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SUPERCONDUCTIVITY IN LOW DIMENSIONAL SYSTEMS
WITH DIFFERENT ENERGY DISPERSIONS

I. GROSU?

ABSTRACT. We analyzed the possibility for occurrence of superconductivity in
low dimensional systems, taking into consideration a linear and a constant
dispersion law for the electronic excitations. Using a mean field BCS-like model
we calculate the zero temperature energy gap, the critical temperature, and
the Gelikman-Kresin ratio. In the case of graphene with a linear dispersion the
coupling strength should exceed a critical value. Taking realistic parameters it
was shown that the occurrence of the superconducting state is not possible.
We find out an opposite situation for a two-dimensional system with a
constant dispersion.

Keywords: Superconductivity, low dimensional systems, graphene, linear
dispersion, constant dispersion.

Superconductivity is a quantum phenomenon of the electron
system that manifests at macroscopic scale. This phenomenon is due to an
instability of the Fermi liquid state which leads to a new ground state of
correlated paired electrons [1]. Here it was shown that this state is stabilized
whenever there exist an attractive interaction between electrons. In a common
metal such an attraction is always provided by the electron-phonon interaction.
This behaviour however is strongly modified in the case of high-temperature

! Babes-Bolyai University, Faculty of Physics, 1 Kogalniceanu str., 400084 Cluj-Napoca,
Romania, e-mail: ioan.grosu@phys.ubbcluj.ro



I. GROSU

superconductors [2]. These are layered compounds with possible new
pairing mechanism which leads to unconventional superconductivity. It was
proposed that superconductivity emerges from antiferromagnetic spin
fluctuations in a doped system and in the weak coupling [3, 4]. Other
theoretical models proposed the non-Fermi character of these compounds [5].
Here, in contrast to classical Fermi liquid behaviour the superconducting
state appear only if the coupling factor exceeds a critical value [6]. Other
models consider the Bose-Einstein condensation phenomenon [7, 8]. More
recent, after the discovery of graphene [9, 10], experiments on doped
graphene reveal that graphene can be driven to the superconducting state
[11]. A weak-coupling theory of superconductivity of Dirac electrons in
graphene layers was proposed by Kopnin and Sonin [12]. On the other hand,
experiments indicate the lack of superconductivity in undoped graphene,
even an attractive electron-electron interaction A could exist. The absence
of superconductivity is rather due to the small density of states close to the
Dirac point. In order to see this we adopt a simple mean-field model using
a self-consistent equation for the order parameter A [13, 14]

A= 4/1j d’k_ A tanh( E, j (1)
o (27)? 2k,T

The factor 4 comes from summation over the valley and band

indices, k, is cut-off momentum, E, =&’ +A’, k, is the Boltzmann

constant, and T the temperature. At the Dirac point ¢; =#/’v,k”, where
v, is the Fermi velocity. First we consider the 7 =0 K case, when A > A,
and tanh(E, /2k,T) — 1. We obtain

27tk A
A, =44 0 (2)
j(27r) JIRPVIE + A
or
dk -k
j 3)

o JIIVEED + A
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Introducing a new variable x = 1*v,k”, we get after integration

1= 22/12 [1/gf+A20 —AO] (4)

h vy

where ¢ = vk, . Define the critical coupling 4, through

2.2
A = h vy (5)
' 2¢e,
and solving eq.(4) for A, one obtains
/12 _/12
A, =¢,- < 6
T 2, (©)

Since A, >0, one conclude that A > 4_.
In the opposite limit, when T"—T7., 7. being the critical

temperature, the order parameter A — 0. We will have

k, 2
1=42| dkz-i-tanh[ ult j (7)
0, 27)° &, 2k,

or
k,
=2 | dk - tanh vk (8)
v 5 2k,T.
With the variable y =av,.k/2k,T., one obtains
k T &,/ 2kgT,
1:2.L J.dy-tanh(y) (9)
2’C c 0
After evaluating the integral, and define b =¢_/2k,T., we have
A
b= In[cosh ()] (10)
Assuming ¢, >>T,, (b>>1), eq.(10) reduces to the approximate
expression
1n[lj;b-’1_’1°’ (11)
2 A

From here we obtain the critical temperature
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& A=A
k.T. = < . ¢ 12
T 92.m2 4 (12)

Again, in order to have a critical temperature A should exceed 4.

Finally, the Gelikman-Kresin ratio will be

24, ~2-1n2- 1+i (13)
kT, A

The results given by egs.(6) and (12) should be carefully analyzed. In
the case of pristine graphene, taking realistic parameters [14], one conclude
that A, exceeds 4,and A, = 20- A . In this case the superconducting phase is

c

absent even in the presence of a finite electron-phonon coupling strength.
This conclusion remains valid for the case of twisted graphene bilayer far away
from the magic angle, when the two graphene layers are almost uncoupled.
The situation changes if one consider the case of linear dispersion in the
presence of doping (characterized by finite chemical potential 4 ). In this
case it was shown [14] that the superconducting state exist, and the critical
temperature is of order of 7, =10 K.

In the following we will consider a model of a two-dimensional
system, with spin and valley degeneration, and with a constant dispersion
&; =’ in order to find out if the superconducting state exist. At 7 = 0K

the equation for the energy gap becomes

k,
A zszﬂkdk A,

0 27)° A+ A

with k, = ¢_/hv, . Using eq.(5), the momentum cut-off will be k, = 7hv, /24, .

2
A &, )
Ay = || =-Z=| A 15
0 \/[ﬂ,c 2] g ( )

which shows the possibility of occurrence of the superconducting state if
A, <Ag./24,. Assuming that A <<A4, one has A, <<¢,. The critical

(14)

The energy gap is given by

temperature is obtained from the equation
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k,

A
1= 4,1_[ Zﬂkdf L tanh( & ] (16)
Y ar)y A, 2k,T,

Introducing the notation a =2A 1./¢ 4, the critical temperature

will be

A
kT, =——5— (17)

¢ [1 + aj
In
l-a
with a <1. With this notation eq.(15) can be rewritten as

A, =gc-%-\/l—a2 (18)

The Gelikman-Kresin ratio, that measures the departure from the
BCS (3.53) result [15, 16, 17], will be
2A
2 :3-\/1—a2 -ln( j (19)
k,T. a

Taking the following parameters: &, = 200meV, A/4. ~1/20, and

1+a
1-a

A, =4 meV, the energy-gap at zero temperature will be A, =3 meV, the

critical temperature 7. = 20 K, and the Gelikman-Kresin ratio 2A, / k,T, =3.3.

One can conclude that a BCS-mean field model with a weak
attractive interaction, due to the electron-phonon coupling, can explain the
occurrence of the superconducting state, in low dimensional systems, if a
constant dispersion law is considered. Such a dispersion can occur in highly
doped two dimensional systems.
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