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ABSTRACT. The idea that positions in structures have no mathematically significant 
non-fundamental features is a constitutive trait of non-eliminative structuralism; it 
underpins the restricted structuralist thesis that all fundamental properties are 
structural. So, a seemingly straightforward strategy to uphold the eligibility of non-
eliminative structuralism is to prove a formal rendition of the thesis. However, the 
soundness of the strategy depends on two key aspects: the thesis has to be 
substantial, and materially adequate. The substantiality of the thesis is predicated 
on the non-synonymy of fundamental and structural properties. The adequacy is 
predicated on the synonymy between the formal definition of fundamental 
properties and the intuitive content of the notion. Two remarkable abstractionists 
accounts claim to have proven a formal, non-trivial, consistent version of the thesis. 
The first one, developed Linnebo and Pettigrew, arguably fails to satisfactorily 
accomplish this goal. However, the more formally sophisticated second one, 
developed by Schiemer and Wigglesworth, succeeds. This will be focus of the paper. 
I am going to argue that, precisely because it proves a non-trivial formal version of 
the thesis, their account of fundamental properties fails to be adequate. More 
precisely, I will show that the formal specifications of the fundamental properties 
needed to ensure the substantiality and soundness of the proof undergenerate and 
overgenerate structural properties. In the end, it seems that there is a trade-off 
between substantiality and adequacy. The arguments will inform some pessimistic 
conclusions about the overall strategy of establishing the eligibility of non-eliminative 
structuralism by means of such a proof of the structuralist thesis. 
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1. The structuralist thesis  

The idea that positions or places in structures have no non-structural 
properties is a fundamental and constitutive tenet of structuralism in the philosophy 
of mathematics. It was formulated over and over by prominent structuralists1. 
Benacerraf ‘s assertion2, for example, that ‘the “elements” of the structure have no 
properties other than those relating them to other “elements” of the same structure’ 
is an illustrative formulation of this core trait of structuralism, which has come to be 
known as the structuralist thesis. Following the nomenclature, I will call this first pass 
of the thesis, the unrestricted structuralist thesis: 

 
The unrestricted structuralist thesis: positions in pure/abstract structures  

have only structural properties/relations. 
 

Of course, the thesis needs unpacking, specifically, by an operational 
characterization 3 of structural relations. The characterization employed by Linnebo 
and Pettigrew 4 and Schiemer and Wigglesworth 5 in their versions of a particular 
type of structuralism, namely non-eliminative structuralism 6, falls under what 
Korbmacher and Schiemer 7 call the invariance account of structural properties, 
namely that structural relations are those relations that remain invariant under 
isomorphism. Such an explication invites a view of pure structures as the result of  
a process of abstraction from ‘concrete’ isomorphic systems of objects; in accordance 
with the etymology of ‘isomorphic’ and along a non-eliminative structuralist line, 
we say that such systems exemplify or instantiate the same ‘form’ or structure.  
So, according to these versions of nes, a pure structure is the sediment of isomorphic 
systems obtained through abstraction.  

Burgess 8 has convincingly argued that the unrestricted version of the 
structuralist thesis is incoherent: consider the (second-order) property of having 
only structural properties; according to the unrestricted structuralist thesis, 
positions in pure structures enjoy such a property, yet the property is not shared by 

 
1 See for example (Benacerraf, 1983, p. 291), (Resnik, 1981, p. 530), (Parsons, 2004, p. 57).  
2 (Benacerraf, 1983, p. 291) 
3 Given such characterization, the status of positions could also be clarified.  
4 (Linnebo & Pettigrew, 2014) 
5 (Schiemer & Wigglesworth, 2019) 
6 Henceforth abbreviated by nes. A formal description of nes is provided in the next section. 
7 (Korbmacher & Schiemer, 2018) 
8 (Burgess, 1999) 
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the corresponding objects in ‘concrete’ isomorphic systems, as can be easily observed 
by inspecting, for example, the properties of the set-theoretic objects, {Ø, {Ø}}, 
{{Ø}}, playing the role of 2 in von Neumann’s, respectively Zermelo’s, reconstruction 
of the natural numbers. Consequently, having only structural properties is a peculiar, 
non-structural property of positions in pure structures. One easy way out of Burgess’s 
criticism is to circumscribe the range of relevant properties of positions to first-order 
properties. But this manoeuvre, as Linnebo and Pettigrew and Pettigrew9 have argued, 
cannot account for mundane, first-order, mathematically extraneous properties of 
positions such as ‘being John’s favourite number’, ‘being the favourite example of  
a mathematical structure’. And such properties are unavoidable for any candidate for 
the reference of number theory discourse. Accordingly, the pure properties of positions 
have to be further restricted to first-order, ‘intrinsic’ 10 properties. Obviously, this 
move just pushes the problem under the rug of the meaning of ‘intrinsic’, so not 
much progress has been accomplished. Instead of providing a rigorous, intuition-
sound definition of ‘intrinsic’, and then a satisfying characterization of the class of 
relevant properties of positions by tackling other possible shortcomings, I will follow 
Linnebo and Pettigrew, and assume that such a characterization has been provided 
under the label of fundamental properties of positions for the sake of articulating 
the structuralist thesis. Distilling the discussion in a slogan, the non-eliminative 
structuralist adheres to: 

 
The structuralist thesis: positions in pure structures have no  

mathematically relevant non-fundamental properties; moreover,  
all fundamental properties are structural properties. 

 
Their way11 of establishing the thesis is by proving a formal rendition of it – 

called Purity. Of course, a lot of formal work needs to be laid down in order to express 
and prove such a thesis. The task of the next sections is precisely that. But the guiding 
principle of the effort is that the specification of the class of fundamental properties 
should be independent of the invariance account of structural properties: “It is not 
an option simply to stipulate that ‘fundamental’ is to mean structural, as this would 
trivialize Purity: any object is such that all of its structural properties are structural’12. 
Thus, the non-synonymy of structural and fundamental relations is what gives 
substantiality to the structuralist thesis. So, it is no surprise that Linnebo and Pettigrew 

 
9 (Pettigrew, 2018) 
10 As Pettigrew (2018) qualifies them. 
11 As well as Schiemer and Wigglesworth’s. 
12 (Linnebo & Pettigrew, 2014, p. 279) 
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list as a capital merit of their proposal that “it provides a principled and precise 
definition of ‘fundamental’ that makes Purity a substantial and philosophically 
interesting claim; and, moreover, one that is true” 13. 

As mentioned, the task of the next sections is to set up the formal medium 
in which the thesis is couched and proved. This is done in steps and with a certain 
proviso. The first step is to formally characterize the type of structuralism that 
accommodates the thesis, followed by a specification of Linnebo and Pettigrew 
abstractionist version of it, and an assessment of the structuralist thesis in this 
framework. Afterwards, I will focus on a ‘new and improved’ abstractionist version, 
that of Schiemer and Wigglesworth, and asses the significance of the formal rendition 
of the thesis in it. The assessment will inform some pessimistic conclusions about 
the general strategy of providing decisive support for non-eliminative structuralism 
by proving a formal rendition of the structuralist thesis.   

2. Non-eliminative structuralism 

Following Linnebo and Pettigrew, I will present a formal characterization of 
the kernel of nes restricted to relational systems – conceived 14 as set-theoretic 
entities of the form S = <D, R1, R2, … Rn>, where, as the convention dictates, D is  
a set, and R1, R2, … Rn are relations on D. Accordingly, from now on, unqualified talk 
about systems and pure structures should be understood as set-theoretic talk about 
relational systems and relational pure structures. The technical concept underlying 
the precis characterization of nes is that of isomorphism of (relational) systems.  

 
Definition 2.1:  
 

Two relational systems, S and S’, are isomorphic, in symbols,  
S ≌ S’, if ∃f, f: D → D’, such that 

a) f is bijective; 
b) f is an embedding: for each Ri of arity n in S, the following holds: 

∀x1, ... xn ∈ D [Ri(x1, ..., xn) ≡ Ri’(f(x1), ..., f-(xn)] 
 
Non-eliminative structuralism can now be formally characterized by the adherence 
to the following theses: 

 
13 (ibidem) 
14 As the standard practice in model theory dictates.  
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Instantiation: Let S be a system, and [S] its corresponding pure structure. Then,  
[S] ≌ S, that is, every pure structure [S] is isomorphic with its instantiated system. 
 

A moment’s reflection shows that Instantiation is essential for giving the 
face-value reading of singular terms (of a non-algebraic theory), for any discourse 
about a particular object in the domain of a system S involving structural properties 
could, in virtue of Instantiation, be rendered as a discourse about the corresponding 
position in the pure structure [S]; thus, instantiation is a rigour demanded by the 
semantic constraint directed at singular terms purportedly denoting simple objects, 
like numbers, vertices, etc.  

 
 

Purity: If Φ is a fundamental property of a position a in a pure structure [S], that is 
Φ(a), then, for any S’ such that f: [S] ≌ S’, Φ is a property of f(a), that is Φ(f(a)).  
 

Obviously, Purity is the formal counterpart of the quintessential restricted 
structuralist thesis: “purity is our consistent reformulation of the structuralists’ claim 
that positions in pure structures have no non-structural properties”. 15 

 
As it is formulated, Purity invites an intensional conception of properties, 

on pain of insurmountable difficulties concerning the structural character of an 
extensionally construed property. I will briefly discuss some of these difficulties in 
the context of Schiemer and Wigglesworth’s proposal to overcome them by an 
articulation of an intensional view of properties.  

 
 

Uniqueness: [S] uniquely satisfies Instantiation and Purity. Specifically, uniqueness 
demands that for every S ≌ S’, and pure structures [S] ≌S, [S’] ≌ S’, [S] = [S’].  
 
Uniqueness is demanded by the face-value reading of singular terms purportedly 
denoting complex objects i.e., unique structures (purportedly described by non-
algebraic theories), so, again, Uniqueness is an implementation of the self-imposed 
semantic constraint of nes directed, this time, at structure-denoting singular terms, 
such as ℕ or ℝ. 

 
15 (Linnebo & Pettigrew, 2014, p. 272)   
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3. LP-structuralism: structural abstraction via Frege abstraction 

In ‘Two types of abstraction for structuralism’ 16, Linnebo and Pettigrew seek 
to provide a defensible non-eliminative structuralist account of pure structures by 
appeal to (neo)-Fregean abstraction principles. Their proposal, from now referred 
to as LP-structuralism, resides, roughly, in indicating how pure structures can be 
soundly detached from systems via abstraction principles. Beginning with Frege, 
abstraction principles were used to legitimate the introduction of new, more 
abstract, concepts and objects out of already accepted ‘old’ ones. To this end, 
abstraction principles provide identity conditions of abstracta in terms of equivalence 
relations of the old type of objects. For example, Frege’s well-known abstraction 
principle for the directions of lines,  

 
(DL): for every l, l’, d(l) = d(l’) iff l || l’, 

 
establishes the legitimacy of the concept of direction by giving the necessary and 
sufficient conditions of identity of the new objects falling under it – directions d(l), 
d(l’) – in terms of the equivalence relation of parallelism || of good old lines l, l’.  
 
Similarly, Linnebo and Pettigrew develop the abstraction principle that provides the 
identity conditions for pure structures: 17 
 
 
Frege Abstraction for Pure Structures: 

 
Given systems S and S’, [S] = [S’] iff S ≌ S’. 

 
As a nes candidate, pure structures obtained by abstraction principles 

should satisfy Instantiation so they should contain positions 18 corresponding to 
‘concrete’ elements in isomorphic systems, and relations between those positions 
matching the relations between the corresponding ‘concrete’ elements in systems. 
Accordingly, the next obvious step is to provide abstraction principles for positions.  

 
 

16 (Linnebo & Pettigrew, 2014) 
17 Linnebo and Pettigrew propose that pure structures are sui-generis entities in order to avoid the 

Burali-Forti paradox.  
18 playing the role of simple mathematical objects and referents of singular terms in non-algebraic 

theories. 
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Frege Abstraction for Positions in Pure Structures: 
 

Given systems S and S’, and elements x of S and x’ of S’: 
[x]S = [x’]S’ iff ∃f (f: S ≌ S’ and f(x) = x’) 

 
Collecting all such positions leads to the pure domain of a pure structure: 
 
 
Pure Domains in Frege Abstraction: 
 

For all x in S and their matching positions [x] in the pure structure [S] of S, 
[D]S = {[x]S: x ∈D} 

 

Now that the positions and domain of a pure structure have been defined, 
Linnebo and Pettigrew proceed by specifying how to abstract relations on positions 
that isomorphically match relations on corresponding elements of systems.  

 
 

Pure Relations on Pure Domains. 
 

Suppose S is a system and Φ is an n-ary relation on the domain D of S. 
 

Then: [Φ]S(x1, x2, … xn) iff there are elements u1, u2, … un of D such that,  
for each i, [ui]S = xi, and Φ(u1, u2, … un). 

 

As I have indicated in the first section, the restricted structuralist thesis 
presupposes the non-trivial identification 19 of a class of pure relations, called 
fundamental relations, that are provably structural. The success of such a non-trivial 
identification will substantiate the purity thesis that the only mathematically 
relevant relations that pure positions have are structural. The specific candidate for 
the role of fundamental relations that Linnebo and Pettigrew propose is:  
 
 
Fundamental Relations among Positions 

 

Suppose Φ is a relation on the positions of [S]. Then Φ is fundamental if there is  
a relation Ψ on the domain of S such that [Ψ] = Φ. 

 
19 Meaning that the identification should be given in independent terms than those used for 

specifying what a structural relation is; in our case, this amounts to an identification that is 
independent of the invariance under isomorphism account.  
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Clearly, LP-structuralism is an insightful nes proposal that articulates a stepwise 
comprehensive mechanism for obtaining the philosophical stone of nes, pure 
structures. If it succeeds, then significant philosophical progress has been achieved. 
The goal of the next section consists precisely in the assessment of the proof and 
substantiality of Purity in Linnebo and Pettigrew’s formal framework.  

4. The structuralist thesis in LP-structuralism 

Linnebo and Pettigrew contend that, modulo rigid systems, LP-structuralism 
proves the structuralist thesis under the formal guise of Purity 20:  
 

If S is rigid and x1, x2, … xk are elements of D, 
[Ψ]S([x1], [x2], … [xk]) iff Ψ(x1, x2, … xk) 

 
However, Schiemer and Wigglesworth dispute the claim of Linnebo and 

Pettigrew, rightly pointing out that LP-structuralism is at odds with Purity, and set 
out to give a corrected Purity-proof version of it – call it SW-structuralism. I'll discuss 
their criticism of LP-structuralism in relation to Purity next, and I'll outline their 
solution in the next section. 

Schiemer and Wigglesworth’s critique is two-folded. First, they contend that 
the abstraction principle for pure positions makes Purity irreconcilable with Linnebo 
and Pettigrew's formal proposal for fundamental relations and properties. Then, 
they argue that any attempt to reconcile the definition of fundamental relations 
with Purity has to rely on an intensional approach to relations. Let us tackle the 
issues in the order just presented.  

W.l.o.g. consider a fundamental pure property [Φ]S of a pure position [x]S in 
a correspondingly pure structure [S]. On the one hand, by being fundamental, Purity 
requires that [Φ]S be shared by all elements in isomorphic systems S’, i.e. 
[Φ]S(f([x]S)), f: [S] ≌ S’. On the other hand, according to the gloss accompanying Pure 
Relations – ‘[Φ]S is the property that holds of an object iff that object is a pure 
position in the pure structure [S]’ 21 – [Φ]S is attributable only to [x]S, so, in any 
isomorphic system S’, [Φ]S cannot hold of f([x]S) i.e. it is not the case that 
[Φ]S(f([x]S)), contradicting, thus, Purity. Given this incompatibility, Schiemer and 
Wigglesworth propose to alter the definition of fundamental relations in a manner 

 
20 This is their Proposition 5.2  
21 (Linnebo & Pettigrew, 2014, p. 275) 
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consistent with Purity and the requirement of non-triviality. In order for this local 
definitional patch to work, an explicit general account of relations should be first 
articulated. To this end, they argue for an intensional understanding LP-structuralism 
by showing that, in the presence of the abstraction principle for pure relations, an 
extensional treatment of relations overgenerates fundamental relations. To make 
their argument transparent, let us recall that in an extensional account, relations 
are bound to particular systems and completely determined by their relata. In more 
precise terms, relations are identified with the set of ordered tuples of elements 
from a given system, acting as relata. For obvious reasons, this set is known as the 
extension of the relation; hence, a relation just is a ‘local’ or system-relative extension 
of ordered tuples. As a consequence, any relations that consist in the same set of 
tuples of relata are identical.  

Now, let Φ be an arbitrary pure relation of pure positions a1, a2, … an in a pure 
structure [S] of a system S, Φ(a1, a2, … an). By Instantiation, there is an isomorphism 
f: [S] ≌ S such that Φ(a1, a2, … an) ≡ ψ(f(a1), ..., f-(an)); by abstraction principle for 
pure relations, [ψ]S(a1, ..., an); by fundamental relations, [ψ]S is a fundamental 
relation; by extensionality Φ = [ψ]S. So, any arbitrary pure property Φ can be 
transformed in LP-structuralism into a fundamental property. It is worth noting the 
contribution of the extensional treatment of relations to the argument in order to 
sharply understand the mechanism in Schiemer and Wigglesworth’s proposal that 
effectively blocks the conclusion that every pure relation is fundamental.    

5. SW-structuralism: structural abstraction via Kripke models 

In light of the previous section’s discussion, Schiemer and Wigglesworth 
articulate 22 a formal framework for structural abstraction capable of entertaining 
an intensional construal of relations, in which to define fundamental relations of 
positions in pure structures, not only respecting the non-triviality condition, but 
enabling  
a proof of the structuralist thesis. The formal framework they consider adequate for 
this purpose is that of variable domain Kripke models. As they emphasize, one of 
the perks of using such a versatile framework is that it permits not only to provide 
‘an intensional account of mathematical properties’ but, importantly, ‘to formally 
capture a dynamic version of abstraction’. 23  

 
22 In this section I am going to follow closely Schiemer and Wigglesworth’s exposition. 
23 (Schiemer & Wigglesworth, 2019, p. 1204) 
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A variable domain Kripke model is a quadruple ℳ = ⟨D, W, ~acc, v⟩ equipped 
with the usual interpretation (D is a non-empty set acting as the universal domain, 
W a non-empty set of worlds, ~acc an accessibility relation on W, v an interpretation 
of relations) plus the extra charge forv of assigning a set Dw ⊆ D, the local domain 
of quantification, to each world w ∈ W. Embedding LP-structuralism in such  
a framework is done by considering that the worlds w ∈ W are relational systems, 
w = ⟨Dw, R1w, …, Rnw ⟩, D is the set of all objects in all Dw, w ∈ W, and the accessibility 
relation ~acc is the isomorphism ≅ relation between relational systems. Now, in this 
setting, intensional relations Rn are interpreted as functions fn : W → ℙ(Dn), where 
ℙ(Dn) is the powerset of all n-tuples from D. Accordingly, a nonempty n-ary relation 
Rw of a world–system w is essentially the local extension of Rn in w (henceforth Rn

w), 
defined by the value Rn

w ∈ ℙ(Dn
w). Identity conditions for intensional relations 24 

easily follow: R1 = R2 iff R1w = R2w for all w ∈ W, i.e., two intensional relations are  
ℳ-identical iff they have the same local extensions. The accessibility relation ~acc is 
defined unsurprisingly: 

 
Definition 4.2.1. (~acc):  
 

Given w = ⟨Dw, R1w, …, Rnw⟩, v = ⟨Dv, R1v, …, Rnv ⟩, 
w ~acc v iff ∃f: Dw → Dv, such that 

a) f is bijective; 

b) f is an embedding: for each k-ary relation R, the following holds: 

∀x1, ... xk ∈ Dw [Rw(x1, ... xk) ≡ Rv(f(x1), ..., f(xk)] 
 

At this point in the presentation, it is instructive to mention another critique 
to LP-structuralism that Schiemer and Wigglesworth address25, envisaging the nature 
of the abstraction process as articulated in the abstraction principles and operator. 
What particularly troubles them is that Linnebo and Pettigrew left unspecified how 
exactly the abstraction operators, represented by the square bracket notation [], 
work: they are supposed to act as functions []: S → [S], and []: x ∊ S → [x]S ∊ [S], but 
their codomain is unspecified. The need of such a clarification is fundamental to any 
structural abstractionist project, let alone one that intends to rigorously recasts the 
LP-abstraction principles in a Kripke-models mould. For this reason, Schiemer and 
Wigglesworth turn to a predicative and dynamic understanding of abstraction.  

 
24 For readability purposes, I will drop the specification of the arity of the relations from now on.  
25 (Schiemer & Wigglesworth, 2019, p. 1208) 
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As conveyed by LP-structuralism, the structural abstraction process distils 
from each particular system S its corresponding pure structure [S]. Now, suppose 
that a collection of such systems is given. What dynamic and predicative abstraction 
does, in Schiemer and Wigglesworth’s account, is to extend this initial collection of 
systems S by appending all the corresponding pure structures [S] obtained through 
structural abstraction. As they put it, ‘mathematical abstraction, understood as  
a predicative and dynamic process, simply allows one to consider larger and larger 
domains of mathematical entities, independently of the question of their objective 
existence. In the case of LP-structuralism, the relevant abstraction principles 
introduce pure structures into the domain of consideration by giving their identity 
conditions, as well as the identity conditions for the pure positions that belong to 
those structures’. 26 Dynamic abstraction is implemented in SW-structuralism 
through the operation of Kripke model extension. As the name of the operation 
suggests, model extension refers to the embedding via the inclusion or identity 
function of a Kripke model ℳ = ⟨D, W, ~acc, v⟩ into another, larger one, ℳ’ = ⟨D’, 
W’, ~acc’, v’⟩; obviously, the embedding implies that D ⊆ D’, W ⊆ W’, ~acc ⊆ ~acc’, v ⊆ v’. 
Accordingly, the extended model is specified in three steps: 1) by defining W’ and 
D’, 2) by defining ~acc’, and 3) by defining27 v’. I proceed the exposition in order. For 
the first step, this means supplementing W with the members of the set of pure 
structures WS, and D with the members of the set of pure positions DP, thus 
obtaining W’ = W ∪ WS, and D’ = D ∪ DP. WS and DP are given by the well-defined 
operators echoing ‘Frege Abstraction for Pure Structures’ and ‘Frege Abstraction for 
Positions in Pure Structures’:  

 

Definition 4.2.2. Pure structure abstraction operator §:  
Given ℳ = ⟨D, W, ~acc, v⟩, call a pure structure operator a function §: W → WS,  

W ∩ WS = ∅, such that 
§(w1) = §(w2) iff w1 ~acc w2, for all w1, w2 ∈ W. 

Collecting the pure structures in a set gives WS = {§(w) \w ∈ W} 
 
Definition 4.2.3. Pure positions abstraction operator σ:  

Given ℳ = ⟨D, W, ~acc, v⟩, and relational systems w1, w2 ∈ W, 
call a pure position operator, a function σ: D → DP, such that for all a ∈ Dw1, b ∈ Dw2, 

σ(a)= σ(b) iff there is an isomorphism f between w1 and w2 (w1 ~acc w2) and f(a) = b, 

 
26 (Schiemer & Wigglesworth, 2019, p. 1215) 
27 It will become clear that Schiemer and Wigglesworth define the valuation function v’ only partially, 

restricting the specification of extensions to the members of the class of pure relations obtained 
by abstraction.  



ADRIAN LUDUȘAN 
 
 

 
18 

The set of pure positions is, then, easily defined as DP = {σ(a)\a ∈ D}.  
The accessibility relation ~acc’ can now be defined by extending ~acc to 

include the unaccounted interactions between world-systems and pure structures 
in the new setting W’ = W ∪ WS: 

 
 

Definition 4.2.4. (~acc’):  
 

For all w1, w2 ∈ W’, w1 ~acc’ w2 iff w1 ~acc w2 ⌵ w1 = §(w2) ⌵ w2 = §(w1) 
 

Note that the pure structures §(w1), §(w2) are either identical or not ~acc related.  
Before presenting the third and final step in the construction of the 

extended model ℳ’ and, based on it, the account of fundamental and structural 
relations, let’s take stock, as Schiemer and Wigglesworth do, of two significant 
advantages of adopting Kripke models doubled by an intensional understanding of 
properties and relations, to convey a sound structural abstraction form of nes.   

First, they claim that the intensional construal developed in the Kripke 
models infrastructure effectively blocks the argument that brought havoc to LP-
structuralism, that all pure relations are fundamental. What blocks the argument 
according to their account is the fine-grained identification of relations: to be LP-
fundamental, an arbitrary pure relation Φ on positions has to be co-extensional 
with the induced abstract relation [ψ]S in every system S in order to be identical 
with it. Note, however, that all Schiemer and Wigglesworth have managed to show 
is that extra-work is required in SW-structuralism for proving that all pure relations 
are LP-fundamental, not that this verdict is ‘effectively blocked’ by their account.  
I will succinctly return to this issue in the next section, after clarifying their take on 
fundamental relations.  

The second, significant benefit of using Kripke models consists in the elegant 
explanation of the nature of pure structures, positions, and pure relations. To 
circumvent the Burali-Forti paradox, LP-structuralism simply asserts that they are 
sui-generis entities, keeping their status ambiguous. On SW-account, they can have 
the same status as the systems from which were abstracted without the threat of 
the Burali-Forti paradox because ‘the pure structures are not members of the set of 
worlds in the initial Kripke model, but are introduced through a dynamic abstraction 
process as captured by extending the initial model’. 28. 
 

 
28 (Schiemer & Wigglesworth, 2019, p. 1217).  
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5.1. Pure, fundamental, and structural relations in SW-structuralism … 

As advertised above, I am going to present Schiemer and Wigglesworth’s 
definition of the valuation function v’ and sketch their account of fundamental 
relations. Briefly, their strategy is to assign extensions at pure structures under v’ 
only to those pure relations that are the extensions of relations that already have 
local extensions fixed by v, i.e., relations already interpreted by v. Of course, for this 
strategy to succeed one has to define what an extended relation is.  

 
Definition 4.2.1.1. Extended relations:  
 

Given ℳ = ⟨D, W, ~acc, v⟩, D’, W’, ~acc’, say that an n-ary relation R extends  
an n-ary relation Q iff: 

a) Rw = Qw for all w ∈ W 
b) For all u ∈ WS and all d1, …, dn ∈ Du, ⟨d1, …, dn⟩ ∈ Ru iff there is a w ∈ W  

with b1, …, bn ∈ Dw, such that 
i) di = σ(bi), i ∈ n 

ii) ⟨b1, …, bn⟩ ∈ Qw 
 

In other words, a relation R in ℳ’ is an extension of a relation Q in ℳ iff R 
is ℳ-identical to Q and is LP-abstracted from Q. The definition has a couple of 
remarkable features worth stating. First, it enables a rigorous characterization of 
the pure abstracted relations in SW-structuralism by considering them to be 
extended relations. Second, it leaves room for pure relations that are not the 
product of abstraction, allowing these unattended relations to act as the deposit of 
the unavoidable extraneous properties of positions discussed in section 1. Third, it 
does justice to the intuition that the relevant pure relations of a structure have to 
be connected with relations in ‘concrete’ systems. However attractive are these 
features, and this is highly significant, the definition cannot capture the class of 
fundamental relations, on pain of falsifying the structuralist thesis. This is due to 
condition b) of the definition permitting the generation of an extended relation by 
abstraction from an idiosyncratic, 29 arbitrary, relation of a system. It is both 
illustrative and highly relevant to see why using Schiemer and Wigglesworth’s 
example 30. Consider the Kripke model ℳ = ⟨D = {NZ ∪ NN}, W = {z, n}, ~, v⟩, where 
the system z consists of the set of finite Zermelo ordinals, NZ, and n of the set of 

 
29 In the sense that it is specific to the system in question by not being preserved under isomorphism. 
30 (Schiemer & Wigglesworth, 2019, p. 1219) 
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finite von Neumann ordinals, NN, both equipped with their ‘usual ordering’. 31 Both 
systems exhibit the same pure structure ℕ, so §(z) = §(n) = ℕ. The ‘set-theoretic 
property P of having exactly two members’32 has the local extensions Pz = ∅, and  
PN = {{∅, {∅}}}. According to the previous definition, one can extend P to P* by 
ensuring that P* is co-extensional with P relative to z and n, (condition a)), and that 
P*ℕ = {2}, where 2 = σ({∅, {∅}}) = σ({{∅}}) (condition b)). Under the naïve hypothesis 
that fundamental relations are just extended world-bound relations abstracted by 
means of the previous definition, P* would count as fundamental. But this would 
falsify the structuralist thesis, for the property of having exactly two members is not 
structural, as witnessed by the third Zermelo ordinal.  

Consequently, if the class of fundamental relations would be completely 
defined by the class of extended relations, then not all fundamental relations will 
turn out to be structural. So, some extra conditions should be added to the 
definition of fundamental properties, to the effect that, in conjunction with the 
desirable and intuitively sound condition of being an extended relation, they will 
ensure the provability of the structuralist thesis. The missing, satisfactory condition 
that Schiemer and Wigglesworth propose to complete the definition of fundamental 
relations is definability.  

 
 

Definition 4.2.1.2. Definable relation:  
 

Given a language ℒ and an ℒ-systems w= ⟨Dw, R1w, …, Rkw ⟩, we say that an n-ary 
relation Ri is definable iff there is an ℒ-formula φ(x1, …, xn, y1, …, ym) and for all  

w there are elements b1, …, bm ∈ Dw such that for all d1, …, dn ∈ Dw: 
⟨d1, …, dn⟩ ∈ Riw ⇔ w ⊨ φ(d1, …, dn , b1, …, bm) 

 
Their justification for choosing the definability condition is that as the 

troublesome definition of extended relations indicates, the fundamental properties 
should not be abstracted from arbitrary relations in ‘concrete’ systems, but ‘from 
relations dealing with (or about) the internal structure of the systems in question’, 33 
and ‘the special class of relations admissible for this kind of abstraction’ 34 is that of 
definable relations, taken to reflect the inner structure of systems.  

 
31 ibidem 
32 ibidem 
33 (Schiemer & Wigglesworth, 2019, p. 1220) 
34 Ibidem. 
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As advertised, fundamental relations can now be fully characterized by the 
simultaneous satisfaction of the above two conditions.  

 
Definition 4.2.1.3. Fundamental relations:  
 

An n-ary relation R on the positions of a pure structure §(w) is fundamental iff 
there is an n-ary relation Q on the elements of an ℒ-systems w and  

a formula φ in ℒ such that 

i) Q is defined by φ, and 
ii) R is an extension of Q. 

Again, there are some remarkable consequences worth stating of this 
definition. The first thing to note is that fundamental relations become language-
dependent. 35 This is not a peculiar structuralist position, as the practice of model 
theory indicates: 

‘Model theorists are forever talking about symbols, names and labels. A group 
theorist will happily write the same abelian group multiplicatively or additively, 
whichever is more convenient for the matter in hand. Not so the model theorist: for 
him or her the group with '•' is one structure and the group with '+' is a different 
structure. Change the name and you change the structure’. 36  

Secondly, not only are fundamental relations pure (in Linnebo and Pettigrew’s 
sense), but are induced by abstraction (according to condition ii). Thirdly, fundamental 
relations are defined by the same formulas that define the relations from which 
they are abstracted, given that definability is preserved under extension of relations. 
Lastly, all intuitively fundamental properties concerning some familiar mathematical 
systems, mentioned and discussed by Linnebo and Pettigrew 2014, are captured 
formally by this definition.  

The only thing that’s missing for proving the structuralist thesis is a definition 
of structural properties. The definition goes as expected: 

 
Definition 4.2.1.4. Structural properties:  

R is a structural property of position a in the domain of §(w) iff for all systems  
w ∈ W and for all isomorphisms f: §(w) → w, the following holds: 

a ∈ R§(w) ⇒ f(a)∈ Rw 

 
35 This language relativity is not unprecedented in the structuralist literature, as Schiemer and 

Wigglesworth (2014) acknowledge by citing (Resnik, 1997). 
36 (Hodges, 1997, p. 1) 
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The structural thesis is proven in section 7 of Schiemer and Wigglesworth’s 
paper under the label proposition 1:  

 
‘Suppose a is a position in structure §(w). If R is a fundamental property of a in 

§(w), then R is a structural property of a in §(w)’. 

6. Adequacy vs substantiality of the structuralist thesis in SW-structuralism 

6.1. The role of the intensional construal of relations 

 On a careful examination, one can observe that what effectively blocks the 
argument that arbitrary pure relations (R§(w) ) turn out to be fundamental in SW-
structuralism is not the appeal to intensional relations, but to definability, as Schiemer 
and Wigglesworth certainly recognize: ‘Properties such as being John’s favourite 
number fail to be fundamental since there are no definable properties from which 
they can be abstracted’. 37 More precisely, the appeal to signatures in specifying 
what counts as fundamental relations is what blocks the argument, but this move 
is available to Linnebo and Pettigrew ’s version of structuralism.  

6.2. Why definable? 

 It is instructive to ponder why the definition of extended relations is 
formulated in such a manner that it doesn’t prohibit right from the start the 
abstraction from, or extension of, arbitrary, idiosyncratic relations (recall that it is 
sufficient for a relation Q to occur in a system w in order to be extendable). The 
definition can be easily adjusted so that the admissible relations for abstraction or 
extension are structural. Here is one way of rectifying it:  

 
Given ℳ = ⟨D, W, ~acc, v⟩, D’, W’, ~acc’, say that an n-ary relation R extends an n-ary 
relation Q iff: 
a) Rw = Qw for all w ∈ W 
b) For all u ∈ WS and all d1, …, dn ∈ Du, ⟨d1, …, dn⟩ ∈ Ru iff there is a w ∈ W with  
b1, …, bn ∈ Dw, such that 
 i) di = σ(bi), i ∈ n 
 ii) ⟨b1, …, bn⟩ ∈ Qw 

 
37 (Schiemer & Wigglesworth, 2019, p. 1222) 
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c) For all w’ ∈ W, such that w ~acc w’, there are c1, …, cn ∈ Dw’ such that ⟨c1, …, cn⟩ ∈ 
Tw’ iff ⟨b1, …, bn⟩ ∈ Qw where T is an n-ary relation.  

Amended in this manner, the definition of extended relations becomes 
synonymous to that of structural relations. And now we can clearly see why such an 
altered definition is untenable in nes: it trivializes the structuralist thesis by making 
all fundamental relations, understood as extended relations, definitionally 
synonymous with structural relations.  

 At this point, it becomes apparent that the wrinkle of definability as an 
essential condition for the characterization of fundamental relations has everything 
to do with the substantiality of the structuralist thesis. Stated in terms of extended 
and definable relations, the definition of fundamental relations is non-synonymous 
to that of structural relations, substantiating, thus, the claim of the structuralist 
thesis. Consequently, a proof of the structuralist thesis becomes a significant and 
revealing result.  

6.3. Adequacy of the definition of fundamental relations 

 However clever and ingenious, Schiemer and Wigglesworth’s rendition of 
the structuralist thesis, I argue, misses its mark. Just to be clear, I will argue that 
their definition of fundamental relations fails to capture what their explicit formal 
purpose was: essential features of the underlying structure instantiated in systems 
sharing the same signature. More precisely, it fails in two aspects: it overgenerates 
and undegenerates fundamental relations. To unpack my claim, consider some of 
the examples of relations and properties that they include in the ‘intuitively 
fundamental’ target set of the formal fundamental relations:  

‘Being the additive identity in a complete ordered field is one such property 
(of the zero position). Being an annihilating element for multiplication in such a field 
is another. The list could be extended for other types of structures: being an even 
number or being the second successor of the zero position are fundamental 
properties of certain places in the natural number structure. Being a node with a certain 
degree, that is, having a certain number of edges incident to it, is a fundamental 
property of nodes in a graph structure.’ 38 

All these cases seem to be easily and quite naturally captured by their 
definition of fundamental relations: 

 
38 (Schiemer & Wigglesworth, 2019, p. 1220) 
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“Consider, for instance, properties of the positions in the natural number 
structure discussed above. Each of these can be induced by abstraction from  
a concrete property of elements in a natural number system that is definable in 
terms of the primitive non-logical vocabulary of the language of Peano arithmetic. 
The property of being an even number, for example, is clearly fundamental in this 
sense, since it can be abstracted from a property of numbers in a given concrete 
natural number system that is definable by a first-order formula ‘∃y(y+y = x)’”. 39 

But, as they claim, and I wholeheartedly agree, if the properties listed above 
are ‘intuitively fundamental’, then so it should be the property of being a non-standard 
number or an infinite successor of the zero position in a non-standard model of 
arithmetic. The non-standard numbers are at least as constitutive40 for non-standard 
structures, as zero is for a field. Accordingly, their properties should count as intuitively 
fundamental for the non-standard structure of arithmetic. But it is an elementary 
result41 regarding non-standard models of arithmetic that their characteristic 
properties are not definable in first-order Peano Arithmetic (PA). So, consider the Kripke 
model  
ℳ = ⟨D, W ={n*, n*’}, ~, v⟩, where n* and n*’ are isomorphic non-standard models of 
arithmetic. Their pure structure, §(n*) = §(n*’) = ℕ*, should contain non-standard 
positions having the pure properties corresponding to those mentioned above as 
intuitive. But since these properties are not definable, they are not fundamental 
according to Schiemer & Wigglesworth’s definition, although, as argued, they are 
intuitively fundamental by their own lights. By Dedekind’s categoricity theorem, second 
order Peano Arithmetic has only standard models, so changing the logic in this context 
doesn’t help, as it excludes non-standard numbers. Other types of logics, or the appeal 
to open-ended versions of PA or schematic theories could be excluded on appropriate 
grounds. And, in the end, it isn’t even a matter of switching to the ‘right logic’, afterall, 
the study of such models in not only lucrative for better understanding and illuminating 
the standard model, but also worth pursuing for the mathematics of it. So, the definition 
undergenerates fundamental relations.  

 To see that it also overgenerates it is enough to consider properties 
representable in PA. With a sensible coding scheme of Gödel numbering, there will 
be a PA-formula coding the abovementioned ‘property P of having exactly two 
members’, or of being a formula of PA, or a term, or a sentence etc. All these recursive 
properties are representable in PA. Now, consider Schiemer and Wigglesworth’s 
example of the Kripke model ℳ = ⟨D, W ={z, n}, ~, v⟩, consisting of the set of finite 

 
39 (Schiemer & Wigglesworth, 2019, p. 1222) 
40 Although proving this takes a bit of effort: ‘is not quite trivial to show that there must be some 

nonstandard numbers in any nonstandard model ℳ.’ (Boolos, 2007, p. 303) 
41 For details see the ‘overspill lemma’ or ‘principle’ in (Boolos, 2007, p. 309) or (van Dalen, 2004, p. 122) 
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Zermelo and von Neumann ordinals equipped with their ‘usual ordering’ and 
expand the signature to that of PA, importing the usual interpretation of the symbols. 
In this model, the arithmetized version of the property P turns out to be fundamental, 
although, intuitively it shouldn’t be. I am aware of the difference between the 
property as expressed and understood in metalanguage and its artihmetized 
counterpart, but that is beside the point, for in virtue of being representable there 
is a canonical way of reconstructing the metalinguistic meaning. The same holds for 
other syntactic properties, and all the other non-arithmetic recursive properties. 
But these arithmetized versions of non-arithmetical properties obviously go over 
and beyond what an intuitively fundamental property of the natural numbers is 
supposed to be. The definition overgenerates.  

7. Concluding remarks 

The substantiality of the structuralist thesis is predicated on the non-
synonymy of fundamental and structural relations. The adequacy is predicated on 
the synonymy between the formal definition of fundamental properties and the 
intuitive content of the notion. If structural is taken to be invariance under 
isomorphism, as both Linnebo and Pettigrew, and Schiemer and Wigglesworth 
explicitly consider, then both abstractionist proposals fall short of upholding the 
eligibility of non-eliminative structuralism by proving the structuralist thesis. Linnebo 
and Pettigrew fail not only to convincingly circumscribe the class of fundamental 
properties, but also to prove the structuralist thesis. In Schiemer and Wigglesworth’s 
reconstruction, the structuralist thesis is successfully proven, but it amounts to the 
fundamental but elementary result that definable relations are preserved under 
isomorphism. Now, how substantial is this result for nes is a matter of debate, given 
that the notion of isomorphism is intimately connected with the signature of a system. 
Isomorphisms are essentially defined with respect to a signature and a language. That 
much is an elementary observation. 

‘The isomorphism concept is intricately linked with that of formal language, 
which is a way of making precise exactly which mathematical structure one is 
considering. Whether a given one-to-one correspondence is an isomorphism depends 
crucially, after all, on which structural features are deemed salient’. (Hamkins, 2020, 
p. 30) 

Nevertheless, the main point of my contention is that, even though the 
substantiality concerns raised above are surpassed, the class of fundamental relations, 
as sharply and ingeniously defined by Schiemer and Wigglesworth still won’t cut it by 
their own standards: it unequivocally undergenerates and arguably overgenerates.  
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