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Brouwer—Hilbert on the Limits of Mathematical Knowledge

Silviu-Constantin FEDEROVICI®

ABSTRACT. Brouwer famously challenged the limits of mathematical knowledge by
arguing that classical formalism obscures intuitive evidence. Hilbert, by contrast,
considered that intuitive insights could safely be ignored as long as formal systems
remained consistent and complete. Such a disagreement created a paradigmatic
tension between intuitionism and formalism in how the foundations of mathematics
should be regarded. This paper evaluates Hilbert’s eventual pragmatic dominance and
explores, via a shared Kantian heritage, how intuitionistic insights might coexist with
formal approaches. Focusing on axioms, the analysis reveals how neglecting certain
epistemic values while admitting alternative forms of evidence shapes our understanding
of mathematical limits.

Keywords: philosophy of mathematics, Brouwer-Hilbert controversy, epistemic limits,
Kantian heritage

l. Introduction: Mathematics Between Knowledge and Ignorance

Among the sciences and other systematic forms of reasoning, mathematics

has long stood as a model of knowledge, providing an epistemological pillar for our
inquiry into empirical phenomena. Unlike other domains marked by radical conceptual
shifts, mathematics has traditionally projected the image of a complete and self-
contained body of knowledge, seemingly immune to internal gaps or inconsistencies.
As Kant noted, the results of this discipline provide the most powerful instruments
for scientific evidence through the precision of its synthetic a priori judgments:
“Here is a great and proved field of knowledge, which is already of admirable
compass and for the future promises unbounded extension, which carries with it
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thoroughly apodictic certainty, i.e., absolute necessity”!. Mathematics not only

consolidates our reasoning with remarkable rigour but also enables the systematic
construction of new results upon established foundations, without the apparent
risk of encountering essential breakdowns. Indeed, its internal coherence, logical
stability, and resistance to counterfactual variation? have long underpinned its
distinctive epistemic status.

Few thinkers have shaped the modern conception of mathematics as
decisively as Hilbert, whose efforts to establish the important results of this domain
upon universal foundations and resolve all major open problems were intended to
shield it from the prospect of ignorabimus?®. His contributions extended beyond the
systematic consolidation of prior developments, as Hilbert founded a formalist
school of thought, alongside prominent mathematicians such as Bernays, Ackermann,
and von Neumann, who advanced the axiomatic method and developed proof theory
as a rigorous framework for analysing mathematical reasoning well into the
contemporary era. These achievements remain landmarks in the foundations of
mathematics. Despite the unrestricted ambition of Hilbert’s early 20th-century
programme to formalise mathematics as a complete system, its limitations became
increasingly evident, particularly after the groundbreaking discovery of Godel’'s
incompleteness theorems. Even before these results, the historical episode of the
Grundlagenkrise had already revealed cracks in this foundational optimism, most
notably through the challenges posed by Brouwer’s intuitionism. His critique
guestioned the ideal of completeness, thus anticipating the limits of the formalist
perspective that Godel would later prove.

At the same time, the privileged position Hilbert assigned to the axiomatic
method as the sole reliable path toward a definitive basis of mathematics has faced
various challenges over time, though it ultimately proved to be the most influential
strategy. One of the most radical critiques came from Brouwer’s intuitionism, which
viewed axioms not as true foundations, but as linguistic artefacts that illegitimately

1 1. Kant, Prolegomena to Any Future Metaphysics That Will Be Able to Present Itself as a Science, P.
G. Lucas (ed.), Manchester, Manchester University Press, 1953, p. 36.

2 Forinstance, mathematical judgments usually cannot be meaningfully evaluated through counterfactual
hypotheses. There is no epistemic gain in supposing that 1 equals 2, since such an assumption merely
generates a contradiction within the established system rather than illuminating any consistent
alternative structure. This is why mathematics is associated with a stronger form of necessity, as
counterfactual statements have a far more limited application within its framework compared to
other fields.

3 See D. Hilbert, “From Mathematical Problems”, in W. Ewald (ed.), From Kant to Hilbert: A Source
Book in the Foundations of Mathematics, Vol. I, Oxford, Clarendon Press, 1996, pp. 1096-1105;
and D. Hilbert, “On the Infinite”, in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics:
Selected Readings, 2nd ed., Cambridge, Cambridge University Press, 1983, p. 200.
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diverted attention from the true source of mathematical reasoning, namely, temporal
intuition, to the features and rules of formal manipulation. Whereas Hilbert regarded
axioms as the bedrock of mathematical foundations, Brouwer argued that such
linguistic expressions lacked epistemic substance. They were not only redundant in
relation to the insights and evidence provided by intuition, but also potential sources
of weakness, susceptible to generating antinomies and unfounded results. Why,
then, did Brouwer’s objections fail to dismantle Hilbert’s image of mathematics? How
might mathematics be threatened by all these fissures, and why is it advantageous,
even necessary, to overlook them? Lastly, how might the acceptance or rejection of
axiomatic systems reflect the distinction between knowledge and ignorance in the
foundational debates of mathematics, and what does the formalism—intuitionism
polemic reveal about the nature of these two epistemological states? These will be
the guiding questions addressed in the sections that follow.

The first part of this essay examines the foundational tensions between
intuitionism and formalism, with particular emphasis on the role of axiomatic systems.
This dispute is emblematic for the epistemology of mathematics, insofar as the
problem of axioms reveals not only the intrinsic limits of formalisation but also the
possibility of absolute boundaries of mathematical knowledge itself. | will argue
that the Hilbertian approach largely overlooks Brouwer’s objections, illustrating this
claim through a simple intuitionistic counterexample to the unrestricted use of
transfinite axioms, together with the formalist response devised to address this
particular challenge. The second part evaluates the competing arguments of formalism
and intuitionism by means of a method that, despite its apparent simplicity, carries
considerable philosophical and mathematical significance: a comparative table
designed to illustrate the pragmatic value of these two foundational positions.
Inspired by formal epistemology, this approach is designed to quantify the epistemic
trade-offs inherent to each standpoint, offering a novel explanation for the prevailing
status of the Hilbertian position. The final chapter revisits the guiding questions and
the formalist—intuitionist opposition in light of a philosophically based analysis,
which departs from the pragmatic criteria previously considered. Drawing on Turlea’s
observation that intuitionism and formalism share a Kantian root, | trace their deeper
interpretative divergence and explain how this split has gradually favoured a Hilbertian
position. Ultimately, | argue that the image of mathematical knowledge should be
re-situated within a broader epistemological framework, one that acknowledges
the reductive assumptions underlying its formal structures. These omissions, far
from negligible, reveal vulnerabilities that may threaten the very foundation of
mathematical knowledge.

Regarding the literature, the Brouwer-Hilbert dispute has been extensively
studied, covering the historical controversy between their schools of thought as
well as the broader contemporary tension between intuitionism (or constructivism)
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and formalism*, particularly concerning the status of axioms on both sides®. Our
concern here, however, is to investigate a possible philosophical link between these
two approaches, which were initially separated by epistemological considerations
and divergences of mathematical practice. Even if various forms of synthesis have
been attempted from a mathematical point of view, for instance by integrating
constructive structures into classical results®, the philosophical question of how
intuitionism and formalism might be bridged remains unclear. Recent studies have
explored such possibilities by focusing on the refined Kantian underpinnings of
mathematical intuitionism and the interpretative shifts that led to the success of the
Hilbertian vision, while the emergence of Homotopy Type Theory has re-contextualised
the Brouwerian legacy as a robust framework for constructive mathematics’. Therefore,
this inquiry aims to outline a possible route of co-existence, beginning from the
knowledge—ignorance opposition and the Kantian influence shared by both thinkers.

1. Axiomatic Tensions and the Epistemic Divide Between Intuitionism and Formalism

The foundational dispute between formalism and intuitionism® from the
beginning of last century revealed among other aspects how contrasting conceptions
of knowledge and ignorance can unsettle the apparent solidity of mathematics. For

4 Important references on the tensions between intuitionism (or constructivism) and formalism (or
classical mathematics) include P. Mancosu (ed.), From Brouwer to Hilbert: The Debate on the Foundations
of Mathematics in the 1920s, New York, Oxford University Press, 1998; Michael Dummett, Elements of
Intuitionism, Oxford, Oxford University Press, 1977; and Arend Heyting, Intuitionism: An Introduction,
Amsterdam, North-Holland Publishing Company, 1956.

5 Discussions on the status of axioms in intuitionism and their epistemic implications in mathematics can
be found in A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Vol. |,
Amsterdam, Elsevier Science Publishers, 1988; for a more technical analysis, see A. S. Troelstra, “Axioms
for Intuitionistic Mathematics Incompatible with Classical Logic”, in R. E. Butts and J. Hintikka (eds.), Logic,
Foundations of Mathematics, and Computability Theory, Dordrecht, D. Reidel Publishing Company, 1977,
pp. 59-86.

6 See, for example, the texts in S. Shapiro (ed.), Intensional Mathematics. Studies in Logic and the
Foundations of Mathematics, Vol. 113, Amsterdam, Elsevier Science Publishers B.V., 1985.

7 For a detailed reappraisal of these foundational tensions, see Carl J. Posy, Mathematical Intuitionism,
Cambridge, Cambridge University Press, 2020; Paolo Mancosu, The Adventure of Reason: Interplay
between Philosophy of Mathematics and Mathematical Logic, 1900-1940, Oxford, Oxford University
Press, 2010; and The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations
of Mathematics, Princeton, Institute for Advanced Study, 2013.

8 For a general historical context of the Grundlagenkrise at the turn of the 19th—20th centuries, see, e.g.,
|. Grattan-Guinness, The Search for Mathematical Roots: 1870-1940: Logics, Set Theories, and the Foundations
of Mathematics from Cantor through Russell to Godel, Princeton, Princeton University Press, 2000.
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instance, what formalists present as stable epistemic ground, established through
the axiomatic method, is regarded by intuitionism as a linguistic surface that conceals
deeper indeterminacies and ignores the real source of mathematics, namely the
mental faculty of intuition®. In Brouwer’s view, these states of indeterminacy are
inherent to mathematics, contrary to the image of completeness, and they appear
mostly when we operate with the concept of infinity. This clearly suggests that the
Hilbertian side tends to ignore, in the form of unrecognised ambiguity of mathematical
reasoning, what resides at the very heart of what is classically considered rigour.
From the formalist perspective, such cases of indeterminacy reflect a deficiency or
limitation of our previous formal systems in fully articulating and systematising
knowledge, a shortcoming that the axiomatic method seeks to overcome. Thus,
there is no need to proclaim a crisis in mathematics or the necessity of reconstructing
it entirely. Ultimately, the opposition rests not merely on methodological differences
regarding the norms admitted for doing mathematics, but more generally on
seemingly incompatible epistemological commitments regarding the nature of
mathematical knowledge. For Hilbert, mathematics is fundamentally tied to the
possibility of formalising its content in a consistent and complete manner, with
axioms, rules of inference, and formulas systematically structured, and with the
conviction that the semantics can be entirely captured within this linguistic
framework. Intuitionism, for its part, offers non-classical modes of construction based
on intuitive insights that challenge the assumption of completeness and expose the
blind spots of formal abstractions.

Among the key points of contention between intuitionism and classical
mathematics are the unrestricted use of certain logical laws, most notably the
principle of the excluded middle, particularly when applied to transfinite sets, the
interpretation and mathematical treatment of infinity, and differing conceptions
of intuition. Yet perhaps the most profound divergence concerns the status of
the axiomatic method, upheld by Hilbert and sharply contested by Brouwer'’. The
intuitionist critique, particularly during the Grundlagenkrise, elicited markedly different
reactions within the scholarly community, depending on how mathematicians assessed
both the severity of the problems confronting the classical conception and the

9 Brouwer consistently argued that temporal intuition should serve as the primary source of mathematical
knowledge. Across his career, he attempted to establish a constructive method based on the essential
properties of intuitive evidence. See, for example, L. E. J. Brouwer, “On the Foundations of Mathematics”,
in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975, p. 53; and L. E. J.
Brouwer, “Intuitionism and Formalism”, in Collected Works, Vol. |, p. 127.

10 |, E. J. Brouwer, “On the Foundations of Mathematics”, pp. 92-95, and “Formalism and Intuitionism”,
pp. 123-138, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975.
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possible strategies for resolving them. Some, like Weyl*', recognised the importance
of exposing the epistemic fissures in the classical image of the continuum. In this
view, previous atomistic descriptions of the continuum no longer met the rigour of
constructive reasoning, as mainly established by Brouwer. Others maintained that
the foundational crisis could be simply addressed by refining classical tools,
especially through the adjustment of axiomatic systems, to prevent the emergence
of antinomies and preclude various forms of indeterminacy. While Brouwer’s initial
doubts evolved into an ambitious project to reconstruct mathematics on intuitionistic
grounds, his alternative vision gradually lost momentum, though its critical potential
continues to be influential today. Ongoing debates about constructive procedures,
the study of impredicative definitions, and scepticism toward certain logical
principles continue to reflect its enduring legacy.

One of Brouwer’s most radical claims in his early writings*? was that the use
of axioms, i.e. foundational statements assumed without proof, should be entirely
avoided in mathematical constructions, as they merely formalise ideas already
known through intuition without providing additional evidence. A clear example
comes from arithmetic, where he rejected axiomatic foundations*?, in favour of
constructions directly derived from the primordial intuition of time (ger. Ur-
Intuition)*4, thereby grounding the generation of natural numbers on a philosophical
framework™®. For Brouwer, formalisation, especially that built upon Hilbertian ideals of
completeness and consistency, did not represent either the starting point of
mathematical construction or the authentic medium of reasoning, but rather an

11 H, Weyl, “On the New Foundational Crisis of Mathematics”, in P. Mancosu (ed.), From Brouwer to
Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York, Oxford University
Press, 1998, pp. 86-118.

12 gee L. E. J. Brouwer, “On the Foundations of Mathematics”, pp. 77-81, and “Intuitionism and
Formalism”, p. 125, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975.
Later, he recognised the utility of axioms in Heyting’s formalisation of intuitionistic mathematics,
although in his own writings he continued to avoid them.

13 As classically formalised in arithmetic by G. Peano, or in the logical approach of Bertrand Russell,
The Principles of Mathematics, London, Bradford & Dickens, 1942, p. 128.

14 The foundational stages of mathematics, grounded in temporal intuition, are articulated by
Brouwer through what he calls the two acts of intuitionism, as presented in his work “Historical
Background, Principles and Methods of Intuitionism”, in South African Journal of Science, 49/ 1952,
South African Association for the Advancement of Science, pp. 140-142.

15 More specifically, the philosophical method used here could be seen as a form of genetic
constructivism, meaning that the origin of mathematics must be established in correspondence
with certain foundational mental phenomena, such as the perception of change in time. Even if
some commentators have interpreted this as a form of psychologism, however, | endorse the
explanation from M. van Atten, On Brouwer, Belmont, Wadsworth Philosophers Series, 2004, pp.
72-76, that Brouwer had in mind transcendental phenomena, and not empirical ones.
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arbitrary linguistic rendering of our intuitions*®. From an epistemological perspective,
intuitionism challenges the formalist conviction that axioms define the absolute
limits of mathematical knowledge within which the reasoning operates. Such a
manner of establishing boundaries in mathematics according to criteria that carry
no intrinsic meaning beyond their syntactic function may itself be regarded as a
form of ignorance, since it imposes an arbitrary condition that requires one to
overlook intuitive insights®’.

Hilbert’s decision to renounce any kind of meaning to the mathematical
objects derived from an external source marked an essential step in safeguarding
mathematics from potential sources of error. Accordingly, he regarded the
complete elimination of such external meanings as the best means of overcoming
epistemic vulnerabilities, since they did not belong to the content of mathematics as a
pure formal discipline. This act followed from Hilbert’s conviction that axiomatisation
constitutes the most reliable path to secure the foundations of mathematics. As a
natural consequence, his objective was to establish the whole of mathematics on a
universal basis through the adequate choice of axioms. These axioms would
generate a set of sentences that would be consistent and complete, relying on the
mechanical manipulations prescribed by the rules of inference rather than on
intuitive guidance. Although Hilbert acknowledged the heuristic role of intuition, he
confined it to the restricted status of intellectual recognition of symbolic tokens,
relevant at a pre-mathematical stage but epistemically insecure and undesirable later
on. As Kreisel observed: “Hilbert’s programme begins where the semantic leaves off”8,
thus representing a clear shift that dissolves all variations of meaning into purely
formal language governed by syntactical rules. Moreover, driven by the ambition
that every major mathematical problem could ultimately be solved, i.e. we have
either a proof or a disproof for every well-formed formula A, Hilbert’s approach
reflected a deeply positivist stance. In The Knowledge of Nature, he famously
declared: “For the mathematician there is no ignorabimus... We must know. We

16 | E. J. Brouwer, “Intuitionism and Formalism”, in Collected Works, Vol. I, p. 128: “(...) neither the
ordinary language nor any symbolic language can have any other role than that of serving as a non-
mathematical auxiliary”.

17 In formalism, such formulas serve purely syntactical functions, with no semantic content. See David
Hilbert, “On the Infinite”, in Philosophy of Mathematics: Selected Readings, p. 197: “The symbols
of the logical calculus originally were introduced only in order to communicate. Still it is consistent
with our finitary viewpoint to deny any meaning to logical symbols, just as we denied meaning to
mathematical symbols, and to declare that the formulas of the logical calculus are ideal statements
which mean nothing in themselves”.

18 G. Kreisel, “Foundations of Intuitionistic Logic”, in E. Nagel, P. Suppes and A. Tarski (eds.), Logic,
Methodology and Philosophy of Science, Stanford, Stanford University Press, 1962, p. 201.
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shall know”*°. As a reason for the rejection of the possibility of inherent epistemic
limits regarding the completeness of mathematics, Hilbert considered the axiomatic
method as part of a broader scientific optimism of his time, inspired by breakthrough
discoveries such as the theory of relativity and radioactivity. Within this historical
atmosphere, mathematics was envisioned as the ultimate foundation of the natural
sciences?®, and axioms were intended to preserve this apodictic character of
mathematical status at any cost. This conviction had practical consequences in the
development of mathematics: principles such as the Axiom of Infinity or the Axiom
of Choice?, though lacking constructive or intuitive justification, provided powerful
tools that decisively influenced the axiomatisation of arithmetic, set theory and
analysis. Ultimately, the authority of axioms in mathematics rested not on their
semantic clarity, but on their syntactic efficiency and fruitfulness.

In his 1912 inaugural lecture Intuitionism and Formalism, Brouwer contested
the prevailing formalist approach to the foundations of mathematics. More specifically,
he argued that axiomatic systems fail to resolve the emergence of paradoxes, such
as those stemming from the axiom of comprehension (or inclusion) in ZFC set
theory, as well as various instances of vicious reasoning, like the axiom of induction
in number theory?. For Brouwer, mathematical truth derives directly from intuitive
constructions, not from the mere absence of contradiction within a linguistic
framework. Making consistency within formal reasoning the sole criterion for
mathematical validity, as Hilbert did, illegitimately subordinates mathematics to its
linguistic representation. Moreover, Brouwer regarded completeness as a property
of linguistic expressions rather than of mathematics itself. In Hilbert’s vision, to
achieve completeness within a formal system, every mathematical well-formed
formula must be decidable: given any formula A, one must be able either to construct
a proof of A or to derive a contradiction from its proof. In other words, tertium non
datur must apply to every possible mathematical statement in our set of formulas.

19 D. Hilbert, “Logic and the Knowledge of Nature”, in W. Ewald (ed.), From Kant to Hilbert. A Source
Book in the Foundations of Mathematics, Vol. Il, Oxford, Clarendon Press, 1996, p. 1165.

20 This reflects Kant's claim that mathematics defines the very possibility of genuine science. See I.
Kant, Metaphysical Foundations of Natural Science, M. Friedman (ed.), Cambridge, Cambridge
University Press, 2004, p. 6: “In any special doctrine of Nature there is only as much genuine science
as there is mathematics”.

21 See E. Zermelo, “Untersuchungen uber die Grundlagen der Mengenlehre 17, in Mathematische
Annalen, 65 / 1908, B. G. Teubner, pp. 261-281. For a discussion on their non-constructivity, see
M. Dummett, Elements of Intuitionism, Oxford, Clarendon Press, 1977, pp. 52-55.

22 For example, Brouwer pointed to paradoxes such as the Burali-Forti paradox, concerning the well-
ordering of sets, and the axiom of induction, which becomes impredicative in the formalist account.
For further references regarding the axioms admitted by Hilbert, see L. E. J. Brouwer, “Intuitionism
and Formalism”, in Collected Works, Vol. |, p. 133.
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As an objection to this ideal, Brouwer offered several counterexamples, including the
unresolved question of whether the digit sequence “0123456789” appears in the
infinite decimal expansion of m, to show his point by highlighting the limits of
classical logic and completeness?®. This proposition is currently neither provable nor
disprovable, since there is no constructive method to verify or refute the presence of
this sequence in the decimal expansion of . Even if the sequence were eventually
located at some stage k of a constructive enumeration of the digits?*, one could
simply replace it with another sequence not yet encountered by stage k, thereby
preserving the indeterminacy. Such examples illustrate that questions about infinite
collections inevitably give rise to indeterminacy, as long as we want to talk meaningfully
from an intuitive viewpoint about these kinds of sets. Unlike Hilbert, who formalised
transfinite sets as complete mathematical objects?®, Brouwer maintained that infinite
sets, such as the decimal expansion of i, cannot be meaningfully captured without
acknowledging this inherent context of indeterminacy. This is not merely a practical
limitation arising from our inability to examine every element of infinite sets, but a
principled one: there exists no rule that fully determines the generation of all
elements of such a set in a constructive manner.

To illustrate this contrast, let us briefly examine Hilbert’s axiomatic approach
to transfinite sets through the operator 1, introduced to reconcile infinite totalities
with finitary mathematics. Hilbert acknowledged the need for a distinct axiomatic
approach to the transfinite sets, yet insisted that such reasoning must be reducible
to finite methods: “the free use and the full mastery of the transfinite is to be
achieved on the territory of the finite”?°. Consequently, he proposed a transfinite
axiom, formulated as A(tA) = A(a), which allows the inference that if a predicate A
applies to some specific object TA, then it applies to all objects a?’. In other words,
T represents an arbitrary object satisfying property A and serves as a generic

2 |, E. J. Brouwer, “The Unreliability of the Logical Principles”, in A. Heyting (ed.), Collected Works,
Vol. I, Amsterdam, North-Holland, 1975, p. 110.

2 Meanwhile, this sequence was indeed found, but, as we have seen, it can be replaced with one that
does not appear in the decimal expansion of 1 (see D. E. Hesseling, Gnomes in the Fog: The
Reception of Brouwer’s Intuitionism in the 1920s, Basel, Springer, 2003, p. 71).

25 D, Hilbert, “On the Infinite”, in Philosophy of Mathematics: Selected Readings, pp. 198-199.

26 D. Hilbert, “The Logical Foundations of Mathematics”, in W. Ewald (ed.), From Kant to Hilbert.
A Source Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, p. 1140.

27 To clarify this axiom, Hilbert uses the example of the predicate "bribable": if TA designates an ideally
just person for whom it has been proven that they are bribable, then, according to the axiom A(tA)
- A(a), it follows that all people are bribable. From an intuitionistic perspective, however, this
inference appears meaningless, since such an ideal instance says nothing about the actual bribability of
other individuals. The example reveals the gap between formal generalisation and intuitive meaning,
highlighting how the transfinite operator abstracts away from constructive content (lbid., p. 1141).
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placeholder, allowing quantified statements to be reduced to finitary terms and
supporting the formalisation of transfinite reasoning within finite logic. This enables
inferences from t-objects to general domains, aiming to preserve consistency and
completeness, even when dealing with infinite sets. However, from an intuitionistic
position, this apparently elegant technique fails to resolve the epistemic ambiguity
of the infinite. For instance, if A denotes the property “every possible finite digit
sequence appears in the decimal expansion of n”, then tA would designate a
hypothetical decimal expansion satisfying A. By the axiom A(tA) - A(a), one could
infer that this property holds for all decimal expansions, seemingly addressing
the earlier counterexample to the law of the excluded middle. Yet from Brouwer’s
perspective, this inference does not address how or when such a sequence as
“0123456789” actually appears. It merely postulates existence implicitly, without
constructive proof. Thus, the t-operator shifts the problem into formal language,
bypassing intuitive justification. Infinite entities, in the intuitionist view, lack meaning
unless constructively supported. While such axioms give the appearance of
completeness, they remain detached from constructive grounding, relying on the
law of the excluded middle without restriction, a principle whose absolute validity
Brouwer confines to finite reasoning. His critique of formal axiomatic notions, such
as the t-operator, thus exposes ambiguities in formalist foundations and underscores
the need to reconsider the limits imposed by intuition.

Ill. Pragmatic Success vs Epistemic Limits

To understand why formalist practices continue to shape the prevailing
image of mathematics, while intuitionistic perspectives are often marginalised or
regarded as historical curiosity, | will adopt a pragmatic method of comparison
between these two foundational positions. Drawing on approaches from formal
epistemology?, this method evaluates the main strengths of each perspective,
especially regarding the acceptance and use of axiomatic systems, via a structured
comparative table, which may be further extended. The purpose is not to claim
strict objectivity, but rather to highlight which framework currently offers greater
epistemic utility in the foundations of mathematics. Therefore, in the current

28 For example, D. Lewis employed a similar approach by pragmatically arguing that possible worlds
should be regarded as equally real as our actual world, since this assumption better serves formal
understanding. See D. Lewis, On the Plurality of Worlds, Oxford, Basil Blackwell, 1986, pp. 3-5 (Ch.
1, “A Philosopher’s Paradise™). In a comparable manner, Hilbert admitted the unrestricted notion
of the transfinite to preserve and extend the developments initiated by Cantor in set theory.

36



BROUWER-HILBERT ON THE LIMITS OF MATHEMATICAL KNOWLEDGE

context, mathematical utility serves as the principal criterion for assessing the use
of axioms. Utility is understood in terms of practical advantages, such as the ease
of integrating existing results, generating new theorems, the effectiveness of proof
techniques, and sustaining productive mathematical development.

Before presenting Table 1, two clarifications are in order. First, the scoring
system, based on an arbitrary scale from 0 to 15 points for illustrative purposes, is
not intended as a rigorous evaluation of the arguments themselves. The goal is
instead to provide a broader perspective on the conflict between intuitionism and
formalism and to explore some of its immediate consequences in mathematics.
Within this framework, pragmatic considerations must be the factor explaining the
enduring dominance of the formalist image of mathematics, which will serve as
the primary focus of analysis. Second, the scores should be regarded as flexible,
approximate estimates, reflecting relative epistemic weight rather than absolute
values. For example, if intuitionism were able to provide a compelling alternative
to classical theorems, its score would increase substantially. In the current context,
however, certain structural advantages of formalism, such as the preservation and
consolidation of important classical results through axiomatic systems, constitute
fairly objective benefits. By contrast, the richer semantics offered by intuitionism,
while philosophically significant and valuable in constructive analyses, does not
exert the same impact on mainstream mathematical practice. In moving beyond a
purely descriptive account, the following table proposes a decision-theoretic lens
through which to identify the specific utility thresholds that favoured the formalist
image of mathematics. This heuristic reveals how the prioritisation of different
epistemic values, such as constructive clarity versus axiomatic efficiency, fundamentally
shapes the resulting conception of mathematical knowledge.

Table 1. Arguments Accounting

No. Argument / Intuitionism Pts. Formalism Pts.
Criterion
1 Consolidationand | Theorems and propositions 5 Results are easily 13
preservation of are partially reconstructed reproducible and
previous results and generally weakened reinforced within
due to constructive axiomatic systems
constraints
2 Epistemic Grounds mathematical 7 Axioms are accepted 4

foundation of
constructions

activity in meaningful
concepts (e.g. Ur-
Intuition) that provide
direct epistemic
justification

for their efficiency and
clarity, without
additional semantic
justification
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No. Argument / Intuitionism Pts. Formalism Pts.
Criterion
3 Completeness Cannot reconstruct many 4 Covers a large part of 11
and theoretical classical theories (e.g. classical mathematics
adaptability Cantor’s transfinite set and can easily
theory and certain axioms integrate extensions,
from real analysis); the new theories, and
system is conservative additional axioms
and restricts the uncritical (e.g. ZFC, type theory)

acceptance of new
mathematical objects

4 Recognition of Acknowledges 8 Tends to conceal 6
epistemic limits in | irresolvable problems and such limits, promoting
mathematics treats notions such as unlimited confidence

infinity, the existential in the power of
quantifier, and the axiomatic systems

application of logical laws
with appropriate
restrictions.

Sum 24 34

As the table indicates, one of formalism’s major strengths lies in its ability
to preserve and extend prior mathematical achievements without necessitating
radical reconstruction. Thus, the formalist approach emphasises the continuity between
established results and the axioms from which they are derived. Key examples
include postulates like Zermelo’s Axiom of Choice and set-theoretical results such
as Cantor’s construction of transfinite sets. As long as intuitionism cannot provide
alternatives with comparable rigour and simplicity without simultaneously discarding
results that are mathematically valid yet lack intuitive justification, it struggles to
assert an objectively superior position in foundational debates. The mere fact that
certain objects, such as higher cardinalities, cannot be meaningfully described does
not, from the standpoint of mathematical utility, justify dismissing them wholesale
as erroneous. In this regard, formalism possesses a clear pragmatic raison d’étre,
ensuring both continuity and productivity in mathematical research. From Brouwer’s
perspective, however, this pragmatic advantage conceals a deeper epistemic flaw:
the detachment of mathematical knowledge from the intuitive meaning that
endows it with valid significance. The demand for ubiquitous intuitive meaning,
moreover, may reflect a philosophical commitment rather than mathematical
necessity. For intuitionism, meaning must accompany every formal manipulation;
semantic grounding in intuitive capacities is not optional but essential for legitimate
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mathematical construction. Brouwer’s critique thus exposes not only the limits of
formal reasoning but also the inherent difficulty of reconstructing the edifice of
classical mathematics on purely intuitionistic foundations.

Our analysis reveals a dual tension: while formalism ensures stability and
extensibility, intuitionism uncovers the hidden vulnerabilities underlying formal
precision. Each framework thus embodies both strengths and weaknesses. Formalism
ensures continuity and wide applicability, but at the cost of detaching mathematics
from its intuitive origins. Intuitionism, by contrast, preserves epistemic authenticity
grounded in our intuitive mental capacities, yet struggles to reconstruct and extend
certain classical results. This interplay highlights the intrinsic limits of formal
foundations, where aspects such as intuitive insights, emphasised by Brouwer and
dismissed by Hilbert, are systematically overlooked. Paradoxically, this very omission
has become a decisive advantage: by privileging clarity, generality, and technical
effectiveness, formalism has enabled the expansion and eventual dominance of
mathematics.

IV. Kantian Roots as a Basis for Revisiting the Brouwer—Hilbert Controversy

As we have seen, intuitionism challenges the traditional image of mathematics
as a complete and determinate body of knowledge, exposing fissures within formal
reasoning. Although it offers valuable insights into the limits of mathematical
knowledge, intuitionism has not established a sufficiently robust alternative to the
dominant formalist paradigm. Our analysis so far has examined the epistemic and
methodological divergences between these two perspectives, aiming to explain,
from a pragmatic standpoint, how formalism achieved success with axiomatic
method, despite its detachment from intuitive meaning. In this final part of the
paper, we turn to a shared historical root: the distinct interpretation of Kant’s
philosophy of mathematics. Both Brouwer and Hilbert drew on Kantian ideas, yet
they interpreted them in radically different ways, ultimately developing opposing
visions of mathematical knowledge. These divergent readings reveal their contrasting
approaches to epistemic limits and the role of ignorance, as each thinker emphasised
particular elements of Kant’s perspective while neglecting others. Understanding
this interpretative shift clarifies how these parallel approaches shaped the trajectories
that formalism and intuitionism ultimately followed. Adopting a Kantian root also
allows us to see formalism and intuitionism not simply as radically opposed, but as
distinct elaborations of shared philosophical foundation. This lens explains why
their debate was so sharp, each side selecting one dimension of Kant’s thought in
contrast to the other, while also showing that both schools could legitimately claim
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philosophical grounding in his legacy. Overall, revisiting their Kantian roots provides
a deeper, more integrated understanding of how these seemingly incompatible
positions emerged from a common philosophical background.

According to Turlea, “The Kantian philosophy of mathematics inspired
divergent and even rival foundational programmes: Fregean logicism, Hilbertian
formalism, and Brouwerian intuitionism”?°, Hilbert, for instance, developed his
conception of geometry and mathematics more broadly, by explicitly invoking
Kant’s dictum that “all human knowledge begins with intuitions, proceeds through
concepts, and ends with ideas”*°. Brouwer, in contrast, sought a more radical
reading of Kant, grounding mathematics entirely in temporal intuition, which he
regarded as its authentic source. Neither thinker derived their positions systematically
from Kant, yet both were influenced by his ideas. For Hilbert, Kant’s legacy provided
justification for the formalisation and systematic organisation of mathematics; for
Brouwer, it supported a return to the mind'’s intuitive, pre-conceptual activity. A
schematic reading of Kant’s sequence, from intuition to concepts and finally to
ideas, elucidates how each thinker reinterpreted these stages to demarcate the
limits of mathematical knowledge.

intuitions = concepts - ideas

Interpreting Kant’s sequence in two different ways clarifies how this shared
philosophical root influenced Hilbert’s and Brouwer’s view of the origin and epistemic
status of mathematics, particularly regarding the adoption of axioms. First, Hilbert
interpreted these stages hierarchically, as a progressive ascent in which each level
contributes increasing clarity. In this framework, intuition serves only a preliminary
role, limited to the recognition of symbol strings, before being superseded by
formal concepts and, ultimately, the pure ideas of reason, such as mathematical
infinity. Accordingly, Kant’s epistemic sequence provided Hilbert with a rationale
for grounding mathematics primarily in formal concepts rather than intuition. He
therefore situated the limits of mathematical knowledge after the initial stage,
holding that mathematics should be built from pure concepts stripped of intuitive
content. As a consequence, axioms are not intended to capture any intuition;
instead, they function to ensure internal coherence and universality, allowing a
systematic exploration of mathematical ideas free from uncertainty.

29 M. Turlea, Filosofia matematicii, Bucuresti, Editura Universitatii din Bucuresti, 2002, p. 195.

30 |hid., p. 209. Note that this is a paraphrase of Kant's original formulation, which refers to “sensibility” (or
“sensation”) rather than “intuition” as the initial stage of knowledge (I. Kant, Critique of Pure Reason,
P. Guyer and A. W. Wood (eds.), Cambridge, Cambridge University Press, 1998, A298/B355, p. 387).
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Brouwer regarded Hilbert’s interpretations as epistemically flawed. In his
dissertation®!, he argued that mathematics is founded entirely in mental acts, with
intuition serving not as a preliminary step but as the primary and genuine source of
truth during the construction of mathematical reasoning. As he wrote: “the only
possible foundation of mathematics must be sought in this construction, under the
obligation carefully to observe which constructions intuition allows and which
not”32. For Brouwer, intuition cannot be treated as a source to be later discarded,
since the ultimate meaning of mathematics depends entirely on its presence.
Concepts and ideas are valid only insofar as they carry intuitive content; they serve
merely as tools to encode, communicate, and recall previous constructions, with
their significance deriving primarily from the unfolding of intuition itself. Hence, in
Brouwer’s intuitionism, this schema must be understood as a derivative structure,
inwhich intuition is primary, while concepts and linguistic ideas are essentially auxiliary.
The epistemic boundary, in this case, lies between intuition and conceptualisation,
whereas in Hilbert’s framework, mathematics begins only after the intuitive step,
once formal language has been established. These constitute two opposed directions
of development along the Kantian sequence. Finally, Brouwer emphasised this limit to
highlight that formal language alone can be misleading, suggesting clear scepticism
about its ability to generate valid mathematical knowledge in comparison with
direct intuitive construction, an approach which is, in some respects, more faithful
to Kant’s original intentions®3. Significantly, we must distinguish Kant’s formalist
stance on general logic from his requirements for mathematics. Drawing on
MacFarlane’s analysis of logical hylomorphism, we observe that Kant characterises
general logic as formal precisely because it must abstract from all semantic content
to function as a constitutive norm for thought>*. Since such logic remains epistemically
blind to objects, valid mathematical knowledge conversely requires a content-
based (transcendental) logic rooted in pure intuition, anticipating Brouwer’s rejection
of empty formalism.

31 | E.J. Brouwer, “On the Foundations of Mathematics”, in Collected Works, Vol. I, p. 52.

32 |bid., pp. 94-95.

33 Kant was indeed, with respect to pure linguistic constructs, an anti-formalist, as we can see in his
critiques of the metaphysicians who created philosophical systems in forced correspondence with
the results of science, for instance, those from astronomical calculations, calling them “subtle fictions
which have no truth to them outside the field of mathematics” (See I. Kant, “Inquiry Concerning the
Distinctness of the Principles of Natural Theology and Morality”, in D. Walford and R. Meerbote
(eds.), Theoretical Philosophy, 1755-1770, Cambridge, Cambridge University Press, 2000, p. 168).

34 For a detailed analysis of how Kant’s conception of generality implies the complete formality of
logic, see J. G. MacFarlane, What does it mean to say that Logic is Formal?, PhD Thesis, Pittsburgh,
University of Pittsburgh, 2000, pp. 79-81.
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At least two Kantian-based factors can explain why Hilbert’s formalist
interpretation prevailed. First, formalism, and other foundational schools such as
logicism, considered intuition as an unstable and equivocal notion to serve as a
reliable foundation for mathematical knowledge, privileging instead the clarity and
universality of logical principles and formal language. This orientation fostered a
shared epistemic framework that unified the mathematical community, gradually
marginalising intuitionism as a deviation from the classical norms. The transparency
of formal reasoning and the unrestricted application of logical laws provided
Hilbert’s approach with a pragmatic and institutional advantage, supporting its
consolidation and success. Moreover, the areas of mathematics which were detached
from intuitive meaning®® and against intuitionism’s criteria of validation developed
consistently and could not be reconstructed satisfactorily. The choice to renounce
these areas was a matter of preference rather than a real mathematical necessity.
Second, Brouwer positioned himself more as a philosopher seeking to actualise
Kant’s legacy by grounding mathematics entirely in intuitive acts. His interpretation
was guided by a philosophical demand, in which the mental faculties establish a
direct epistemic relationship with mathematical constructions. In contrast, Hilbert
sought to consolidate his existing mathematical edifice through eventual philosophical
justification, representing an opposite approach to establishing the foundations of
this domain. Consequently, while Hilbert drew on Kant to justify axiomatic clarity,
Brouwer rejected this manner of reading the German philosopher, insisting that the
concept of intuition, although modified and actualised, must remain the foundational
basis of mathematics. Their divergent interpretation had implications in various
areas of mathematics, such as the problem related to non-Euclidean geometries:
for intuitionism, it exposed the limits of axiomatic systems and underscored the
need to ground mathematics in intuition, as a more universal faculty from which
we can take various perspectives on the structure of space, whereas Hilbert treated
it as a challenge to refine and complete the system of axioms, a strategy that
ultimately proved to be more influential. Ultimately, Hilbert’s vision benefited from
the universality and malleable character of axioms, while Brouwer’s intuitionism
faced challenges by relying on the philosophical notion of intuition, which is
debatable and imposes significant constraints.

Yet formalism’s dominance has not extinguished intuitionistic inquiry. Even
within its internal coherence and impressive capacity for systematic development,
mathematics conceived purely formally retains zones of epistemic opacity. These
gaps, though not immediately destabilising, allow the system to operate without
confronting foundational ambiguities that Brouwer insisted could not be overcome

35 For example, set-theoretic arithmetic based on higher cardinalities demonstrates how certain mathematical
constructions, though formally consistent, extend beyond the bounds of intuitive evidence.
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by formalism. In turn, the polished image of mathematics as seamless and complete
thus relies on bracketing questions of intuitive meaning, questions that remain
essential for a deeper understanding of its foundations. At the core, the tension
between formalism and intuitionism centres on the epistemic status of intuition as
a limit of knowledge: should it be regarded as constitutive of the entire edifice of
mathematical truths, or merely as a preliminary guide to a system of formal entities
whose further external significance is suspended? Ultimately, this divergence
directly affects how indeterminacy is treated, because if we confer authority to our
intuition, then we must conclude that these results of incompleteness are inherent
to mental construction. In this light, intuitionism functions as a critical counterpoint,
highlighting the reductive assumptions embedded within formal structures and
providing a framework for reassessing classical mathematics from an intuitive
perspective. Although it cannot replace formalist practice, it continues to challenge
its basic assumptions. As Bourbaki once remarked, intuitionism may eventually
become a “historical curiosity”*®, but only after classical mathematics has addressed
the foundational uncertainties it reveals, underscoring that the polished image of
mathematical knowledge rests on selective omission and epistemic compromises.

By tracing the Kantian sequence, we can see how both Brouwer and Hilbert
developed their positions through different ways of setting limits on the foundations
of mathematics. A possible way to balance their seemingly opposing interpretations is
to keep these boundaries as open and flexible as possible: to cultivate intuition in
relation to formal structures without restricting the latter, especially when they
prove consistent and mathematically fruitful. In this way, formal results may be
seen not as opposed to intuition but as potential paths still awaiting fulfilment from
an intuitive standpoint. Recognising the limitations and blind spots of formalism allows
us to appreciate the epistemic value of intuitionistic critique, not as an alternative
system to replace classical methods, but as a lens to expose the assumptions (or their
absence) underlying them. By situating mathematical knowledge within a broader
epistemological framework, informed by a Kantian understanding of intuition,
concepts, and ideas, we can acknowledge both the power of formal structures and
the irreducible role of intuition in shaping mathematical understanding. This
perspective shows that the apparent dichotomy between formalism and intuitionism
is not absolute; rather, it reflects complementary insights into the ways humans
construct, justify, and interpret mathematical truth. Ultimately, embracing this
dual awareness fosters a more reflective and philosophically grounded conception of
mathematics, one that preserves rigour while remaining attentive to its foundational
ambiguities.

36 N, Bourbaki, Eléments d’histoire des mathématiques, Paris, Hermann, 1960, p. 56: “L’école intuitionniste,
dont le souvenir n’est sans doute destiné a subsister qu’a titre de curiosité historique...”.
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V. Conclusion

Returning to our preliminary question, we now ask what truly distinguishes
knowledge from ignorance in the foundations of mathematics? In certain domains,
clear norms apply: empirical validation in natural sciences, moral action in ethics,
or effective organisation in politics. On the other hand, in mathematics the validation
criteria are non-experiential and diverge sharply from these examples. For Hilbert,
knowledge is equated with formal provability, based on sets of axioms and rules of
syntactic derivations. Intuitionism grounds proof in constructive acts of the mind
rather than formal manipulations. Each approach thus advances a distinct epistemic
ideal: one that values the universality of formal language, the other that emphasises
the evidential force of intuitive construction. The opposition becomes especially
acute in the case of axioms, which formalism treats as defining the boundaries of
mathematical reasoning, while intuitionism sees them as potential sources of error.
Yet the history of mathematics demonstrates the indispensability of axioms, though
they are no longer preserved in Hilbert’s initial form. Rather than undermining
mathematics as a linguistic discipline, intuitionism broadens its epistemic roots by
acknowledging ambiguity and treating indeterminacy as an intrinsic and meaningful
component of the domain. Such prudence may ultimately offer a wiser and more
sustainable stance than Hilbert’s unreserved optimism. The debate over foundations
between intuitionism and formalism does not expose a weakness of mathematics
per se, but rather indicates a deeper truth: absolute clarity and certainty are
inseparable from the risk of deliberate ignorance. A Kantian-inspired synthesis of
intuitionism and formalism encourages us to view mathematics not simply as a self-
sufficient, hierarchically ordered edifice, but as grounded in intuitive construction,
conceptual meaning, and epistemic limitation. Recognising these limits does not
diminish the status of mathematics, but completes it within a broader epistemological
context. As Martin-Lof has noted, the Hilbert-Brouwer controversy has reached a
form of resolution through developments like the double-negation interpretation
and the Curry-Howard correspondence®. Furthermore, as Posy suggests, this Kantian-
inspired perspective finds a contemporary revival in the necessity of a humanly
graspable mathematics. For instance, by acknowledging the temporal and flowing
character of intuition, characteristics rooted in the Kantian tradition, against the
splittable nature of the classical set-theoretic continuum, we can reveal the
transcendental limits of our finite minds as a necessary epistemological constraint

87 P. Martin-Lof, “The Hilbert-Brouwer Controversy Resolved?”, in M. Schirn (ed.), The Philosophy of
Mathematics Today, Oxford, Clarendon Press, 1998, pp. 243-256.
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on the reach of formal language®®. Today, mathematical knowledge appears as a
layered structure, balancing formal precision with constructive reasoning. The law
of the excluded middle is no longer an unquestioned principle, but a contextual tool
within epistemic boundaries. Ultimately, knowledge and ignorance in mathematics
are not opposites, but intertwined in a dynamic and evolving process.
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