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On the Adequacy and Substantiality of the Structuralist Thesis

Adrian LUDUSAN ™

ABSTRACT. The idea that positions in structures have no mathematically significant
non-fundamental features is a constitutive trait of non-eliminative structuralism; it
underpins the restricted structuralist thesis that all fundamental properties are
structural. So, a seemingly straightforward strategy to uphold the eligibility of non-
eliminative structuralism is to prove a formal rendition of the thesis. However, the
soundness of the strategy depends on two key aspects: the thesis has to be
substantial, and materially adequate. The substantiality of the thesis is predicated
on the non-synonymy of fundamental and structural properties. The adequacy is
predicated on the synonymy between the formal definition of fundamental
properties and the intuitive content of the notion. Two remarkable abstractionists
accounts claim to have proven a formal, non-trivial, consistent version of the thesis.
The first one, developed Linnebo and Pettigrew, arguably fails to satisfactorily
accomplish this goal. However, the more formally sophisticated second one,
developed by Schiemer and Wigglesworth, succeeds. This will be focus of the paper.
| am going to argue that, precisely because it proves a non-trivial formal version of
the thesis, their account of fundamental properties fails to be adequate. More
precisely, | will show that the formal specifications of the fundamental properties
needed to ensure the substantiality and soundness of the proof undergenerate and
overgenerate structural properties. In the end, it seems that there is a trade-off
between substantiality and adequacy. The arguments will inform some pessimistic
conclusions about the overall strategy of establishing the eligibility of non-eliminative
structuralism by means of such a proof of the structuralist thesis.
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ADRIAN LUDUSAN
1. The structuralist thesis

The idea that positions or places in structures have no non-structural
properties is a fundamental and constitutive tenet of structuralism in the philosophy
of mathematics. It was formulated over and over by prominent structuralists®.
Benacerraf ‘s assertion?, for example, that ‘the “elements” of the structure have no
properties other than those relating them to other “elements” of the same structure’
is an illustrative formulation of this core trait of structuralism, which has come to be
known as the structuralist thesis. Following the nomenclature, | will call this first pass
of the thesis, the unrestricted structuralist thesis:

The unrestricted structuralist thesis: positions in pure/abstract structures
have only structural properties/relations.

Of course, the thesis needs unpacking, specifically, by an operational
characterization® of structural relations. The characterization employed by Linnebo
and Pettigrew* and Schiemer and Wigglesworth® in their versions of a particular
type of structuralism, namely non-eliminative structuralism®, falls under what
Korbmacher and Schiemer’ call the invariance account of structural properties,
namely that structural relations are those relations that remain invariant under
isomorphism. Such an explication invites a view of pure structures as the result of
a process of abstraction from ‘concrete’ isomorphic systems of objects; in accordance
with the etymology of ‘isomorphic’ and along a non-eliminative structuralist line,
we say that such systems exemplify or instantiate the same ‘form’ or structure.
So, according to these versions of nes, a pure structure is the sediment of isomorphic
systems obtained through abstraction.

Burgess® has convincingly argued that the unrestricted version of the
structuralist thesis is incoherent: consider the (second-order) property of having
only structural properties; according to the unrestricted structuralist thesis,
positions in pure structures enjoy such a property, yet the property is not shared by

See for example (Benacerraf, 1983, p. 291), (Resnik, 1981, p. 530), (Parsons, 2004, p. 57).
(Benacerraf, 1983, p. 291)

Given such characterization, the status of positions could also be clarified.

(Linnebo & Pettigrew, 2014)

(Schiemer & Wigglesworth, 2019)

Henceforth abbreviated by nes. A formal description of nes is provided in the next section.
(Korbmacher & Schiemer, 2018)

(Burgess, 1999)
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the corresponding objects in ‘concrete’ isomorphic systems, as can be easily observed
by inspecting, for example, the properties of the set-theoretic objects, {@, {3}},
{{@}}, playing the role of 2 in von Neumann'’s, respectively Zermelo’s, reconstruction
of the natural numbers. Consequently, having only structural properties is a peculiar,
non-structural property of positions in pure structures. One easy way out of Burgess’s
criticism is to circumscribe the range of relevant properties of positions to first-order
properties. But this manoeuvre, as Linnebo and Pettigrew and Pettigrew® have argued,
cannot account for mundane, first-order, mathematically extraneous properties of
positions such as ‘being John’s favourite number’, ‘being the favourite example of
a mathematical structure’. And such properties are unavoidable for any candidate for
the reference of number theory discourse. Accordingly, the pure properties of positions
have to be further restricted to first-order, ‘intrinsic’'® properties. Obviously, this
move just pushes the problem under the rug of the meaning of ‘intrinsic’, so not
much progress has been accomplished. Instead of providing a rigorous, intuition-
sound definition of ‘intrinsic’, and then a satisfying characterization of the class of
relevant properties of positions by tackling other possible shortcomings, | will follow
Linnebo and Pettigrew, and assume that such a characterization has been provided
under the label of fundamental properties of positions for the sake of articulating
the structuralist thesis. Distilling the discussion in a slogan, the non-eliminative
structuralist adheres to:

The structuralist thesis: positions in pure structures have no
mathematically relevant non-fundamental properties; moreover,
all fundamental properties are structural properties.

Their way!! of establishing the thesis is by proving a formal rendition of it —
called Purity. Of course, a lot of formal work needs to be laid down in order to express
and prove such a thesis. The task of the next sections is precisely that. But the guiding
principle of the effort is that the specification of the class of fundamental properties
should be independent of the invariance account of structural properties: “It is not
an option simply to stipulate that ‘fundamental’ is to mean structural, as this would
trivialize Purity: any object is such that all of its structural properties are structural’ *2,
Thus, the non-synonymy of structural and fundamental relations is what gives
substantiality to the structuralist thesis. So, it is no surprise that Linnebo and Pettigrew

9 (Pettigrew, 2018)

10 As Pettigrew (2018) qualifies them.

11 As well as Schiemer and Wigglesworth’s.
12 (Linnebo & Pettigrew, 2014, p. 279)



ADRIAN LUDUSAN

list as a capital merit of their proposal that “it provides a principled and precise
definition of ‘fundamental’ that makes Purity a substantial and philosophically
interesting claim; and, moreover, one that is true” 2.

As mentioned, the task of the next sections is to set up the formal medium
in which the thesis is couched and proved. This is done in steps and with a certain
proviso. The first step is to formally characterize the type of structuralism that
accommodates the thesis, followed by a specification of Linnebo and Pettigrew
abstractionist version of it, and an assessment of the structuralist thesis in this
framework. Afterwards, | will focus on a ‘new and improved’ abstractionist version,
that of Schiemer and Wigglesworth, and asses the significance of the formal rendition
of the thesis in it. The assessment will inform some pessimistic conclusions about
the general strategy of providing decisive support for non-eliminative structuralism
by proving a formal rendition of the structuralist thesis.

2. Non-eliminative structuralism

Following Linnebo and Pettigrew, | will present a formal characterization of
the kernel of nes restricted to relational systems — conceived®* as set-theoretic
entities of the form S = <D, Ry, Ry, ... Ry>, where, as the convention dictates, D is
aset, and Ry, Ry, ... Ry are relations on D. Accordingly, from now on, unqualified talk
about systems and pure structures should be understood as set-theoretic talk about
relational systems and relational pure structures. The technical concept underlying
the precis characterization of nes is that of isomorphism of (relational) systems.

Definition 2.1:

Two relational systems, S and S’, are isomorphic, in symbols,
S =S if Ff f: D > D/, such that
a) fis bijective;
b) fisanembedding: for each R; of arity nin S, the following holds:
W1, ... Xn €D [Ri(X1, ..., Xn) = R’ (f(X1), ..., F(Xn)]

Non-eliminative structuralism can now be formally characterized by the adherence
to the following theses:

13 (ibidem)
14 As the standard practice in model theory dictates.
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Instantiation: Let S be a system, and [S] its corresponding pure structure. Then,
[S] =S, that is, every pure structure [S] is isomorphic with its instantiated system.

A moment’s reflection shows that Instantiation is essential for giving the
face-value reading of singular terms (of a non-algebraic theory), for any discourse
about a particular object in the domain of a system S involving structural properties
could, invirtue of Instantiation, be rendered as a discourse about the corresponding
position in the pure structure [S]; thus, instantiation is a rigour demanded by the
semantic constraint directed at singular terms purportedly denoting simple objects,
like numbers, vertices, etc.

Purity: If ® is a fundamental property of a position a in a pure structure [S], that is
®(a), then, for any S’ such that f: [S] = S, ® is a property of f(a), that is ®(f(a)).

Obviously, Purity is the formal counterpart of the quintessential restricted
structuralist thesis: “purity is our consistent reformulation of the structuralists’ claim
that positions in pure structures have no non-structural properties”.*®

As it is formulated, Purity invites an intensional conception of properties,
on pain of insurmountable difficulties concerning the structural character of an
extensionally construed property. | will briefly discuss some of these difficulties in
the context of Schiemer and Wigglesworth’s proposal to overcome them by an
articulation of an intensional view of properties.

Uniqueness: [S] uniquely satisfies Instantiation and Purity. Specifically, uniqueness
demands that for every S = S’, and pure structures [S] =S, [S'] = S, [S] = [S'].

Uniqueness is demanded by the face-value reading of singular terms purportedly
denoting complex objects i.e., unique structures (purportedly described by non-
algebraic theories), so, again, Unigueness is an implementation of the self-imposed
semantic constraint of nes directed, this time, at structure-denoting singular terms,
such as N or R.

15 (Linnebo & Pettigrew, 2014, p. 272)
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3. LP-structuralism: structural abstraction via Frege abstraction

In “Two types of abstraction for structuralism’*®, Linnebo and Pettigrew seek
to provide a defensible non-eliminative structuralist account of pure structures by
appeal to (neo)-Fregean abstraction principles. Their proposal, from now referred
to as LP-structuralism, resides, roughly, in indicating how pure structures can be
soundly detached from systems via abstraction principles. Beginning with Frege,
abstraction principles were used to legitimate the introduction of new, more
abstract, concepts and objects out of already accepted ‘old’ ones. To this end,
abstraction principles provide identity conditions of abstracta in terms of equivalence
relations of the old type of objects. For example, Frege’s well-known abstraction
principle for the directions of lines,

(DL): for every I, I, d(l) =d(I') iff I || I,

establishes the legitimacy of the concept of direction by giving the necessary and
sufficient conditions of identity of the new objects falling under it — directions d(l),
d(I") — in terms of the equivalence relation of parallelism || of good old lines |, I.

Similarly, Linnebo and Pettigrew develop the abstraction principle that provides the
identity conditions for pure structures:*’

Frege Abstraction for Pure Structures:
Given systemsSand S', [S]=[S']iff S=S'.

As a nes candidate, pure structures obtained by abstraction principles
should satisfy Instantiation so they should contain positions® corresponding to
‘concrete’ elements in isomorphic systems, and relations between those positions
matching the relations between the corresponding ‘concrete’ elements in systems.
Accordingly, the next obvious step is to provide abstraction principles for positions.

16 (Linnebo & Pettigrew, 2014)

7 Linnebo and Pettigrew propose that pure structures are sui-generis entities in order to avoid the
Burali-Forti paradox.

18 playing the role of simple mathematical objects and referents of singular terms in non-algebraic
theories.
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Frege Abstraction for Positions in Pure Structures:

Given systems S and S’, and elements x of Sand x’ of S’
[X]s = [x"]s iff 3f (f: S = S’ and f(x) = x’)

Collecting all such positions leads to the pure domain of a pure structure:

Pure Domains in Frege Abstraction:

For all x in S and their matching positions [x] in the pure structure [S] of S,
[DIs = {[x]s: x €D}

Now that the positions and domain of a pure structure have been defined,
Linnebo and Pettigrew proceed by specifying how to abstract relations on positions
that isomorphically match relations on corresponding elements of systems.

Pure Relations on Pure Domains.
Suppose S is a system and @ is an n-ary relation on the domain D of S.

Then: [®]s(X1, X2, ... Xn) iff there are elements us, U, ... U, Of D such that,
for each i, [ui]s = xi, and ®(us, Uz, ... Un).

As | have indicated in the first section, the restricted structuralist thesis
presupposes the non-trivial identification® of a class of pure relations, called
fundamental relations, that are provably structural. The success of such a non-trivial
identification will substantiate the purity thesis that the only mathematically
relevant relations that pure positions have are structural. The specific candidate for
the role of fundamental relations that Linnebo and Pettigrew propose is:

Fundamental Relations among Positions

Suppose @ is a relation on the positions of [S]. Then @ is fundamental if there is
a relation W on the domain of S such that [W] = ©.

19 Meaning that the identification should be given in independent terms than those used for
specifying what a structural relation is; in our case, this amounts to an identification that is
independent of the invariance under isomorphism account.
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Clearly, LP-structuralism is an insightful nes proposal that articulates a stepwise
comprehensive mechanism for obtaining the philosophical stone of nes, pure
structures. If it succeeds, then significant philosophical progress has been achieved.
The goal of the next section consists precisely in the assessment of the proof and
substantiality of Purity in Linnebo and Pettigrew’s formal framework.

4. The structuralist thesis in LP-structuralism

Linnebo and Pettigrew contend that, modulo rigid systems, LP-structuralism
proves the structuralist thesis under the formal guise of Purity?°:

If Sisrigid and x1, X2, ... Xc are elements of D,
[Ws([xa], [x2], ... Dx«]) iff W(X1, X2, ... X«)

However, Schiemer and Wigglesworth dispute the claim of Linnebo and
Pettigrew, rightly pointing out that LP-structuralism is at odds with Purity, and set
out to give a corrected Purity-proof version of it — call it SW-structuralism. I'll discuss
their criticism of LP-structuralism in relation to Purity next, and I'll outline their
solution in the next section.

Schiemer and Wigglesworth’s critique is two-folded. First, they contend that
the abstraction principle for pure positions makes Purity irreconcilable with Linnebo
and Pettigrew's formal proposal for fundamental relations and properties. Then,
they argue that any attempt to reconcile the definition of fundamental relations
with Purity has to rely on an intensional approach to relations. Let us tackle the
issues in the order just presented.

W.l.o.g. consider a fundamental pure property [®]s of a pure position [x]s in
a correspondingly pure structure [S]. On the one hand, by being fundamental, Purity
requires that [®]s be shared by all elements in isomorphic systems S, i.e.
[D1s(f([x]s)), f: [S] = S'. On the other hand, according to the gloss accompanying Pure
Relations — ‘[@]s is the property that holds of an object iff that object is a pure
position in the pure structure [S]'? — [®]s is attributable only to [x]s, SO, in any
isomorphic system S, [®@]s cannot hold of f([x]s) i.e. it is not the case that
[®]s(f([x]s)), contradicting, thus, Purity. Given this incompatibility, Schiemer and
Wigglesworth propose to alter the definition of fundamental relations in a manner

20 This is their Proposition 5.2
2L (Linnebo & Pettigrew, 2014, p. 275)

14
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consistent with Purity and the requirement of non-triviality. In order for this local
definitional patch to work, an explicit general account of relations should be first
articulated. To this end, they argue for an intensional understanding LP-structuralism
by showing that, in the presence of the abstraction principle for pure relations, an
extensional treatment of relations overgenerates fundamental relations. To make
their argument transparent, let us recall that in an extensional account, relations
are bound to particular systems and completely determined by their relata. In more
precise terms, relations are identified with the set of ordered tuples of elements
from a given system, acting as relata. For obvious reasons, this set is known as the
extension of the relation; hence, a relation just is a ‘local’ or system-relative extension
of ordered tuples. As a consequence, any relations that consist in the same set of
tuples of relata are identical.

Now, let @ be an arbitrary pure relation of pure positions a, az, ... aina pure
structure [S] of a system S, ®(ay, az, ... an). By Instantiation, there is an isomorphism
f: [S] = S such that ®(ay, az, ... an) = P(f(as), ..., F(an)); by abstraction principle for
pure relations, [{ls(as, ..., an); by fundamental relations, [{]s is a fundamental
relation; by extensionality ® = [Y]s. So, any arbitrary pure property ® can be
transformed in LP-structuralism into a fundamental property. It is worth noting the
contribution of the extensional treatment of relations to the argument in order to
sharply understand the mechanism in Schiemer and Wigglesworth’s proposal that
effectively blocks the conclusion that every pure relation is fundamental.

5. SW-structuralism: structural abstraction via Kripke models

In light of the previous section’s discussion, Schiemer and Wigglesworth
articulate? a formal framework for structural abstraction capable of entertaining
an intensional construal of relations, in which to define fundamental relations of
positions in pure structures, not only respecting the non-triviality condition, but
enabling
a proof of the structuralist thesis. The formal framework they consider adequate for
this purpose is that of variable domain Kripke models. As they emphasize, one of
the perks of using such a versatile framework is that it permits not only to provide
‘an intensional account of mathematical properties’ but, importantly, ‘to formally

capture a dynamic version of abstraction’.?3

22 n this section | am going to follow closely Schiemer and Wigglesworth’s exposition.
23 (Schiemer & Wigglesworth, 2019, p. 1204)
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A variable domain Kripke model is a quadruple M = (D, W, ~ac, V) equipped
with the usual interpretation (D is a non-empty set acting as the universal domain,
W a non-empty set of worlds, ~ac an accessibility relation on W, v an interpretation
of relations) plus the extra charge forv of assigning a set Dy €D, the local domain
of quantification, to each world w &€ W. Embedding LP-structuralism in such
a framework is done by considering that the worlds w € W are relational systems,
W = (Dw, R1w, ..., Raw ), D is the set of all objects in all Dy, w €W, and the accessibility
relation ~a iS the isomorphism = relation between relational systems. Now, in this
setting, intensional relations R" are interpreted as functions f*: W > AD"), where
(D) is the powerset of all n-tuples from D. Accordingly, a nonempty n-ary relation
Rw of a world—system w is essentially the local extension of R" in w (henceforth R"),
defined by the value R"y € P(D"y). Identity conditions for intensional relations?*
easily follow: Ry = Ry iff Riw = Raw for all w € W, i.e., two intensional relations are
M-identical iff they have the same local extensions. The accessibility relation ~ac is
defined unsurprisingly:

Definition 4.2.1. (~acc):

leen W= @W’ le, vy Rnw), V= (Dv, Rlv, oy an)a
W ~acc V Iff gf DW % Dv, SUCh that
a) fis bijective;

b) fisan embedding: for each k-ary relation R, the following holds:

VX1, ... Xk €Dw [RW(Xl, v Xe) = Rv(f(Xl), ey f(Xk)]

At this point in the presentation, it is instructive to mention another critique
to LP-structuralism that Schiemer and Wigglesworth address %, envisaging the nature
of the abstraction process as articulated in the abstraction principles and operator.
What particularly troubles them is that Linnebo and Pettigrew left unspecified how
exactly the abstraction operators, represented by the square bracket notation [],
work: they are supposed to act as functions [J: S = [S], and []: x €S > [X]s €[S], but
their codomain is unspecified. The need of such a clarification is fundamental to any
structural abstractionist project, let alone one that intends to rigorously recasts the
LP-abstraction principles in a Kripke-models mould. For this reason, Schiemer and
Wigglesworth turn to a predicative and dynamic understanding of abstraction.

24 For readability purposes, | will drop the specification of the arity of the relations from now on.
2 (Schiemer & Wigglesworth, 2019, p. 1208)
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As conveyed by LP-structuralism, the structural abstraction process distils
from each particular system S its corresponding pure structure [S]. Now, suppose
that a collection of such systems is given. What dynamic and predicative abstraction
does, in Schiemer and Wigglesworth’s account, is to extend this initial collection of
systems S by appending all the corresponding pure structures [S] obtained through
structural abstraction. As they put it, ‘mathematical abstraction, understood as
a predicative and dynamic process, simply allows one to consider larger and larger
domains of mathematical entities, independently of the question of their objective
existence. In the case of LP-structuralism, the relevant abstraction principles
introduce pure structures into the domain of consideration by giving their identity
conditions, as well as the identity conditions for the pure positions that belong to
those structures’.?® Dynamic abstraction is implemented in SW-structuralism
through the operation of Kripke model extension. As the name of the operation
suggests, model extension refers to the embedding via the inclusion or identity
function of a Kripke model M = (D, W, ~a, V) into another, larger one, M’ = (D’,
W', ~ac, V'); obviously, the embedding implies that D €D, W € W', ~aec & ~acc, V E V.
Accordingly, the extended model is specified in three steps: 1) by defining W’ and
D’, 2) by defining ~ac, and 3) by defining?’ V. | proceed the exposition in order. For
the first step, this means supplementing W with the members of the set of pure
structures Ws, and D with the members of the set of pure positions Dp, thus
obtaining W =W U Ws, and D’ = D U De. Ws and De are given by the well-defined
operators echoing ‘Frege Abstraction for Pure Structures’ and ‘Frege Abstraction for
Positions in Pure Structures’.

Definition 4.2.2. Pure structure abstraction operator §.
Given M= (D, W, ~a, V), call a pure structure operator a function §: W > Ws,
W n Ws = g, such that
8(W1) = 8(W2) iff wa ~acc W2, for all wy, wo €W.
Collecting the pure structures in a set gives Ws = {§(w) \w € W}

Definition 4.2.3. Pure positions abstraction operator o:
Given M= D, W, ~acc, V), and relational systems wi, W, €W,
call a pure position operator, a function o: D = Dp, such that for all a €Dw1, b €Duwg,
o(a)= a(b) iff there is an isomorphism f between w1 and W (W1 ~acc W2) and f(a) = b,

26 (Schiemer & Wigglesworth, 2019, p. 1215)

27 1t will become clear that Schiemer and Wigglesworth define the valuation function v’ only partially,
restricting the specification of extensions to the members of the class of pure relations obtained
by abstraction.
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The set of pure positions is, then, easily defined as Dp = {o(a)\a € D}.

The accessibility relation ~i.' can now be defined by extending ~a tO
include the unaccounted interactions between world-systems and pure structures
in the new setting W' =W U W:

Definition 4.2.4. (~a'):
For all wi, wo €W, Wi ~acc’ W2 iff Wi ~acc W2 v W1 = §(W2) v Wy = §(W1)

Note that the pure structures §(ws), §(w-) are either identical or not ~a related.

Before presenting the third and final step in the construction of the
extended model M’ and, based on it, the account of fundamental and structural
relations, let’s take stock, as Schiemer and Wigglesworth do, of two significant
advantages of adopting Kripke models doubled by an intensional understanding of
properties and relations, to convey a sound structural abstraction form of nes.

First, they claim that the intensional construal developed in the Kripke
models infrastructure effectively blocks the argument that brought havoc to LP-
structuralism, that all pure relations are fundamental. What blocks the argument
according to their account is the fine-grained identification of relations: to be LP-
fundamental, an arbitrary pure relation ® on positions has to be co-extensional
with the induced abstract relation [{]s in every system S in order to be identical
with it. Note, however, that all Schiemer and Wigglesworth have managed to show
is that extra-work is required in SW-structuralism for proving that all pure relations
are LP-fundamental, not that this verdict is ‘effectively blocked’ by their account.
I will succinctly return to this issue in the next section, after clarifying their take on
fundamental relations.

The second, significant benefit of using Kripke models consists in the elegant
explanation of the nature of pure structures, positions, and pure relations. To
circumvent the Burali-Forti paradox, LP-structuralism simply asserts that they are
sui-generis entities, keeping their status ambiguous. On SW-account, they can have
the same status as the systems from which were abstracted without the threat of
the Burali-Forti paradox because ‘the pure structures are not members of the set of
worlds in the initial Kripke model, but are introduced through a dynamic abstraction
process as captured by extending the initial model’. %,

28 (Schiemer & Wigglesworth, 2019, p. 1217).
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5.1. Pure, fundamental, and structural relations in SW-structuralism ...

As advertised above, | am going to present Schiemer and Wigglesworth’s
definition of the valuation function v’ and sketch their account of fundamental
relations. Briefly, their strategy is to assign extensions at pure structures under v’
only to those pure relations that are the extensions of relations that already have
local extensions fixed by v, i.e., relations already interpreted by v. Of course, for this
strategy to succeed one has to define what an extended relation is.

Definition 4.2.1.1. Extended relations:

Given M= D, W, ~a, V), D', W', ~a¢", say that an n-ary relation R extends
an n-ary relation Q iff:
a) Rw=Qu forallw e W
b) Forallu eWsand all dy, ..., dy €Dy, (1, ..., dn) ERyiff thereisaw €W
with by, ..., bn €Dy, such that
i)di=o(b),i en
ii) (by, ..., bn) €Qu

In other words, a relation R in M is an extension of a relation Q in M iff R
is M-identical to Q and is LP-abstracted from Q. The definition has a couple of
remarkable features worth stating. First, it enables a rigorous characterization of
the pure abstracted relations in SW-structuralism by considering them to be
extended relations. Second, it leaves room for pure relations that are not the
product of abstraction, allowing these unattended relations to act as the deposit of
the unavoidable extraneous properties of positions discussed in section 1. Third, it
does justice to the intuition that the relevant pure relations of a structure have to
be connected with relations in ‘concrete’ systems. However attractive are these
features, and this is highly significant, the definition cannot capture the class of
fundamental relations, on pain of falsifying the structuralist thesis. This is due to
condition b) of the definition permitting the generation of an extended relation by
abstraction from an idiosyncratic,?® arbitrary, relation of a system. It is both
illustrative and highly relevant to see why using Schiemer and Wigglesworth’s
example®. Consider the Kripke model M = (D = {Nz U Nx}, W = {z, n}, ~, v), where
the system z consists of the set of finite Zermelo ordinals, Nz, and n of the set of

2 |n the sense that it is specific to the system in question by not being preserved under isomorphism.
30 (Schiemer & Wigglesworth, 2019, p. 1219)
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finite von Neumann ordinals, Ny, both equipped with their ‘usual ordering’.®! Both
systems exhibit the same pure structure N, so §(z) = §(n) = N. The ‘set-theoretic
property P of having exactly two members’*? has the local extensions P, = @, and
Pn = {{@, {@}}}. According to the previous definition, one can extend P to P* by
ensuring that P* is co-extensional with P relative to z and n, (condition a)), and that
P*y = {2}, where 2 = o({@, {0}}) = a({{®}}) (condition b)). Under the naive hypothesis
that fundamental relations are just extended world-bound relations abstracted by
means of the previous definition, P* would count as fundamental. But this would
falsify the structuralist thesis, for the property of having exactly two members is not
structural, as witnessed by the third Zermelo ordinal.

Consequently, if the class of fundamental relations would be completely
defined by the class of extended relations, then not all fundamental relations will
turn out to be structural. So, some extra conditions should be added to the
definition of fundamental properties, to the effect that, in conjunction with the
desirable and intuitively sound condition of being an extended relation, they will
ensure the provability of the structuralist thesis. The missing, satisfactory condition
that Schiemer and Wigglesworth propose to complete the definition of fundamental
relations is definability.

Definition 4.2.1.2. Definable relation:

Given a language £and an £-systems w= (Dy, Riw, ..., Rkw }, We say that an n-ary
relation R; is definable iff there is an £-formula ¢(X1, ..., Xn, Y1, ..., Ym) and for all
w there are elements by, ..., bm €Dy such that for all ds, ..., dn €Dw:

@i, ..,dn) eRw ewW E@(ds, ..., dn, by, ..., by)

Their justification for choosing the definability condition is that as the
troublesome definition of extended relations indicates, the fundamental properties
should not be abstracted from arbitrary relations in ‘concrete’ systems, but ‘from
relations dealing with (or about) the internal structure of the systems in question’, %
and ‘the special class of relations admissible for this kind of abstraction’®* is that of
definable relations, taken to reflect the inner structure of systems.

31 ibidem
32 ibidem
33 (Schiemer & Wigglesworth, 2019, p. 1220)
34 |bidem.
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As advertised, fundamental relations can now be fully characterized by the
simultaneous satisfaction of the above two conditions.

Definition 4.2.1.3. Fundamental relations:

An n-ary relation R on the positions of a pure structure §(w) is fundamental iff
there is an n-ary relation Q on the elements of an £-systems w and
aformula ¢ in £such that

i) Qis defined by ¢, and
i) Ris an extension of Q.

Again, there are some remarkable consequences worth stating of this
definition. The first thing to note is that fundamental relations become language-
dependent.® This is not a peculiar structuralist position, as the practice of model
theory indicates:

‘Model theorists are forever talking about symbols, names and labels. A group
theorist will happily write the same abelian group multiplicatively or additively,
whichever is more convenient for the matter in hand. Not so the model theorist: for
him or her the group with 'e' is one structure and the group with '+' is a different
structure. Change the name and you change the structure’.

Secondly, not only are fundamental relations pure (in Linnebo and Pettigrew’s
sense), but are induced by abstraction (according to condition ii). Thirdly, fundamental
relations are defined by the same formulas that define the relations from which
they are abstracted, given that definability is preserved under extension of relations.
Lastly, all intuitively fundamental properties concerning some familiar mathematical
systems, mentioned and discussed by Linnebo and Pettigrew 2014, are captured
formally by this definition.

The only thing that’s missing for proving the structuralist thesis is a definition
of structural properties. The definition goes as expected:

Definition 4.2.1.4. Structural properties:.
R is a structural property of position a in the domain of §(w) iff for all systems
w €W and for all isomorphisms f: §(w) > w, the following holds:
a €Rsw) = f(a) eRw

% This language relativity is not unprecedented in the structuralist literature, as Schiemer and
Wigglesworth (2014) acknowledge by citing (Resnik, 1997).
3% (Hodges, 1997, p. 1)
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The structural thesis is proven in section 7 of Schiemer and Wigglesworth’s
paper under the label proposition 1:

‘Suppose a is a position in structure §(w). If R is a fundamental property of a in
§(w), then R is a structural property of a in §(w)’.

6. Adequacy vs substantiality of the structuralist thesis in SW-structuralism

6.1. The role of the intensional construal of relations

On a careful examination, one can observe that what effectively blocks the
argument that arbitrary pure relations (Rsw)) turn out to be fundamental in SW-
structuralism is not the appeal to intensional relations, but to definability, as Schiemer
and Wigglesworth certainly recognize: ‘Properties such as being John’s favourite
number fail to be fundamental since there are no definable properties from which
they can be abstracted’.®” More precisely, the appeal to signatures in specifying
what counts as fundamental relations is what blocks the argument, but this move
is available to Linnebo and Pettigrew ’s version of structuralism.

6.2. Why definable?

It is instructive to ponder why the definition of extended relations is
formulated in such a manner that it doesn’t prohibit right from the start the
abstraction from, or extension of, arbitrary, idiosyncratic relations (recall that it is
sufficient for a relation Q to occur in a system w in order to be extendable). The
definition can be easily adjusted so that the admissible relations for abstraction or
extension are structural. Here is one way of rectifying it:

Given M= D, W, ~acc, V), D', W', ~acc’, Say that an n-ary relation R extends an n-ary
relation Q iff:
a) Rw=Qu forallw e W
b) Forallu eWsand all dy, ..., dn €Dy, (@1, ..., dv) ERy iff there is a w € W with
b1, ..., bn €Dy, such that
i)di=o(b),i €n
ii) (b1, ..., bn) €Qu

87 (Schiemer & Wigglesworth, 2019, p. 1222)
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c) Forallw’ €W, such that w ~5c W', there are ¢y, ..., Ch €Dy such that (¢4, ..., Cn) €
Tw iff (b1, ..., bn) €Qw where T is an n-ary relation.

Amended in this manner, the definition of extended relations becomes
synonymous to that of structural relations. And now we can clearly see why such an
altered definition is untenable in nes: it trivializes the structuralist thesis by making
all fundamental relations, understood as extended relations, definitionally
synonymous with structural relations.

At this point, it becomes apparent that the wrinkle of definability as an
essential condition for the characterization of fundamental relations has everything
to do with the substantiality of the structuralist thesis. Stated in terms of extended
and definable relations, the definition of fundamental relations is non-synonymous
to that of structural relations, substantiating, thus, the claim of the structuralist
thesis. Consequently, a proof of the structuralist thesis becomes a significant and
revealing result.

6.3. Adequacy of the definition of fundamental relations

However clever and ingenious, Schiemer and Wigglesworth’s rendition of
the structuralist thesis, | argue, misses its mark. Just to be clear, | will argue that
their definition of fundamental relations fails to capture what their explicit formal
purpose was: essential features of the underlying structure instantiated in systems
sharing the same signature. More precisely, it fails in two aspects: it overgenerates
and undegenerates fundamental relations. To unpack my claim, consider some of
the examples of relations and properties that they include in the ‘intuitively
fundamental’ target set of the formal fundamental relations:

‘Being the additive identity in a complete ordered field is one such property
(of the zero position). Being an annihilating element for multiplication in such a field
is another. The list could be extended for other types of structures: being an even
number or being the second successor of the zero position are fundamental
properties of certain places in the natural number structure. Being a node with a certain
degree, that is, having a certain number of edges incident to it, is a fundamental
property of nodes in a graph structure.’*

All these cases seem to be easily and quite naturally captured by their
definition of fundamental relations:

38 (Schiemer & Wigglesworth, 2019, p. 1220)
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“Consider, for instance, properties of the positions in the natural number
structure discussed above. Each of these can be induced by abstraction from
a concrete property of elements in a natural number system that is definable in
terms of the primitive non-logical vocabulary of the language of Peano arithmetic.
The property of being an even number, for example, is clearly fundamental in this
sense, since it can be abstracted from a property of numbers in a given concrete
natural number system that is definable by a first-order formula ‘3y(y+y = x)”.%

But, as they claim, and | wholeheartedly agree, if the properties listed above
are ‘intuitively fundamental’, then so it should be the property of being a non-standard
number or an infinite successor of the zero position in a non-standard model of
arithmetic. The non-standard numbers are at least as constitutive*’ for non-standard
structures, as zero is for a field. Accordingly, their properties should count as intuitively
fundamental for the non-standard structure of arithmetic. But it is an elementary
result** regarding non-standard models of arithmetic that their characteristic
properties are not definable in first-order Peano Arithmetic (PA). So, consider the Kripke
model
M = (D, W ={n*, n*'}, ~, v}, where n* and n*’ are isomorphic non-standard models of
arithmetic. Their pure structure, §(n*) = §(n*’) = N*, should contain non-standard
positions having the pure properties corresponding to those mentioned above as
intuitive. But since these properties are not definable, they are not fundamental
according to Schiemer & Wigglesworth’s definition, although, as argued, they are
intuitively fundamental by their own lights. By Dedekind’s categoricity theorem, second
order Peano Arithmetic has only standard models, so changing the logic in this context
doesn’t help, as it excludes non-standard numbers. Other types of logics, or the appeal
to open-ended versions of PA or schematic theories could be excluded on appropriate
grounds. And, in the end, it isn’t even a matter of switching to the ‘right logic’, afterall,
the study of such models in not only lucrative for better understanding and illuminating
the standard maodel, but also worth pursuing for the mathematics of it. So, the definition
undergenerates fundamental relations.

To see that it also overgenerates it is enough to consider properties
representable in PA. With a sensible coding scheme of Godel numbering, there will
be a PA-formula coding the abovementioned ‘property P of having exactly two
members’, or of being a formula of PA, or a term, or a sentence etc. All these recursive
properties are representable in PA. Now, consider Schiemer and Wigglesworth’s
example of the Kripke model M = (D, W ={z, n}, ~, V), consisting of the set of finite

39 (Schiemer & Wigglesworth, 2019, p. 1222)

40 Although proving this takes a bit of effort: ‘is not quite trivial to show that there must be some
nonstandard numbers in any nonstandard model 7’ (Boolos, 2007, p. 303)

41 For details see the ‘overspill lemma’ or ‘principle’ in (Boolos, 2007, p. 309) or (van Dalen, 2004, p. 122)
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Zermelo and von Neumann ordinals equipped with their ‘usual ordering’ and
expand the signature to that of PA, importing the usual interpretation of the symbols.
In this model, the arithmetized version of the property P turns out to be fundamental,
although, intuitively it shouldn’t be. | am aware of the difference between the
property as expressed and understood in metalanguage and its artihmetized
counterpart, but that is beside the point, for in virtue of being representable there
is a canonical way of reconstructing the metalinguistic meaning. The same holds for
other syntactic properties, and all the other non-arithmetic recursive properties.
But these arithmetized versions of non-arithmetical properties obviously go over
and beyond what an intuitively fundamental property of the natural numbers is
supposed to be. The definition overgenerates.

7. Concluding remarks

The substantiality of the structuralist thesis is predicated on the non-
synonymy of fundamental and structural relations. The adequacy is predicated on
the synonymy between the formal definition of fundamental properties and the
intuitive content of the notion. If structural is taken to be invariance under
isomorphism, as both Linnebo and Pettigrew, and Schiemer and Wigglesworth
explicitly consider, then both abstractionist proposals fall short of upholding the
eligibility of non-eliminative structuralism by proving the structuralist thesis. Linnebo
and Pettigrew fail not only to convincingly circumscribe the class of fundamental
properties, but also to prove the structuralist thesis. In Schiemer and Wigglesworth’s
reconstruction, the structuralist thesis is successfully proven, but it amounts to the
fundamental but elementary result that definable relations are preserved under
isomorphism. Now, how substantial is this result for nes is a matter of debate, given
that the notion of isomorphism is intimately connected with the signature of a system.
Isomorphisms are essentially defined with respect to a signature and a language. That
much is an elementary observation.

‘The isomorphism concept is intricately linked with that of formal language,
which is a way of making precise exactly which mathematical structure one is
considering. Whether a given one-to-one correspondence is an isomorphism depends
crucially, after all, on which structural features are deemed salient’. (Hamkins, 2020,
p. 30)

Nevertheless, the main point of my contention is that, even though the
substantiality concerns raised above are surpassed, the class of fundamental relations,
as sharply and ingeniously defined by Schiemer and Wigglesworth still won’t cut it by
their own standards: it unequivocally undergenerates and arguably overgenerates.
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