliztion 
Group (RNG) method they calculated the energy of the flexural modes on the 
continuum model. The main result is the modification of the dispersion dependence 
from 𝜔~𝑞2 at low temperatures, to 𝜔~𝑞3/2  at high temperatures. In this paper we 
concentrate on the contribution of the flexural phonon on the thermal properties 
of graphene. 

The mechanical distortions of graphene are described by the vector u(r) by 
the scalar h(r) associated with in-plane and flexural (out-of-plane) deformations, 
respectively. The physics of mechanical distortions is captured in the elastic Lagrangian 
density. In the harmonic approximation the Lagrangian yields two in-plane phonons 
modes, longitudinal (l), transverse (t) and one flexural branch (f) with dispersions 
 

                                             
 

and group velocities νl = [(2μ+ λ)/ρ] 1/2 νt = [μ/ρ]1/2. The flexural branch has a 
quadratic dispersion in the absence of external strain and introduce a new vector 
scale qs = [ γ/κ ]1/2 discriminating a strain-induced linear dispersion 
 

            (4) 
 

where γ= 2u(μ+ λ)/ρ,  u being the strain, for q ≪ qs
 , and 

 
            (5) 

 

for q ≫ qs. In the absence of strain: νl ≃ 21 km/ s, and v t ≃ 14 km/ s. There is no 
agreement for v f but near the Brillouin zone boundary: v f ≃ 8 km/s. The flexural 
phonons dominate the phonon contribution in resistivity [17], and the divergence 
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in scattering rate is logarithmical if the quadratic dispersion of flexural phonons is 
considered. This divergence is cut off by coupling between bending and stretching 
degrees of freedom contained in the Lagrangian. At finite temperature, this coupling 
reorganize the bending rigidity including a stiffening of the flexural dispersion at 
long wavelength. The energy of flexural phonons ωf(q) is modified by this interaction 
and in lowest order is 
 

   (6) 
 

In the high-temperature limit, the self-energy Σ(ωf (q)) has been calculated by 
Amorim et al. [16] as 
 

     (7) 
 

where C depends on μ and λ. The energy can be approximated in terms of 
temperature momentum scale   as 
 

     (8) 
 

where . This expression can be approximated as: 
 

ωF (q)≃α0 q2      (9) 

for q > qc , and: 
 

  ωF (q)≃α0 qc q      (10) 
 

for q < qc. Mariani and von Oppen [17] studied the effect of anharmonicity on the 
flexural modes starting with the energy of nearly flat graphene, including lowest 
order corrections to the harmonic potential which couple the flexural modes to the 
in-plane modes. Following the RNG strategy they intergraded out the in-plane modes 
leaving an effective temperature-dependent interaction among the flexural modes. 
In the one-loop approximation the energy of flexural modes was calculated as 
 

  ωF (q)= αr (T , q) q2     (11) 
where 

     (12) 
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 dependent. These results show that ωF (q)∼q2 at low temperatures, 
while ωF

 (q)∼q3/2 at high temperatures, which is different to the linear dependence 
given by Eq.(10). This difference is given by the simple correction to the flexural 
energy ωF

 (q) given by the self- energy term. We mention that the quadratic 
dispersion is important because it gives a constant density of states for phonons, 
but the linear dependence lead to a linear energy dependent density of states. The 
q3/2 dispersion has been proposed in a phenomenological model by Jacimovski  
et al. [18] for calculation of the thermal conductivity of graphene. This dispersion is 
supposed to be more realistic than the q-dependence in the temperature interval 
15K- 400K, and it is agrement with experimental data. 

The phonon thermal conductivity is determined from Boltzmann transport 
equation as 
 

  (13) 
 

where , h – the thickness of graphene, and IF  is the phonon 

scattering rate, which is given by different contributions. Klements and Pedraza [19] 
developed a model for the scattering rate considering the intrinsic phonon-phonon 
scattering, taking for the three-phonon scattering processes rate 
 

                  (14) 
 

where γs
 , M and ωD

 are the Gruneisen parameter, the mass of an atom, and the 
maximum frequency of the acustic mode in the Debye approximation respectively. 
v represent the average phonon velocity. Nika et al. [20] calculated the scattering 
rate considering three-phonon scattering that satisfy momentum and energy 
conservation. Linsday et al. [21] considered the three-phonon scattering processes 
involving the flexural modes with an even number of phonons, neglecting the four-
scattering processes, considered by De Martino et al. [22], and Feng and Ruan [23]. 
The recent analysis from [23] suggested that four-scattering processes, quadratically 
dependent with temperature, are more important than the three-scattering processes. 
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In order to calculate the contribution of the flexural phonons to the 
thermal conductivity we use ωF

 (q)= α0 q2 
 
valid in the low temperature case. To 

calculate the temperature dependence of the thermal conductivity we consider 
the scattering time as: (see also, Lindsay et al. [21]), and using  ℏωF

 = x kB
 T, Eq.(13) becomes 

 

    (15) 
 

where Θm = ℏωm /kB. The integral from Eq.(15) can be analytically performed and 
we get 
 

  (16) 
 

which can be approximated as 
 

    (17) 
 

The contribution to specific heat of the phonons is given by: 
 

  (18) 
 

The specific heat temperature dependence is sensitive to characteristics of 
the phonon spectrum and on its density of states [24, 25]. In the case of low 
temperatures we use the energy of the flexural phonons given by , 
which gives the density of states: . In this case the specific heat is 
calculated from Eq.(18) as: 
 

     (19) 
 

We presented an analytical theory of the flexural phonon contribution on 
thermal properties of graphene. The continuum elasticity approach giving the 
flexural modes with dispersion ωF (q)∼q2 has been discussed, using the renormalization 
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group method [17], to include the anharmonicity of the dispersion relation in the 
long-wavelength flexural modes. The q-dependence of the dispersion ω(q) has a 
temperature dependence, at low temperatures as ω(q)∼q2 and at high 
temperatures as ω(q)∼q3/ 2

 
. The thermal conductivity has been calculated using 

the Boltzmann equation along with the relaxation time approximation. The 
linear ( ) and quadratic temperature dependence ( ) in relaxation time, 
given by three-phonon and four-phonon processes have been considered. The 
temperature dependence of the thermal conductivity K(T) is affected by the 
dispersion ω(q) and the scattering rate IF. The temperature dependence of 
dispersion appears due to the anharmonicity effect considered in Ref.[22], but the 
temperature dependence of scattering rate was introduced phenomenologically 
[21], or estimated theoretically considering the phonon-interaction[22,23]. Using 
the RNG results we obtained   in the low temperatures limit, 
where   for three, respectively four phonon processes. At low temperatures 
the phonon specific heat scales as Cp∼T d/2, for a phonon dispersion ω∼q2, in  
d-dimensions [9,26]. We obtained that the specific heat  Cp (T),  which is sensitive 
to dispersion, is linear in the low temperatures domain Cp (T) ∼ T . These results 
could be of interest in low dimensional graphene systems, and could be extended 
to other properties of graphene and graphene layers, such as the superconductivity 
of graphene layers at magic angle [27] (with associated properties [28-30]). 
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