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RENORMALIZATION FUNCTION FOR THE ELECTRON-
FLEXURAL PHONON INTERACTION

I. GROSU?

ABSTRACT. The renormalization function for the electron-phonon interaction is
discussed. The system is considered as two-dimensional, and we consider the case
of flexural phonons. The flexural phonons have a dispersion which is linear for
wave-vectors less than a critical value 4., and quadratic for ¢ > q.. The renormalization
function differs from the standard expression, and leads to modifications of the
normal and superconducting properties of materials.
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The electron-phonon interaction is one of the fundamental
interactions in condensed matter, and plays, together with the Coulomb
interaction, an important role in many physical phenomena. The electronic
excitations in a solid are strongly modified due to the Coulomb interaction
and to the coupling to the lattice vibrations. These modifications affect the
transport and thermodynamic properties of a solid. The electron-phonon
interaction plays also a fundamental role in the attractive electron-electron
interaction which is the origin of the electron pairing mechanism of the
phenomenon of superconductivity [1]. Here the transition temperature T.
is determined by the material dependent quantities, A - the coupling factor,

and 4" - the Coulomb pseudopotential

! Babes-Bolyai University, Faculty of Physics, 1 Kogalniceanu str., 400084 Cluj-Napoca,
Romania, e-mail: ioan.grosu@phys.ubbcluj.ro



I. GROSU

1
T, E<a)>exp{—/1_lu*} (1)

In this model, the adiabatic approximation for the dynamics of
electrons and phonons is used. This situation correspond to the validity of
the Migdal’s theorem [2], because the ratio between the Debye energy

@), and the Fermi energy £r is very small. This is the case of many
common metals. However, in high-temperature superconductors, including

the fullerene compounds, the Fermi energy is small (£+ = 0.1 ev) and is of
order of the Debye energy. This situation implies a breakdown of Migdal’s
theorem [3]. More recent the validity of the Migdal’s theorem in graphene
and Weyl semimetals is analyzed in Ref.[4]. If other excitations (e.g.
antiferromagnetic magnons) mediate the electron-electron attractive
interaction, the Migdal’s theorem seems to be also valid [5].

Here we will analyze the electron-phonon interaction, calculating
the standard self-energy to the first order, and the wave-function
renormalization term Z [6,7]. The self-energy is given by

S(iw,) =-Tg* Y. DD Gylio, &, )D,(iw, —io,,®,) 2)

Here: T - is the temperature, & - the electron-phonon coupling

strength, G, - the usual Green’s function in the Matsubara representation

1 1
Giw,,e, )=—— ; @, =27al|s+—
0( s kA) io, ¢, ( 2) (3)
and D - the Green’s function for phonons
Do, ,0,)=——— ; ,=22Tm (4)
o, +o,

For the sum over K, we use the simplification
E/2

kZ—> N(0) [de (5)

-E/2
where we assumed a constant density of states in the band between

—E/2 and E/2 Using egs.(3-5) we obtain
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E »’
Y(iw,) =-2iTA arctan . a
o Z‘Y:Z (2@;] (@, -0,) +o, (6)
or
8w w
Z(ZC()n) = _ia)n/q’TzzarCtan 2 . 5 - q"s . .
q >0 20, ) (0, -—w,) + o, (o, +,) +0’]

(7)
Here we introduced the coupling factor 4 =g’N(0). The wave-
function remormalization is given by

. _ _L .
Z(iw,) =1 P 2(iw,) (8)

In the following we will consider the static case (©» =0), and we

neglect the temperature dependence (I — 0), when we replace

1 o0
T > —\|do
g;‘ 2 (9)
We will have
% 8w’w
Z :1+LZ:J.a’a)-arctan(ﬁj-—q2 (10)
2 T 2w (a)2+a);)

Now we use the notation: 4 =2@,/E , and change the variable:

w/®, =X We obtain
vy — ( 1 j X
Z =1+— ) |dx-arctan - 11
”Zq:'g a-x) (¥ +1)f (11)

The integral is easy evaluated and gives: 7 /[4(1+a)], The
renormalization function will be

Z:1+ATEZ !

q a)q +12; (12)
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In order to find out an analytical form of the renormalization
function we will consider a two-dimensional system, and consider the

dispersion @, that correspond to flexural phonons [8, 9]:

2 4
11 + Ky
QTN (13)

Here: 7 - is the sample specific coefficient induced by the external

strain, X - is the bending stiffness, and # - the mass density. This expression
can be approximated as

w, =4.%,q (14)
for 4 <4., and
a)q anqz (15)

for 4> 9., with: 4. =+7/K and : @, =+/K/p . The sum over ¢ wave-
vectors is evaluated using

A
- B-|d?
g (16
where we consider the unit area for 4, and B =3\/§/2 for the case of
honeycomb lattice. We split the wave-vector integral in two contributions,
accoring to eqs.(14, 15). After evaluating these integrals one obtains

714 3\/_ ch {l—l-ln(l+r)+%-ln[w}} (17)
r

47 r 1+r

2
where: ¥ =2a,q. / E , and 9y is a wave-vector cut-off. In the wide-band
approximation ( £ - large), the renormalization function becomes

33

Z~1+— A-gq (18)

This result differs from the standard expression Z =1+4  and leads
to modifications of many physical properties of solids, due to modifications
of density of states and of the coupling & [10-14]. The magnitude of
modifications can be estimated if we restore the dimensions by replacing
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9y with @4, in eq.(18) (a - the lattice constant), and taking 9. 1/a .
One obtains Z= 1+0.2A | 3 result which reveal the smallness of the
correction factor. The renormalization function Z can also be evaluated
for other bosonic excitations that are important for various properties of
solids, as magnetic excitations [15-17], and even for the case of non-Fermi
systems [18-21]. Here we obtained a simple result which can be used, as a
starting point, in future investigations, in order to find out the modifications of
the normal and superconducting properties of newly discovered materials.
A more realistic result, for the case of graphene, can be obtained taking an
energy dependent density of states, instead of simplification used in eq.(5).
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