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DISPERSION EQUATION FOR PLASMA WAVE
PROPAGATION AT THE INTERFACE OF A STOCHASTIC
ENVINRONMENT

A. MARCUY", G. MOCANU"

ABSTRACT. The present paper investigates the effect of a stochastic term
in the equation of motion in the MHD approximation. The end purpose is
to find whether or not, for the case of an interface between two media of
different physical properties, the stability behavior of the waves characteristic
to the interface changes. Our results show that, for a certain parameter set,
the stability behavior does change: namely a configuration which is stable
in the deterministic approach may become unstable when stochastic effects are
considered.
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1. SHORTINTRODUCTIONINTHE PHYSICS OF STOCHASTIC PROCESSES

The archetypical Brownian Motion [4] consists of a massive particle
subjected to two types of forces: a frictional force, that dissipates the kinetic
energy of the particle and a random force that pushes the particle in an erratic
way. This random force stands for the effects of the interactions (collisions)
of the particle with all the other particles in the system. The characteristics
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(mean value and variance) of the random term are determined by the energy
content available in the system. The archetypical Brownian motion assumes
that the many particle system is in contact with a heat reservoir. However,
the energy content of the system might also be given by the presence of a
magnetic field and so on. The development of the Brownian motion toy model
was necessary in order to be able to perform analytical treatment on systems of
many coupled interacting elements. Insight to this problem may be gained
by using inferences about the statistical behaviour of the particle interaction.
One studies the motion of just one particle and considers that the influence
of all the other particles is given by the action of a stochastic force with
certain statistical properties. As such, we will only have access to information
regarding macroscopic characteristics of the underlying processes.

The system under analysis consists of N Brownian particles, “living”
in an isotropic 3 dimensional coordinate space, of a finite volume and moving
with friction. Each Brownian particle is characterized by a mass m, position r
and velocity v. Due to friction, one part of the deterministic force will be
given by —vv, with v the friction coefficient acting on the particle. The rest
of the deterministic force can be derived from a potential U (r1,..,7N ).
The fluctuations in velocity space are given by realizations of a Gaussian-like
process (i.e. they are Gaussian random variables), characterized by diffusion
coefficients B. At thermodynamic equilibrium the values of the diffusion
coefficients are constrained by the value of the temperature of the system.
The velocity is then itself a stochastic variable. For a zero external potential,
historically, this velocity is called Brownian motion. The general mathematical
name is Wiener process.

Taking the above considerations into account, the A-Langevin equation
describing the system may be written as

1 1 o
% — UV — —VU(r1,...,vn) + V2BAy(t), (1.1)
a m
where
dr
= —, 1.2
v dt (1.2)
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and /Tt is white noise of parameter t with statistical properties

(Ai(t)) =0, (1.3)
A property of white noise is that its derivative is the Wiener process [,
(1;3,5
A= — 1.5
t dt (1.5)
where the properties of the Wiener process are

[ ] 30 = O
e [, is almost surely continuous
e f3; hasindependent increments

o Br—pLs€N(O,t—25).

2. POSING OF THE PROBLEM AND ALGORITHM

The common feature of all types of classical wave analysis is the fact
that the adopted mathematical model of the phenomenon is deterministic.
It turns out, that — just as in investigation of many other phenomena —
deterministic modelling of waves does not always result in an adequate
presentation of reality. Because of the existence of many uncontrolled
factors determining real wave processes a stochastic description, i.e., one
based on probability theory, is often more adequate. A stochastic nature of
real wave processesresults above all from theinhomogeneity and uncertainty
of the structure of most wave - transmitting media. In order to account for
the complexity of real media one usually introduces a mathematical model
called a stochastic or random medium. In general, this means a medium
whose properties are described in terms of probability theory, or, more
specifically, by means of random functions A(7,t) of position and time.
Temporal variations of the properties of the medium are often very slow;
consequently, we mostly use a spatial random field A(7,t) which can take
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scalar, vector or tensor values depending on the particular situation. A
random field A(7, t) may possess continuously and smoothly varying sample
functions, or it may just be a discrete - valued random function [3].

The purpose of this work is to study the effect of a stochastic force on
wave propagation in ionized plasmas. The route undertaken is to work in the
MHD framework in an A-Langevin equation approach, i.e., to include a
stochastic term in the equation of motion.

The general approximation is that the stochastic term is seen as
constant by the fluid, i.e., the characteristic timescale of the noise is much

smaller than any characteristic timescale of the fluids, such that A= ffz (2).

3. GOVERNING EQUATIONS AND BASIC ASSUMPTIONS

We consider the case of the interface between two media; particular
numerical values are taken for an interface between the solar corona and a
prominence. We will follow closely the derivation in [1].

The starting linearized equations are

V.-%=0 V-b;=0 ie{1,2}, (3.1)

for the perturbed velocity and magnetic field in both regions. The momentum
equations are

ovy Boy 9by

P _—— A 3.2

P15y VP + 1o O +p1V + Ay, (3.2)
0Uo OUa Boz Obg -

e i — == 3.3

P25, + p2vo e VP, + o Or + Ag, (3.3)

where A, = (A,,,A,,, A;.) = W,ek=*=" and W, is Gaussian white

iz L y)

noise in argument 3z

(Wa(2)) =0, (Wai(5)Wey (=) = 00208y (3.4
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The term A has complex amplitude in our approach because we will
use these equations to perform the usual normal mode analysis. Since the
noise term is akin to the friction term and we know that friction will lead to
an imaginary component in the dispersion equation, we make sure that the
noise term will have a similar kind of contribution by making the amplitude
of A complex.

The induction equations are

%’il _ By, ‘i)il (3.5)
%Jrvo%:BOQ%Hz, (3.6)

where
V:mFXiV)—%ﬂ[i@@@] b=5/|bl, (3.7)
R = 77V252 + %V X {[(V x by) X Eo] X B%} . (3.8)

Jump condition at the interface

Imposing the jump condition is done as follows: consider the z
component of the equation of motion, denoting it by a. Use the
approximation of one dimensional steady state V— é% and 0/0t = 0and
the two equations of motion become

iazo (3.9)
where
ov . .
a = —-P+ pll/% + 18,1¢"F==9) for region 1 (3.10)

= —P; + Bype' k=90 for region 2
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Integrating across the surface, from region 1 to region 2

2
da .
/ l—“d: = 0 yields a(2) = a(1) (3.11)
y dz
i.e.
01‘2 / 1(kpr—wt) ( 1(kyr—wt)
—Py + prv—— + 181" = —P5 +18,9¢"\"® . (3.12)

Normal mode analysis

The usual procedure at this point in MHD wave theory is to perform
normal mode analysis (NMA). This means looking for solutions of some
imposed type, where the time behavior is swept under the rug as an
exponential ~ e~*“*, Normal mode analysis does not use the extra step of
integrating that the Fourier analysis uses.

For illustration purposes, consider the Langevin equation

dv o
— =—vv+ A, 3.13
dt ' ( )
where A is a noise term of known statistical properties. Decide that you want
to perform NMA for this equation. That meansthat you will look for a solution

of the type v = 9(z) exp{e(k,x — wt)}. The equation then becomes
—wv exp{e(kzx — wt)} = —vvexp{i(k;z —wt)} + A, (3.14)
and thus
—wd = —vb + Aexp{—i(kzx — wt)}. (3.15)

The term A exp{—u(k,x — wt)} is a noise term, of known statistical
properties. We may denote it by some other symbol and carry on the usual
calculations. Note that when we will apply this approach to the MHD

equations ofmotion, 4 exp{—u(k,z — wt)}= W,
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For the more complex set of MHD equations, we proceed exactly as
in [1]. Technically, we will obtain the dispersion equation for the case in
which the equations of motion are not homogeneous.

Because the mean of the white noise is zero, we obtain, just as in [1]
the expressions for the two pressures

P, = Cf—l (DAl — ékil/w) (3.16)
_ _(P2Das (| 1hine
Py= (22 (1 + 5= > . (3.17)

The jump condition in the NMA assumption (using the expressions for
the pressure Eqgs. (3.16)-(3.17)) becomes
D 4o D a2kzncp2

D 2
—13,1+C ( kAl p1+ §A'Iz/p1w) =—13,0—C ( P2 +1 50 ) . (3.18)

The result obtained for the dispersion equation is
D(w) =D, +:D; =0, (3.19)
where in this case
D, = Dgy +dD g5, (3.20)
and it does not contain a stochastic term, and

1 1D sk B0 —
D=6+ 5 (ki//w + M) , Wwith g = i

o : (3.21),

where (,, is the perturbation at the interface calculated for some typical scale
of the plasma, and the stochastic term is beta.

4. RESULTS

We now follow the algorithm in [2] and find w,, as a solution of D, = 0.
Thisis a second order algebraical equation which produces two solutions, wf{
and w; . These are identical to the ones obtained in the deterministic case,

since there is no stochastic termin D, .
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Further, it is assumed that the terms in D, produce a perturbation dw
and as such dw is obtained by a Taylor expansion of D(w) for w = w,, + dw; it
will thus present with two solutions (for each of the w): dw, and dw_.

As shown in [2],

dw(wg) = — (WDA@) [—— (4.1)
and so

—kgvotw

[28 + k2vw +
dw + 4d(—Fkgvo + w)

dkinc(—k§v32+(—k1vo+w)2]
ow(wp) = —

w=wo

We checked that at all times the ratio between the perturbation
frequency and wj, is very small, of the order 107 (Figure 1).
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Figure 1. Ratio of the frequency dw to its corresponding wy,.

If the dw are positive, an instability appears.

In the limit 3 — 0 the classical result is recovered, in which dw is
always negative. However, allowing for a nonzero (3 leads to positive values
of the dw, and thus the appearance of instability.

Analytically, the condition that dw > 0, i.e., there is instability, has
the form

) d2
4 I7IC-DA2:| (_13)

Q

1
;3>§ w+dQ — 4k2wv +

w=wqo

So for each of the two cases
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dw_ >0if g >

Swy > 0if B>

: 2
é |:w + dQ — 4k2wv + %ﬂ] . (4.4)
172
% [,, +dQ — 4k2wy + J’CII"TCD“] (4.5)
W=wo+4

For 5 — 0, the deterministic case of [1] is recovered and the dw

frequencies are negative. Si

nce in the absence of noise, the frequencies are

always negative, the mathematical result is that the presence of a stochastic
component is a source of instability. The condition for instability says that

there will be instability at th

e interface provided that the noise difference on

the two sides of the interface exceeds a certain threshold.
This can be seen for both solutions of the dw in Figure 2, for parameter

values used in [1].
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Figure 2. Variation of dw as a function of the ionization parameter y, for different
values of the parameter 3, which quantifies the influence of the noise. The
numerical values used to obtain the plots are: T, = 10*, v =10"19, k=5

107%, p, = 5107, v,, = 315000, v,, = 28000, v, = 20000, d = +/10.

Forward mode

Let us focus on the forward mode, i.e., the one identified by w,_, and
0w, . The results obtained for the deterministic case are shown in Figure 3.
It is always negative, i.e., stable. But as seen in Figure 2 left, there are
combinations of {7, 5} for which éw,, becomes positive.
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Figure 3. Variation of dw in the forward wave case, as a function
oftheionization parameter u, for 8 = 0.

5. CONCLUSIONS

In the present paper the MHD approximation was considered for the
case of an interface between two plasmas with different properties. A stochastic
term was allowed forinthe equation of motion. Withthe purpose of obtaining
a dispersion equation for the waves present at the interface, the jump condition
between the two media was obtained. Numerical implementation of the
dispersion equation indeed shows that a stochastic term might change the
stability behavior of the system.
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