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Brouwer–Hilbert on the Limits of Mathematical Knowledge 

Silviu-Constantin FEDEROVICI*

ABSTRACT. Brouwer famously challenged the limits of mathematical knowledge by 
arguing that classical formalism obscures intuitive evidence. Hilbert, by contrast, 
considered that intuitive insights could safely be ignored as long as formal systems 
remained consistent and complete. Such a disagreement created a paradigmatic 
tension between intuitionism and formalism in how the foundations of mathematics 
should be regarded. This paper evaluates Hilbert’s eventual pragmatic dominance and 
explores, via a shared Kantian heritage, how intuitionistic insights might coexist with 
formal approaches. Focusing on axioms, the analysis reveals how neglecting certain 
epistemic values while admitting alternative forms of evidence shapes our understanding 
of mathematical limits. 

Keywords: philosophy of mathematics, Brouwer-Hilbert controversy, epistemic limits, 
Kantian heritage 

I. Introduction: Mathematics Between Knowledge and Ignorance

Among the sciences and other systematic forms of reasoning, mathematics 
has long stood as a model of knowledge, providing an epistemological pillar for our 
inquiry into empirical phenomena. Unlike other domains marked by radical conceptual 
shifts, mathematics has traditionally projected the image of a complete and self-
contained body of knowledge, seemingly immune to internal gaps or inconsistencies. 
As Kant noted, the results of this discipline provide the most powerful instruments 
for scientific evidence through the precision of its synthetic a priori judgments: 
“Here is a great and proved field of knowledge, which is already of admirable 
compass and for the future promises unbounded extension, which carries with it 
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thoroughly apodictic certainty, i.e., absolute necessity”1. Mathematics not only 
consolidates our reasoning with remarkable rigour but also enables the systematic 
construction of new results upon established foundations, without the apparent 
risk of encountering essential breakdowns. Indeed, its internal coherence, logical 
stability, and resistance to counterfactual variation2 have long underpinned its 
distinctive epistemic status.  

Few thinkers have shaped the modern conception of mathematics as 
decisively as Hilbert, whose efforts to establish the important results of this domain 
upon universal foundations and resolve all major open problems were intended to 
shield it from the prospect of ignorabimus3. His contributions extended beyond the 
systematic consolidation of prior developments, as Hilbert founded a formalist 
school of thought, alongside prominent mathematicians such as Bernays, Ackermann, 
and von Neumann, who advanced the axiomatic method and developed proof theory 
as a rigorous framework for analysing mathematical reasoning well into the 
contemporary era. These achievements remain landmarks in the foundations of 
mathematics. Despite the unrestricted ambition of Hilbert’s early 20th-century 
programme to formalise mathematics as a complete system, its limitations became 
increasingly evident, particularly after the groundbreaking discovery of Gödel’s 
incompleteness theorems. Even before these results, the historical episode of the 
Grundlagenkrise had already revealed cracks in this foundational optimism, most 
notably through the challenges posed by Brouwer’s intuitionism. His critique 
questioned the ideal of completeness, thus anticipating the limits of the formalist 
perspective that Gödel would later prove.  

At the same time, the privileged position Hilbert assigned to the axiomatic 
method as the sole reliable path toward a definitive basis of mathematics has faced 
various challenges over time, though it ultimately proved to be the most influential 
strategy. One of the most radical critiques came from Brouwer’s intuitionism, which 
viewed axioms not as true foundations, but as linguistic artefacts that illegitimately 

 
1 I. Kant, Prolegomena to Any Future Metaphysics That Will Be Able to Present Itself as a Science, P. 

G. Lucas (ed.), Manchester, Manchester University Press, 1953, p. 36. 
2 For instance, mathematical judgments usually cannot be meaningfully evaluated through counterfactual 

hypotheses. There is no epistemic gain in supposing that 1 equals 2, since such an assumption merely 
generates a contradiction within the established system rather than illuminating any consistent 
alternative structure. This is why mathematics is associated with a stronger form of necessity, as 
counterfactual statements have a far more limited application within its framework compared to 
other fields. 

3 See D. Hilbert, “From Mathematical Problems”, in W. Ewald (ed.), From Kant to Hilbert: A Source 
Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, pp. 1096–1105; 
and D. Hilbert, “On the Infinite”, in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics: 
Selected Readings, 2nd ed., Cambridge, Cambridge University Press, 1983, p. 200. 
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diverted attention from the true source of mathematical reasoning, namely, temporal 
intuition, to the features and rules of formal manipulation. Whereas Hilbert regarded 
axioms as the bedrock of mathematical foundations, Brouwer argued that such 
linguistic expressions lacked epistemic substance. They were not only redundant in 
relation to the insights and evidence provided by intuition, but also potential sources 
of weakness, susceptible to generating antinomies and unfounded results. Why, 
then, did Brouwer’s objections fail to dismantle Hilbert’s image of mathematics? How 
might mathematics be threatened by all these fissures, and why is it advantageous, 
even necessary, to overlook them? Lastly, how might the acceptance or rejection of 
axiomatic systems reflect the distinction between knowledge and ignorance in the 
foundational debates of mathematics, and what does the formalism–intuitionism 
polemic reveal about the nature of these two epistemological states? These will be 
the guiding questions addressed in the sections that follow.  

The first part of this essay examines the foundational tensions between 
intuitionism and formalism, with particular emphasis on the role of axiomatic systems. 
This dispute is emblematic for the epistemology of mathematics, insofar as the 
problem of axioms reveals not only the intrinsic limits of formalisation but also the 
possibility of absolute boundaries of mathematical knowledge itself. I will argue 
that the Hilbertian approach largely overlooks Brouwer’s objections, illustrating this 
claim through a simple intuitionistic counterexample to the unrestricted use of 
transfinite axioms, together with the formalist response devised to address this 
particular challenge. The second part evaluates the competing arguments of formalism 
and intuitionism by means of a method that, despite its apparent simplicity, carries 
considerable philosophical and mathematical significance: a comparative table 
designed to illustrate the pragmatic value of these two foundational positions. 
Inspired by formal epistemology, this approach is designed to quantify the epistemic 
trade-offs inherent to each standpoint, offering a novel explanation for the prevailing 
status of the Hilbertian position. The final chapter revisits the guiding questions and 
the formalist–intuitionist opposition in light of a philosophically based analysis, 
which departs from the pragmatic criteria previously considered. Drawing on Țurlea’s 
observation that intuitionism and formalism share a Kantian root, I trace their deeper 
interpretative divergence and explain how this split has gradually favoured a Hilbertian 
position. Ultimately, I argue that the image of mathematical knowledge should be 
re-situated within a broader epistemological framework, one that acknowledges 
the reductive assumptions underlying its formal structures. These omissions, far 
from negligible, reveal vulnerabilities that may threaten the very foundation of 
mathematical knowledge. 

Regarding the literature, the Brouwer-Hilbert dispute has been extensively 
studied, covering the historical controversy between their schools of thought as 
well as the broader contemporary tension between intuitionism (or constructivism) 
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and formalism4, particularly concerning the status of axioms on both sides5. Our 
concern here, however, is to investigate a possible philosophical link between these 
two approaches, which were initially separated by epistemological considerations 
and divergences of mathematical practice. Even if various forms of synthesis have 
been attempted from a mathematical point of view, for instance by integrating 
constructive structures into classical results6, the philosophical question of how 
intuitionism and formalism might be bridged remains unclear. Recent studies have 
explored such possibilities by focusing on the refined Kantian underpinnings of 
mathematical intuitionism and the interpretative shifts that led to the success of the 
Hilbertian vision, while the emergence of Homotopy Type Theory has re-contextualised 
the Brouwerian legacy as a robust framework for constructive mathematics7. Therefore, 
this inquiry aims to outline a possible route of co-existence, beginning from the 
knowledge–ignorance opposition and the Kantian influence shared by both thinkers. 

II. Axiomatic Tensions and the Epistemic Divide Between Intuitionism and Formalism 

The foundational dispute between formalism and intuitionism8 from the 
beginning of last century revealed among other aspects how contrasting conceptions 
of knowledge and ignorance can unsettle the apparent solidity of mathematics. For 

 
4 Important references on the tensions between intuitionism (or constructivism) and formalism (or 

classical mathematics) include P. Mancosu (ed.), From Brouwer to Hilbert: The Debate on the Foundations 
of Mathematics in the 1920s, New York, Oxford University Press, 1998; Michael Dummett, Elements of 
Intuitionism, Oxford, Oxford University Press, 1977; and Arend Heyting, Intuitionism: An Introduction, 
Amsterdam, North-Holland Publishing Company, 1956. 

5 Discussions on the status of axioms in intuitionism and their epistemic implications in mathematics can 
be found in A. S. Troelstra and D. van Dalen, Constructivism in Mathematics: An Introduction, Vol. I, 
Amsterdam, Elsevier Science Publishers, 1988; for a more technical analysis, see A. S. Troelstra, “Axioms 
for Intuitionistic Mathematics Incompatible with Classical Logic”, in R. E. Butts and J. Hintikka (eds.), Logic, 
Foundations of Mathematics, and Computability Theory, Dordrecht, D. Reidel Publishing Company, 1977, 
pp. 59–86. 

6 See, for example, the texts in S. Shapiro (ed.), Intensional Mathematics. Studies in Logic and the 
Foundations of Mathematics, Vol. 113, Amsterdam, Elsevier Science Publishers B.V., 1985. 

7 For a detailed reappraisal of these foundational tensions, see Carl J. Posy, Mathematical Intuitionism, 
Cambridge, Cambridge University Press, 2020; Paolo Mancosu, The Adventure of Reason: Interplay 
between Philosophy of Mathematics and Mathematical Logic, 1900-1940, Oxford, Oxford University 
Press, 2010; and The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations 
of Mathematics, Princeton, Institute for Advanced Study, 2013. 

8 For a general historical context of the Grundlagenkrise at the turn of the 19th–20th centuries, see, e.g., 
I. Grattan-Guinness, The Search for Mathematical Roots: 1870–1940: Logics, Set Theories, and the Foundations 
of Mathematics from Cantor through Russell to Gödel, Princeton, Princeton University Press, 2000. 
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instance, what formalists present as stable epistemic ground, established through 
the axiomatic method, is regarded by intuitionism as a linguistic surface that conceals 
deeper indeterminacies and ignores the real source of mathematics, namely the 
mental faculty of intuition9. In Brouwer’s view, these states of indeterminacy are 
inherent to mathematics, contrary to the image of completeness, and they appear 
mostly when we operate with the concept of infinity. This clearly suggests that the 
Hilbertian side tends to ignore, in the form of unrecognised ambiguity of mathematical 
reasoning, what resides at the very heart of what is classically considered rigour. 
From the formalist perspective, such cases of indeterminacy reflect a deficiency or 
limitation of our previous formal systems in fully articulating and systematising 
knowledge, a shortcoming that the axiomatic method seeks to overcome. Thus, 
there is no need to proclaim a crisis in mathematics or the necessity of reconstructing 
it entirely. Ultimately, the opposition rests not merely on methodological differences 
regarding the norms admitted for doing mathematics, but more generally on 
seemingly incompatible epistemological commitments regarding the nature of 
mathematical knowledge. For Hilbert, mathematics is fundamentally tied to the 
possibility of formalising its content in a consistent and complete manner, with 
axioms, rules of inference, and formulas systematically structured, and with the 
conviction that the semantics can be entirely captured within this linguistic 
framework. Intuitionism, for its part, offers non-classical modes of construction based 
on intuitive insights that challenge the assumption of completeness and expose the 
blind spots of formal abstractions. 

Among the key points of contention between intuitionism and classical 
mathematics are the unrestricted use of certain logical laws, most notably the 
principle of the excluded middle, particularly when applied to transfinite sets, the 
interpretation and mathematical treatment of infinity, and differing conceptions 
of intuition. Yet perhaps the most profound divergence concerns the status of 
the axiomatic method, upheld by Hilbert and sharply contested by Brouwer10. The 
intuitionist critique, particularly during the Grundlagenkrise, elicited markedly different 
reactions within the scholarly community, depending on how mathematicians assessed 
both the severity of the problems confronting the classical conception and the 

 
9 Brouwer consistently argued that temporal intuition should serve as the primary source of mathematical 

knowledge. Across his career, he attempted to establish a constructive method based on the essential 
properties of intuitive evidence. See, for example, L. E. J. Brouwer, “On the Foundations of Mathematics”, 
in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975, p. 53; and L. E. J. 
Brouwer, “Intuitionism and Formalism”, in Collected Works, Vol. I, p. 127. 

10 L. E. J. Brouwer, “On the Foundations of Mathematics”, pp. 92–95, and “Formalism and Intuitionism”, 
pp. 123–138, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975. 
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possible strategies for resolving them. Some, like Weyl11, recognised the importance 
of exposing the epistemic fissures in the classical image of the continuum. In this 
view, previous atomistic descriptions of the continuum no longer met the rigour of 
constructive reasoning, as mainly established by Brouwer. Others maintained that 
the foundational crisis could be simply addressed by refining classical tools, 
especially through the adjustment of axiomatic systems, to prevent the emergence 
of antinomies and preclude various forms of indeterminacy. While Brouwer’s initial 
doubts evolved into an ambitious project to reconstruct mathematics on intuitionistic 
grounds, his alternative vision gradually lost momentum, though its critical potential 
continues to be influential today. Ongoing debates about constructive procedures, 
the study of impredicative definitions, and scepticism toward certain logical 
principles continue to reflect its enduring legacy.  

One of Brouwer’s most radical claims in his early writings12 was that the use 
of axioms, i.e. foundational statements assumed without proof, should be entirely 
avoided in mathematical constructions, as they merely formalise ideas already 
known through intuition without providing additional evidence. A clear example 
comes from arithmetic, where he rejected axiomatic foundations13, in favour of 
constructions directly derived from the primordial intuition of time (ger. Ur-
Intuition)14, thereby grounding the generation of natural numbers on a philosophical 
framework15. For Brouwer, formalisation, especially that built upon Hilbertian ideals of 
completeness and consistency, did not represent either the starting point of 
mathematical construction or the authentic medium of reasoning, but rather an 

 
11 H. Weyl, “On the New Foundational Crisis of Mathematics”, in P. Mancosu (ed.), From Brouwer to 

Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York, Oxford University 
Press, 1998, pp. 86–118. 

12 See L. E. J. Brouwer, “On the Foundations of Mathematics”, pp. 77–81, and “Intuitionism and 
Formalism”, p. 125, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975. 
Later, he recognised the utility of axioms in Heyting’s formalisation of intuitionistic mathematics, 
although in his own writings he continued to avoid them. 

13 As classically formalised in arithmetic by G. Peano, or in the logical approach of Bertrand Russell, 
The Principles of Mathematics, London, Bradford & Dickens, 1942, p. 128. 

14 The foundational stages of mathematics, grounded in temporal intuition, are articulated by 
Brouwer through what he calls the two acts of intuitionism, as presented in his work “Historical 
Background, Principles and Methods of Intuitionism”, in South African Journal of Science, 49 / 1952, 
South African Association for the Advancement of Science, pp. 140–142. 

15 More specifically, the philosophical method used here could be seen as a form of genetic 
constructivism, meaning that the origin of mathematics must be established in correspondence 
with certain foundational mental phenomena, such as the perception of change in time. Even if 
some commentators have interpreted this as a form of psychologism, however, I endorse the 
explanation from M. van Atten, On Brouwer, Belmont, Wadsworth Philosophers Series, 2004, pp. 
72–76, that Brouwer had in mind transcendental phenomena, and not empirical ones. 
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arbitrary linguistic rendering of our intuitions16. From an epistemological perspective, 
intuitionism challenges the formalist conviction that axioms define the absolute 
limits of mathematical knowledge within which the reasoning operates. Such a 
manner of establishing boundaries in mathematics according to criteria that carry 
no intrinsic meaning beyond their syntactic function may itself be regarded as a 
form of ignorance, since it imposes an arbitrary condition that requires one to 
overlook intuitive insights17. 

Hilbert’s decision to renounce any kind of meaning to the mathematical 
objects derived from an external source marked an essential step in safeguarding 
mathematics from potential sources of error. Accordingly, he regarded the 
complete elimination of such external meanings as the best means of overcoming 
epistemic vulnerabilities, since they did not belong to the content of mathematics as a 
pure formal discipline. This act followed from Hilbert’s conviction that axiomatisation 
constitutes the most reliable path to secure the foundations of mathematics. As a 
natural consequence, his objective was to establish the whole of mathematics on a 
universal basis through the adequate choice of axioms. These axioms would 
generate a set of sentences that would be consistent and complete, relying on the 
mechanical manipulations prescribed by the rules of inference rather than on 
intuitive guidance. Although Hilbert acknowledged the heuristic role of intuition, he 
confined it to the restricted status of intellectual recognition of symbolic tokens, 
relevant at a pre-mathematical stage but epistemically insecure and undesirable later 
on. As Kreisel observed: “Hilbert’s programme begins where the semantic leaves off”18, 
thus representing a clear shift that dissolves all variations of meaning into purely 
formal language governed by syntactical rules. Moreover, driven by the ambition 
that every major mathematical problem could ultimately be solved, i.e. we have 
either a proof or a disproof for every well-formed formula A, Hilbert’s approach 
reflected a deeply positivist stance. In The Knowledge of Nature, he famously 
declared: “For the mathematician there is no ignorabimus... We must know. We 

 
16 L. E. J. Brouwer, “Intuitionism and Formalism”, in Collected Works, Vol. I, p. 128: “(...) neither the 

ordinary language nor any symbolic language can have any other role than that of serving as a non-
mathematical auxiliary”. 

17 In formalism, such formulas serve purely syntactical functions, with no semantic content. See David 
Hilbert, “On the Infinite”, in Philosophy of Mathematics: Selected Readings, p. 197: “The symbols 
of the logical calculus originally were introduced only in order to communicate. Still it is consistent 
with our finitary viewpoint to deny any meaning to logical symbols, just as we denied meaning to 
mathematical symbols, and to declare that the formulas of the logical calculus are ideal statements 
which mean nothing in themselves”. 

18 G. Kreisel, “Foundations of Intuitionistic Logic”, in E. Nagel, P. Suppes and A. Tarski (eds.), Logic, 
Methodology and Philosophy of Science, Stanford, Stanford University Press, 1962, p. 201. 
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shall know”19. As a reason for the rejection of the possibility of inherent epistemic 
limits regarding the completeness of mathematics, Hilbert considered the axiomatic 
method as part of a broader scientific optimism of his time, inspired by breakthrough 
discoveries such as the theory of relativity and radioactivity. Within this historical 
atmosphere, mathematics was envisioned as the ultimate foundation of the natural 
sciences20, and axioms were intended to preserve this apodictic character of 
mathematical status at any cost. This conviction had practical consequences in the 
development of mathematics: principles such as the Axiom of Infinity or the Axiom 
of Choice21, though lacking constructive or intuitive justification, provided powerful 
tools that decisively influenced the axiomatisation of arithmetic, set theory and 
analysis. Ultimately, the authority of axioms in mathematics rested not on their 
semantic clarity, but on their syntactic efficiency and fruitfulness.  

In his 1912 inaugural lecture Intuitionism and Formalism, Brouwer contested 
the prevailing formalist approach to the foundations of mathematics. More specifically, 
he argued that axiomatic systems fail to resolve the emergence of paradoxes, such 
as those stemming from the axiom of comprehension (or inclusion) in ZFC set 
theory, as well as various instances of vicious reasoning, like the axiom of induction 
in number theory22. For Brouwer, mathematical truth derives directly from intuitive 
constructions, not from the mere absence of contradiction within a linguistic 
framework. Making consistency within formal reasoning the sole criterion for 
mathematical validity, as Hilbert did, illegitimately subordinates mathematics to its 
linguistic representation. Moreover, Brouwer regarded completeness as a property 
of linguistic expressions rather than of mathematics itself. In Hilbert’s vision, to 
achieve completeness within a formal system, every mathematical well-formed 
formula must be decidable: given any formula A, one must be able either to construct 
a proof of A or to derive a contradiction from its proof. In other words, tertium non 
datur must apply to every possible mathematical statement in our set of formulas. 

 
19 D. Hilbert, “Logic and the Knowledge of Nature”, in W. Ewald (ed.), From Kant to Hilbert. A Source 

Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, p. 1165. 
20 This reflects Kant’s claim that mathematics defines the very possibility of genuine science. See I. 

Kant, Metaphysical Foundations of Natural Science, M. Friedman (ed.), Cambridge, Cambridge 
University Press, 2004, p. 6: “In any special doctrine of Nature there is only as much genuine science 
as there is mathematics”. 

21 See E. Zermelo, “Untersuchungen über die Grundlagen der Mengenlehre I”, in Mathematische 
Annalen, 65 / 1908, B. G. Teubner, pp. 261–281. For a discussion on their non-constructivity, see 
M. Dummett, Elements of Intuitionism, Oxford, Clarendon Press, 1977, pp. 52–55. 

22 For example, Brouwer pointed to paradoxes such as the Burali-Forti paradox, concerning the well-
ordering of sets, and the axiom of induction, which becomes impredicative in the formalist account. 
For further references regarding the axioms admitted by Hilbert, see L. E. J. Brouwer, “Intuitionism 
and Formalism”, in Collected Works, Vol. I, p. 133. 
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As an objection to this ideal, Brouwer offered several counterexamples, including the 
unresolved question of whether the digit sequence “0123456789” appears in the 
infinite decimal expansion of π, to show his point by highlighting the limits of 
classical logic and completeness23. This proposition is currently neither provable nor 
disprovable, since there is no constructive method to verify or refute the presence of 
this sequence in the decimal expansion of π. Even if the sequence were eventually 
located at some stage k of a constructive enumeration of the digits24, one could 
simply replace it with another sequence not yet encountered by stage k, thereby 
preserving the indeterminacy. Such examples illustrate that questions about infinite 
collections inevitably give rise to indeterminacy, as long as we want to talk meaningfully 
from an intuitive viewpoint about these kinds of sets. Unlike Hilbert, who formalised 
transfinite sets as complete mathematical objects25, Brouwer maintained that infinite 
sets, such as the decimal expansion of π, cannot be meaningfully captured without 
acknowledging this inherent context of indeterminacy. This is not merely a practical 
limitation arising from our inability to examine every element of infinite sets, but a 
principled one: there exists no rule that fully determines the generation of all 
elements of such a set in a constructive manner.  

To illustrate this contrast, let us briefly examine Hilbert’s axiomatic approach 
to transfinite sets through the operator τ, introduced to reconcile infinite totalities 
with finitary mathematics. Hilbert acknowledged the need for a distinct axiomatic 
approach to the transfinite sets, yet insisted that such reasoning must be reducible 
to finite methods: “the free use and the full mastery of the transfinite is to be 
achieved on the territory of the finite”26. Consequently, he proposed a transfinite 
axiom, formulated as A(τA) → A(a), which allows the inference that if a predicate A 
applies to some specific object τA, then it applies to all objects a27. In other words, 
τ represents an arbitrary object satisfying property A and serves as a generic 

 
23 L. E. J. Brouwer, “The Unreliability of the Logical Principles”, in A. Heyting (ed.), Collected Works, 

Vol. I, Amsterdam, North-Holland, 1975, p. 110. 
24 Meanwhile, this sequence was indeed found, but, as we have seen, it can be replaced with one that 

does not appear in the decimal expansion of π (see D. E. Hesseling, Gnomes in the Fog: The 
Reception of Brouwer’s Intuitionism in the 1920s, Basel, Springer, 2003, p. 71). 

25 D. Hilbert, “On the Infinite”, in Philosophy of Mathematics: Selected Readings, pp. 198–199. 
26 D. Hilbert, “The Logical Foundations of Mathematics”, in W. Ewald (ed.), From Kant to Hilbert.  

A Source Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, p. 1140. 
27 To clarify this axiom, Hilbert uses the example of the predicate "bribable": if τA designates an ideally 

just person for whom it has been proven that they are bribable, then, according to the axiom A(τA) 
→ A(a), it follows that all people are bribable. From an intuitionistic perspective, however, this 
inference appears meaningless, since such an ideal instance says nothing about the actual bribability of 
other individuals. The example reveals the gap between formal generalisation and intuitive meaning, 
highlighting how the transfinite operator abstracts away from constructive content (Ibid., p. 1141). 
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placeholder, allowing quantified statements to be reduced to finitary terms and 
supporting the formalisation of transfinite reasoning within finite logic. This enables 
inferences from τ-objects to general domains, aiming to preserve consistency and 
completeness, even when dealing with infinite sets. However, from an intuitionistic 
position, this apparently elegant technique fails to resolve the epistemic ambiguity 
of the infinite. For instance, if A denotes the property “every possible finite digit 
sequence appears in the decimal expansion of π”, then τA would designate a 
hypothetical decimal expansion satisfying A. By the axiom A(τA) → A(a), one could 
infer that this property holds for all decimal expansions, seemingly addressing 
the earlier counterexample to the law of the excluded middle. Yet from Brouwer’s 
perspective, this inference does not address how or when such a sequence as 
“0123456789” actually appears. It merely postulates existence implicitly, without 
constructive proof. Thus, the τ-operator shifts the problem into formal language, 
bypassing intuitive justification. Infinite entities, in the intuitionist view, lack meaning 
unless constructively supported. While such axioms give the appearance of 
completeness, they remain detached from constructive grounding, relying on the 
law of the excluded middle without restriction, a principle whose absolute validity 
Brouwer confines to finite reasoning. His critique of formal axiomatic notions, such 
as the τ-operator, thus exposes ambiguities in formalist foundations and underscores 
the need to reconsider the limits imposed by intuition. 

III. Pragmatic Success vs Epistemic Limits 

To understand why formalist practices continue to shape the prevailing 
image of mathematics, while intuitionistic perspectives are often marginalised or 
regarded as historical curiosity, I will adopt a pragmatic method of comparison 
between these two foundational positions. Drawing on approaches from formal 
epistemology28, this method evaluates the main strengths of each perspective, 
especially regarding the acceptance and use of axiomatic systems, via a structured 
comparative table, which may be further extended. The purpose is not to claim 
strict objectivity, but rather to highlight which framework currently offers greater 
epistemic utility in the foundations of mathematics. Therefore, in the current 

 
28 For example, D. Lewis employed a similar approach by pragmatically arguing that possible worlds 

should be regarded as equally real as our actual world, since this assumption better serves formal 
understanding. See D. Lewis, On the Plurality of Worlds, Oxford, Basil Blackwell, 1986, pp. 3–5 (Ch. 
1, “A Philosopher’s Paradise”). In a comparable manner, Hilbert admitted the unrestricted notion 
of the transfinite to preserve and extend the developments initiated by Cantor in set theory. 
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context, mathematical utility serves as the principal criterion for assessing the use 
of axioms. Utility is understood in terms of practical advantages, such as the ease 
of integrating existing results, generating new theorems, the effectiveness of proof 
techniques, and sustaining productive mathematical development. 

Before presenting Table 1, two clarifications are in order. First, the scoring 
system, based on an arbitrary scale from 0 to 15 points for illustrative purposes, is 
not intended as a rigorous evaluation of the arguments themselves. The goal is 
instead to provide a broader perspective on the conflict between intuitionism and 
formalism and to explore some of its immediate consequences in mathematics. 
Within this framework, pragmatic considerations must be the factor explaining the 
enduring dominance of the formalist image of mathematics, which will serve as 
the primary focus of analysis. Second, the scores should be regarded as flexible, 
approximate estimates, reflecting relative epistemic weight rather than absolute 
values. For example, if intuitionism were able to provide a compelling alternative 
to classical theorems, its score would increase substantially. In the current context, 
however, certain structural advantages of formalism, such as the preservation and 
consolidation of important classical results through axiomatic systems, constitute 
fairly objective benefits. By contrast, the richer semantics offered by intuitionism, 
while philosophically significant and valuable in constructive analyses, does not 
exert the same impact on mainstream mathematical practice. In moving beyond a 
purely descriptive account, the following table proposes a decision-theoretic lens 
through which to identify the specific utility thresholds that favoured the formalist 
image of mathematics. This heuristic reveals how the prioritisation of different 
epistemic values, such as constructive clarity versus axiomatic efficiency, fundamentally 
shapes the resulting conception of mathematical knowledge. 

 
Table 1. Arguments Accounting 

 
No.  Argument / 

Criterion 
Intuitionism Pts. Formalism Pts. 

1 Consolidation and 
preservation of 
previous results 

Theorems and propositions 
are partially reconstructed 
and generally weakened 
due to constructive 
constraints 

5 Results are easily 
reproducible and 
reinforced within 
axiomatic systems 

13 

2 Epistemic 
foundation of 
constructions 

Grounds mathematical 
activity in meaningful 
concepts (e.g. Ur-
Intuition) that provide 
direct epistemic 
justification 

7  Axioms are accepted 
for their efficiency and 
clarity, without 
additional semantic 
justification 

4 
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No.  Argument / 
Criterion 

Intuitionism Pts. Formalism Pts. 

3 Completeness 
and theoretical 
adaptability 

Cannot reconstruct many 
classical theories (e.g. 
Cantor’s transfinite set 
theory and certain axioms 
from real analysis); the 
system is conservative 
and restricts the uncritical 
acceptance of new 
mathematical objects 

4  Covers a large part of 
classical mathematics 
and can easily 
integrate extensions, 
new theories, and 
additional axioms  
(e.g. ZFC, type theory) 

11 

4 Recognition of 
epistemic limits in 
mathematics 

Acknowledges 
irresolvable problems and 
treats notions such as 
infinity, the existential 
quantifier, and the 
application of logical laws 
with appropriate 
restrictions. 

8 Tends to conceal  
such limits, promoting 
unlimited confidence 
in the power of 
axiomatic systems 

6 

Sum   24  34  

 
 
As the table indicates, one of formalism’s major strengths lies in its ability 

to preserve and extend prior mathematical achievements without necessitating 
radical reconstruction. Thus, the formalist approach emphasises the continuity between 
established results and the axioms from which they are derived. Key examples 
include postulates like Zermelo’s Axiom of Choice and set-theoretical results such 
as Cantor’s construction of transfinite sets. As long as intuitionism cannot provide 
alternatives with comparable rigour and simplicity without simultaneously discarding 
results that are mathematically valid yet lack intuitive justification, it struggles to 
assert an objectively superior position in foundational debates. The mere fact that 
certain objects, such as higher cardinalities, cannot be meaningfully described does 
not, from the standpoint of mathematical utility, justify dismissing them wholesale 
as erroneous. In this regard, formalism possesses a clear pragmatic raison d’être, 
ensuring both continuity and productivity in mathematical research. From Brouwer’s 
perspective, however, this pragmatic advantage conceals a deeper epistemic flaw: 
the detachment of mathematical knowledge from the intuitive meaning that 
endows it with valid significance. The demand for ubiquitous intuitive meaning, 
moreover, may reflect a philosophical commitment rather than mathematical 
necessity. For intuitionism, meaning must accompany every formal manipulation; 
semantic grounding in intuitive capacities is not optional but essential for legitimate 
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mathematical construction. Brouwer’s critique thus exposes not only the limits of 
formal reasoning but also the inherent difficulty of reconstructing the edifice of 
classical mathematics on purely intuitionistic foundations.  

Our analysis reveals a dual tension: while formalism ensures stability and 
extensibility, intuitionism uncovers the hidden vulnerabilities underlying formal 
precision. Each framework thus embodies both strengths and weaknesses. Formalism 
ensures continuity and wide applicability, but at the cost of detaching mathematics 
from its intuitive origins. Intuitionism, by contrast, preserves epistemic authenticity 
grounded in our intuitive mental capacities, yet struggles to reconstruct and extend 
certain classical results. This interplay highlights the intrinsic limits of formal 
foundations, where aspects such as intuitive insights, emphasised by Brouwer and 
dismissed by Hilbert, are systematically overlooked. Paradoxically, this very omission 
has become a decisive advantage: by privileging clarity, generality, and technical 
effectiveness, formalism has enabled the expansion and eventual dominance of 
mathematics.  

IV. Kantian Roots as a Basis for Revisiting the Brouwer–Hilbert Controversy 

As we have seen, intuitionism challenges the traditional image of mathematics 
as a complete and determinate body of knowledge, exposing fissures within formal 
reasoning. Although it offers valuable insights into the limits of mathematical 
knowledge, intuitionism has not established a sufficiently robust alternative to the 
dominant formalist paradigm. Our analysis so far has examined the epistemic and 
methodological divergences between these two perspectives, aiming to explain, 
from a pragmatic standpoint, how formalism achieved success with axiomatic 
method, despite its detachment from intuitive meaning. In this final part of the 
paper, we turn to a shared historical root: the distinct interpretation of Kant’s 
philosophy of mathematics. Both Brouwer and Hilbert drew on Kantian ideas, yet 
they interpreted them in radically different ways, ultimately developing opposing 
visions of mathematical knowledge. These divergent readings reveal their contrasting 
approaches to epistemic limits and the role of ignorance, as each thinker emphasised 
particular elements of Kant’s perspective while neglecting others. Understanding 
this interpretative shift clarifies how these parallel approaches shaped the trajectories 
that formalism and intuitionism ultimately followed. Adopting a Kantian root also 
allows us to see formalism and intuitionism not simply as radically opposed, but as 
distinct elaborations of shared philosophical foundation. This lens explains why 
their debate was so sharp, each side selecting one dimension of Kant’s thought in 
contrast to the other, while also showing that both schools could legitimately claim 
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philosophical grounding in his legacy. Overall, revisiting their Kantian roots provides 
a deeper, more integrated understanding of how these seemingly incompatible 
positions emerged from a common philosophical background. 

According to Țurlea, “The Kantian philosophy of mathematics inspired 
divergent and even rival foundational programmes: Fregean logicism, Hilbertian 
formalism, and Brouwerian intuitionism”29. Hilbert, for instance, developed his 
conception of geometry and mathematics more broadly, by explicitly invoking 
Kant’s dictum that “all human knowledge begins with intuitions, proceeds through 
concepts, and ends with ideas”30. Brouwer, in contrast, sought a more radical 
reading of Kant, grounding mathematics entirely in temporal intuition, which he 
regarded as its authentic source. Neither thinker derived their positions systematically 
from Kant, yet both were influenced by his ideas. For Hilbert, Kant’s legacy provided 
justification for the formalisation and systematic organisation of mathematics; for 
Brouwer, it supported a return to the mind’s intuitive, pre-conceptual activity. A 
schematic reading of Kant’s sequence, from intuition to concepts and finally to 
ideas, elucidates how each thinker reinterpreted these stages to demarcate the 
limits of mathematical knowledge.  

intuitions → concepts → ideas 

Interpreting Kant’s sequence in two different ways clarifies how this shared 
philosophical root influenced Hilbert’s and Brouwer’s view of the origin and epistemic 
status of mathematics, particularly regarding the adoption of axioms. First, Hilbert 
interpreted these stages hierarchically, as a progressive ascent in which each level 
contributes increasing clarity. In this framework, intuition serves only a preliminary 
role, limited to the recognition of symbol strings, before being superseded by 
formal concepts and, ultimately, the pure ideas of reason, such as mathematical 
infinity. Accordingly, Kant’s epistemic sequence provided Hilbert with a rationale 
for grounding mathematics primarily in formal concepts rather than intuition. He 
therefore situated the limits of mathematical knowledge after the initial stage, 
holding that mathematics should be built from pure concepts stripped of intuitive 
content. As a consequence, axioms are not intended to capture any intuition; 
instead, they function to ensure internal coherence and universality, allowing a 
systematic exploration of mathematical ideas free from uncertainty. 

 
29 M. Țurlea, Filosofia matematicii, București, Editura Universității din București, 2002, p. 195. 
30 Ibid., p. 209. Note that this is a paraphrase of Kant’s original formulation, which refers to “sensibility” (or 

“sensation”) rather than “intuition” as the initial stage of knowledge (I. Kant, Critique of Pure Reason,  
P. Guyer and A. W. Wood (eds.), Cambridge, Cambridge University Press, 1998, A298/B355, p. 387). 
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Brouwer regarded Hilbert’s interpretations as epistemically flawed. In his 
dissertation31, he argued that mathematics is founded entirely in mental acts, with 
intuition serving not as a preliminary step but as the primary and genuine source of 
truth during the construction of mathematical reasoning. As he wrote: “the only 
possible foundation of mathematics must be sought in this construction, under the 
obligation carefully to observe which constructions intuition allows and which 
not”32. For Brouwer, intuition cannot be treated as a source to be later discarded, 
since the ultimate meaning of mathematics depends entirely on its presence. 
Concepts and ideas are valid only insofar as they carry intuitive content; they serve 
merely as tools to encode, communicate, and recall previous constructions, with 
their significance deriving primarily from the unfolding of intuition itself. Hence, in 
Brouwer’s intuitionism, this schema must be understood as a derivative structure, 
in which intuition is primary, while concepts and linguistic ideas are essentially auxiliary. 
The epistemic boundary, in this case, lies between intuition and conceptualisation, 
whereas in Hilbert’s framework, mathematics begins only after the intuitive step, 
once formal language has been established. These constitute two opposed directions 
of development along the Kantian sequence. Finally, Brouwer emphasised this limit to 
highlight that formal language alone can be misleading, suggesting clear scepticism 
about its ability to generate valid mathematical knowledge in comparison with 
direct intuitive construction, an approach which is, in some respects, more faithful 
to Kant’s original intentions33. Significantly, we must distinguish Kant’s formalist 
stance on general logic from his requirements for mathematics. Drawing on 
MacFarlane’s analysis of logical hylomorphism, we observe that Kant characterises 
general logic as formal precisely because it must abstract from all semantic content 
to function as a constitutive norm for thought34. Since such logic remains epistemically 
blind to objects, valid mathematical knowledge conversely requires a content-
based (transcendental) logic rooted in pure intuition, anticipating Brouwer’s rejection 
of empty formalism. 

 
31 L. E. J. Brouwer, “On the Foundations of Mathematics”, in Collected Works, Vol. I, p. 52. 
32 Ibid., pp. 94–95. 
33 Kant was indeed, with respect to pure linguistic constructs, an anti-formalist, as we can see in his 

critiques of the metaphysicians who created philosophical systems in forced correspondence with 
the results of science, for instance, those from astronomical calculations, calling them “subtle fictions 
which have no truth to them outside the field of mathematics” (See I. Kant, “Inquiry Concerning the 
Distinctness of the Principles of Natural Theology and Morality”, in D. Walford and R. Meerbote 
(eds.), Theoretical Philosophy, 1755–1770, Cambridge, Cambridge University Press, 2000, p. 168). 

34 For a detailed analysis of how Kant’s conception of generality implies the complete formality of 
logic, see J. G. MacFarlane, What does it mean to say that Logic is Formal?, PhD Thesis, Pittsburgh, 
University of Pittsburgh, 2000, pp. 79–81. 
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At least two Kantian-based factors can explain why Hilbert’s formalist 
interpretation prevailed. First, formalism, and other foundational schools such as 
logicism, considered intuition as an unstable and equivocal notion to serve as a 
reliable foundation for mathematical knowledge, privileging instead the clarity and 
universality of logical principles and formal language. This orientation fostered a 
shared epistemic framework that unified the mathematical community, gradually 
marginalising intuitionism as a deviation from the classical norms. The transparency 
of formal reasoning and the unrestricted application of logical laws provided 
Hilbert’s approach with a pragmatic and institutional advantage, supporting its 
consolidation and success. Moreover, the areas of mathematics which were detached 
from intuitive meaning35 and against intuitionism’s criteria of validation developed 
consistently and could not be reconstructed satisfactorily. The choice to renounce 
these areas was a matter of preference rather than a real mathematical necessity. 
Second, Brouwer positioned himself more as a philosopher seeking to actualise 
Kant’s legacy by grounding mathematics entirely in intuitive acts. His interpretation 
was guided by a philosophical demand, in which the mental faculties establish a 
direct epistemic relationship with mathematical constructions. In contrast, Hilbert 
sought to consolidate his existing mathematical edifice through eventual philosophical 
justification, representing an opposite approach to establishing the foundations of 
this domain. Consequently, while Hilbert drew on Kant to justify axiomatic clarity, 
Brouwer rejected this manner of reading the German philosopher, insisting that the 
concept of intuition, although modified and actualised, must remain the foundational 
basis of mathematics. Their divergent interpretation had implications in various 
areas of mathematics, such as the problem related to non-Euclidean geometries: 
for intuitionism, it exposed the limits of axiomatic systems and underscored the 
need to ground mathematics in intuition, as a more universal faculty from which 
we can take various perspectives on the structure of space, whereas Hilbert treated 
it as a challenge to refine and complete the system of axioms, a strategy that 
ultimately proved to be more influential. Ultimately, Hilbert’s vision benefited from 
the universality and malleable character of axioms, while Brouwer’s intuitionism 
faced challenges by relying on the philosophical notion of intuition, which is 
debatable and imposes significant constraints.  

Yet formalism’s dominance has not extinguished intuitionistic inquiry. Even 
within its internal coherence and impressive capacity for systematic development, 
mathematics conceived purely formally retains zones of epistemic opacity. These 
gaps, though not immediately destabilising, allow the system to operate without 
confronting foundational ambiguities that Brouwer insisted could not be overcome 

 
35 For example, set-theoretic arithmetic based on higher cardinalities demonstrates how certain mathematical 

constructions, though formally consistent, extend beyond the bounds of intuitive evidence. 
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by formalism. In turn, the polished image of mathematics as seamless and complete 
thus relies on bracketing questions of intuitive meaning, questions that remain 
essential for a deeper understanding of its foundations. At the core, the tension 
between formalism and intuitionism centres on the epistemic status of intuition as 
a limit of knowledge: should it be regarded as constitutive of the entire edifice of 
mathematical truths, or merely as a preliminary guide to a system of formal entities 
whose further external significance is suspended? Ultimately, this divergence 
directly affects how indeterminacy is treated, because if we confer authority to our 
intuition, then we must conclude that these results of incompleteness are inherent 
to mental construction. In this light, intuitionism functions as a critical counterpoint, 
highlighting the reductive assumptions embedded within formal structures and 
providing a framework for reassessing classical mathematics from an intuitive 
perspective. Although it cannot replace formalist practice, it continues to challenge 
its basic assumptions. As Bourbaki once remarked, intuitionism may eventually 
become a “historical curiosity”36, but only after classical mathematics has addressed 
the foundational uncertainties it reveals, underscoring that the polished image of 
mathematical knowledge rests on selective omission and epistemic compromises. 

By tracing the Kantian sequence, we can see how both Brouwer and Hilbert 
developed their positions through different ways of setting limits on the foundations 
of mathematics. A possible way to balance their seemingly opposing interpretations is 
to keep these boundaries as open and flexible as possible: to cultivate intuition in 
relation to formal structures without restricting the latter, especially when they 
prove consistent and mathematically fruitful. In this way, formal results may be 
seen not as opposed to intuition but as potential paths still awaiting fulfilment from 
an intuitive standpoint. Recognising the limitations and blind spots of formalism allows 
us to appreciate the epistemic value of intuitionistic critique, not as an alternative 
system to replace classical methods, but as a lens to expose the assumptions (or their 
absence) underlying them. By situating mathematical knowledge within a broader 
epistemological framework, informed by a Kantian understanding of intuition, 
concepts, and ideas, we can acknowledge both the power of formal structures and 
the irreducible role of intuition in shaping mathematical understanding. This 
perspective shows that the apparent dichotomy between formalism and intuitionism 
is not absolute; rather, it reflects complementary insights into the ways humans 
construct, justify, and interpret mathematical truth. Ultimately, embracing this 
dual awareness fosters a more reflective and philosophically grounded conception of 
mathematics, one that preserves rigour while remaining attentive to its foundational 
ambiguities. 

 
36 N. Bourbaki, Éléments d’histoire des mathématiques, Paris, Hermann, 1960, p. 56: “L’école intuitionniste, 

dont le souvenir n’est sans doute destiné à subsister qu’à titre de curiosité historique...”. 
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V. Conclusion 

Returning to our preliminary question, we now ask what truly distinguishes 
knowledge from ignorance in the foundations of mathematics? In certain domains, 
clear norms apply: empirical validation in natural sciences, moral action in ethics, 
or effective organisation in politics. On the other hand, in mathematics the validation 
criteria are non-experiential and diverge sharply from these examples. For Hilbert, 
knowledge is equated with formal provability, based on sets of axioms and rules of 
syntactic derivations. Intuitionism grounds proof in constructive acts of the mind 
rather than formal manipulations. Each approach thus advances a distinct epistemic 
ideal: one that values the universality of formal language, the other that emphasises 
the evidential force of intuitive construction. The opposition becomes especially 
acute in the case of axioms, which formalism treats as defining the boundaries of 
mathematical reasoning, while intuitionism sees them as potential sources of error. 
Yet the history of mathematics demonstrates the indispensability of axioms, though 
they are no longer preserved in Hilbert’s initial form. Rather than undermining 
mathematics as a linguistic discipline, intuitionism broadens its epistemic roots by 
acknowledging ambiguity and treating indeterminacy as an intrinsic and meaningful 
component of the domain. Such prudence may ultimately offer a wiser and more 
sustainable stance than Hilbert’s unreserved optimism. The debate over foundations 
between intuitionism and formalism does not expose a weakness of mathematics 
per se, but rather indicates a deeper truth: absolute clarity and certainty are 
inseparable from the risk of deliberate ignorance. A Kantian-inspired synthesis of 
intuitionism and formalism encourages us to view mathematics not simply as a self-
sufficient, hierarchically ordered edifice, but as grounded in intuitive construction, 
conceptual meaning, and epistemic limitation. Recognising these limits does not 
diminish the status of mathematics, but completes it within a broader epistemological 
context. As Martin-Löf has noted, the Hilbert–Brouwer controversy has reached a 
form of resolution through developments like the double-negation interpretation 
and the Curry-Howard correspondence37. Furthermore, as Posy suggests, this Kantian-
inspired perspective finds a contemporary revival in the necessity of a humanly 
graspable mathematics. For instance, by acknowledging the temporal and flowing 
character of intuition, characteristics rooted in the Kantian tradition, against the 
splittable nature of the classical set-theoretic continuum, we can reveal the 
transcendental limits of our finite minds as a necessary epistemological constraint 

 
37 P. Martin-Löf, “The Hilbert-Brouwer Controversy Resolved?”, in M. Schirn (ed.), The Philosophy of 

Mathematics Today, Oxford, Clarendon Press, 1998, pp. 243–256. 
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on the reach of formal language38. Today, mathematical knowledge appears as a 
layered structure, balancing formal precision with constructive reasoning. The law 
of the excluded middle is no longer an unquestioned principle, but a contextual tool 
within epistemic boundaries. Ultimately, knowledge and ignorance in mathematics 
are not opposites, but intertwined in a dynamic and evolving process. 
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