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MUSIC AND MATHEMATICS: SOME REMARKS ON THE IDEAS OF
SPACE AND FORM

CRISTINA CRISTE"

ABSTRACT. Mathematics has been used to describe, analyse and create music for
millennia. The use of specific mathematical apparatus is manifest in the organization
of basic musical notions into forms or objects that inhabit a sonorous landscape. The
collecting of musical units into a set constitutes a starting point for analysing a musical
object under different mathematical structures, and although there is no unified
approach, musical analysis and composition use geometry and discrete mathematics
to describe different musical relations (particularly group theory) in the process of
modelling the basic elements of music, such as scales, intervals, chords or rhythms.
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1. Introduction

In the last centuries, the description of basic music-theoretical terms
underwent an increasing level of abstraction and generalization under the influence
of profound changes in physics, but especially mathematics, an endeavour assumed
by musicians, composers, and mathematicians.

This late involvement of mathematics is not synonymous with the
Pythagorean tradition, still found in some musical interpretations, that music is
number, or sonorous number. The new relation between mathematics and music!
is rather found in the models offered by the first. In other words, music is not
mathematics, but it is mathematical, such that the organization of musical sound
can be described by a strict mathematical structure.

* Babes-Bolyai University Cluj-Napoca; Center for Applied Philosophy, Faculty of History and Philosophy,
Babes-Bolyai University.

1 predominantly characterizing the 20t™ century, but found in previous centuries as well. For a more
comprehensive approach in this regard, see J. Fauvel & R. Flood & R. Wilson (eds.), Music and
Mathematics. From Pythagoras to Fractals; Arbonés & Milrud, L’harmonie est numérique. Musique
et mathématiques.
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Still, there is no unified mathematical perspective with regard to music,
particularly a geometrical one, although there are theories more encompassing
than others, ‘encompassing’ here referring to the depth and power of the
mathematical tool and/or the breadth of the musical implications?.

Such an approach acknowledges the fact that every object, including
strings, vibrate at certain frequencies and that the waves dissipate, radiate away
energy as heat and/or sound, without transmitting matter, through a medium
such as air. If energy is not continuously supplied to the vibrating object, it will get
to its equilibrium position.

2. Mathematical music

The movement of the wave is organized and described as a characteristic
shape, further associated to a particular sound source. But the simple harmonic
motion, characterizing the vibrating motion of sound is fundamental not only to
music, but to the quantum mechanical motion of the atom as well.

In mathematical parlance, such a motion is called sine motion, while its
every physical approximation, including the sound, is considered sinusoidal. And
being based on the circle, “sine motion is a timeless description of motion having
no beginning or end”3.

Music becomes possible in the process of distinguishing discrete events in
this idealised motion, one further connected with the physically abstract notion of
a continuous flow of sound. And such a discrete event is called tone, “probably the
fundamental unit of musical experience"*, with music also described as a set of
tonal structures.

The abstraction of the tonal space, allowing the spatial representations of
tonal distance and tonal relationships, was first introduced as a conceptual diagram
named Tonnetz (German for tone-network) by Euler in 1739, was further developed
to explore the properties of pitch structures, and has even been used to visualize
non-tonal triadic relationships (by Neo-Riemannian® theorists).

When a tone, characterized by 3 sonic qualities - pitch, musical loudness,
and timbre - is combined with the temporal qualities of onset and duration, it
becomes a note. The combination of notes under the temporal dimension determines

2 For example: D. Lewin, Generalized Musical Intervals and Transformations; G. Mazzola, The Topos
of Music; D. Tymoczko, A Geometry of Music.

3 G. Loy, Musimathics. The Mathematical Foundations of Music, Vol. 1. MIT Press, 2006, p. 7.

4 Ibidem, p.12.

5> The notion alludes to Hugo Riemann, the music theorist and composer, and not Bernhard Riemann,
the mathematician.
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three contexts of analysis: (i) the musical score; (ii) the melody, as notes performed in
sequence; and (iii) harmony, when the focus is the simultaneous performance of
the notes.

Pitch is an essential organizing principle, generally defined, not
unambiguously, as the “auditory attribute of sound according to which sounds can
be ordered on a scale from low to high (ANSI 1999)”%. The complexity of the
analysis lies in the meaning of that “auditory attribute”. Acoustically, the pitch can
also be represented by the logarithm of its fundamental frequency.

A sound has a pitch if its wave shape — represented as a Fourier series - is
highly redundant through time. Otherwise, it is said, we hear noise. The existence
of pitch already seems to involve a structure. So there is sound and there are
sound structures.

Now, of course, there is always the question: when does sound become
music? According to John Cage’s “4’33””, any sound can constitute music. But
what the notion of pitch already implies is that sound might represent structures
different from what is generally called music. That being said, shaping the nature
of their connection requires further distinctions.

The difference in pitch between two tones determines the interval, which
is perceived regardless of the degrees of variations in sounds’ frequency, duration,
timbre and amplitude. “Alterations of pitch in melodies — Helmoholtz wrote - take
place by intervals and not by continuous transitions””.

The pitches create therefore an acoustic landscape determined by range,
density and a subjective sense of distance characterized as height or width,
constituting the chroma. The ‘subjective’ aspect is determined by the fact that a
specific interval is experienced as higher, lower or wider than another.

Using the language of set theory® to categorize musical objects and describe
their relationships, a class of pitches is considered an unordered subset of n objects,
an ordered subset is a permutation, and the basic operations are transposition and
inversion. The approach is based on the idea, which started with Riemann in
geometry and then Cantor in set theory, that the same mathematical object (the
manifold, a set) could not only carry different structures — geometries, - but there
could also be different notions of equivalence between objects and structures.

6 Loy, op.cit., p. 13.

7 Helmholtz, On the Sensations of Tone. As a Physiological Basis for the Theory of Music, Dover
Publications, New York, 1954 p. 250.

8 Not set theory per se. Musical set theory is a rather improper term, since such an approach is more
related to group theory and combinatorics than to mathematical set theory. And even though one
is able to use the vocabulary of set theory to talk about finite sets, there are many differences
between methods and terminology in them. Musicians, for example, use the terms transposition
and inversion where mathematicians would use translation and reflection.
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The mathematical transposition translates the restatement of a melody at
higher and lower pitch levels in a way that preserves intervals. Inversion
represents another way to create variation into a musical piece while preserving
the intervallic sound of a melody, but not the exact intervals.

An example of the way in which finite sets play an important role in music
analysis, in addition to group theory, is Messiaen’ Chronochromie (1960). Messiaen
uses the term “interversion” to denote a particular ordering of permuted elements,
and the term “permutation” to refer to this technique, added to the two-item list
of mathematical impossibilities mentioned in his Traité de rythme, de couleur, et
d’ornithologie: the modes of limited transposition” (modesa transpositions limitées)
and “non-retrogradable rhythms” (rythmes nonrétrogradables)®. The permutation
is applied to a sequence of musical objects (pitches, durations, etc.) to obtain
another sequence, but one has to choose among the great number of symmetries
that a significant number of objects could determine. In the end, Messiaen
creates a collection of rhythms obtained by the iterated application of a given
symmetrical permutation to a collection of 32 durations.

A further determination within this range of available pitches, the chroma,
involves the selection of a small subset of intervals that would become the pitch
classes of a scale.

A musical scale can thus be defined as “an ordered set of pitches, together
with a formula for specifying their frequencies”, with each individual pitch called
degree, and all degrees forming an “ordered set of names and positions for the
scale pitches”!°. Those pitch classes are replicated across the space of each octave,
determining the gamut of pitches.

The diatonic scale, probably the most recognizable, known and influential
of the scales, expresses but one of the many possible orderings of intervals. The
chromatic scale extends the diatonic scale by breaking up the whole steps into
half steps. Or, as Gareth Loy pointed out, the unique order of whole and half steps
characterizing the extended diatonic scale — the chromatic scale -, “provides a
crucial asymmetry that our hearing exploits in order to orient ourselves to the
music we’re hearing. If the interval pattern were not asymmetrical, it would be
impossible for us to orient ourselves in the scale”!!. In the words of Pierre Curie,
“it’s the dissymmetry that creates the phenomenon”.

And like a mathematician facing the choice of a geometry or other, in
conformity with particular interests and circumstances, one is free to choose any

° 0. Messiaen, Traité de rythme, de couleur, et d’ornithologie, Vol. I. Trans. by Melody Baggech, Norman,
Oklahoma, 1998.

10 Loy, op. cit., p. 16, passim.

11 Ibidem, pp. 17-18.
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musical ordering that serves her needs, although diatonic ordering has had a
considerable influence on the music around the cultures of the world.

We can visualise the pitch space of the 12-tone equal-tempered scale —
which constitutes the dominant tuning system in the West — as a circle (the circle
of fifths), or even as a spiral if we continue to add sharps and flats. The point to be
emphasized is that the key structure can be characterized in terms of circularity.

But the orientation in the pitch space is not as straightforward as it
seems, an aspect noticed in an early research by Roger Shepard!? — hence the
Shepard illusion, and it involves the difference in experimenting the chroma, on
one hand, and the tone height, on the other. In playing a sequence of major fifths
intervals on a piano, starting from the lowest tone, the sequence seems to ascend
if one focuses on the tone height, but it appears to decrease by semitones if the
attention falls on the chroma. Hence the auditory counterpart to the impossible
staircases of Escher. Or the Necker cube.

According to Callender, Quinn and Tymoczko, it is possible though to
measure musical distance in other ways than the intervallic conception, when we
consider chords to be close or even identical, since each contains the same total
collection of intervals®>.

It is helpful to point out the fact that if we describe some notes to be
close because the ratio of their fundamental frequencies can be expressed
using small whole numbers, we have an acoustic conception of musical distance
that, together with the intervallic one, represents a perceptual model of musical
distance.

On the other hand, aconceptual model in the experience of hearing music is
one that measures music melodically, using distance in log-frequency space, an
approach based on the idea of voice leading, developed in recent years by Callender
etal'

That being said, when we hear a melody consisting of several pitches,
what we actually perceive are the intervals between the individual notes, with the
relationship between these intervals making a melody, more or less appealing.

In other words, if we consider the interval as the distance between two
notes, we hear the distance. But since the interval could also be described as the
numerical proportion between the frequency of the two different notes, it seems
that we are prone to perceive somehow an exponential relation between pitch

12 R. N. Shepard, “Circularity in judgments of relative pitch”, in Journal of the Acoustical Society of
America, 36/ 1964, pp. 2345-2353.

13 C. Callender & I. Quinn & D. Tymoczko, “Generalized Voice-Leading Spaces”, in Science, Vol. 320,
Issue 5873/ 18, Apr. 2008

14 Ibidem for the distinction among different conceptions of musical distance.
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and frequency. “Frequency f goes up exponentially as pitch p goes up linearly: to
double pitch, we must quadruple frequency”?®.

The unison expresses identity, the octave expresses equivalence, but the
singularity of the other intervals (minor, major or perfect) is determined by the
subjective perception of distance (in terms of ‘higher’, ‘lower’, ‘wider’), despite
significant variation in other sound properties, such as duration, amplitude,
frequency, or timbre.

With regard to the frequency in the production of articulations in the
emission of sounds, we get rhythm, the understructure of a melody, the distribution
of pitch and intensity in sequences, or the organization of various dynamics of sounds
and silence in time. As fundamental property of every perceived, aware, determined
pattern of sound, its presence acknowledged at every level of encounter with a
musical element (and not only), it represents a fundamental condition for a
mathematical analysis of music. Due to its forms, it involves different types of
temporality and, simultaneously, various ways of pacing the acoustic space.

As J. Arbonés & P. Milrud pointed out, “it is possible to compare this
situation with the general mathematical problem of tessellating the plane, that is,
when one has to tile an entire plane with regular geometrical forms. In our case,
what we desire to cover completely is the sonorous plane”?®,

We perceive therefore a movement through different forms determined
as ratios (of frequency), and together they are shaping, at another level, the form
of the melody, through rhythm. Forms creating and/or determining other forms.

The question is, is it possible to perceive the transformation of different
forms or musical objects and their perception? The question involves several aspects:

- firstly, it is important to address the concept of continuity;

- secondly, it involves the composite notion of movement and change;

- and thirdly, it points to the context in which ideas of continuity and
motion are valid events; in other words, it points to the musical space organized
as score.

On one hand, there is a continuity when considering the passage from
sound to music. On the other hand, there is another idea of continuity in the
movement among the elements of a specific piece of music, irrespective of the
temporal and spatial aspects; or between different sound patterns. David Lewin’s
transformational theory'’, in applying group theory to music, is particularly
appropriate in the analysis of the musical motion.

15 Loy, op.cit., p. 15

16 ). Arbonés & P. Milrud, L’harmonie est numérique. Musique et mathématiques. RBA France, 2013, p. 48.

17 See David Lewin, Generalized Musical Intervals and Transformations, Oxford University Press,
[1987] 2007.
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In this second type of continuity, music becomes — it is becoming, it
becomes in the specific movements and rhythm of its forms, even if such a form is
silence — silence in all its musical distinctions (the types of rest; the hold or pause;
fermata, or caesura). That is because as part of a composition, silence is determined
in time, just like a unit fragment on the real line that simultaneously represents a
set of infinite cardinality (of the continuum).

In mathematics, the analysis of the definition of continuity — from the € - 6
definition, through that involving open intervals, open discs and then in terms of
the set of open subsets - led to the institution of metric and topological spaces.
This development proved that continuity, viewed invariably, depends not on
distance, but on something more intrinsic.

Each level of abstraction in this development describes space as a
collection of points with an added structure satisfying certain axioms, and with
topology as the most abstract of these structures or geometries.

There are recent studies that “interpret a scale as defining a metric
according to which adjacent scale tones are one “unit” apart; scalar transposition
is just translation relative to this metric”28,

How did topology come into music? An example, analysed by Richard
Cohn, Jack Douthett and Peter Steinbach, and Thomas Fiore is Beethoven’s Ninth
Symphony, specifically the measures 143-176 of the second movement, which
contain an extraordinary sequence of 19 chords. There are certain conversions
by some functions of these chords with finally obtaining a graph that makes a
torus, so the chord progression from Beethoven is a path on it. For a complete
torus we would have needed 24 chords. Another example of music on a
topological object is Bach’s Musical Offering, which contains a passage that is
music on a Mdbius strip.

Now returning to the abstract structures of the musical space, it is
possible to describe some rigid and continuous motions named symmetries. They
represent the transformations that leave a pattern in space unchanged, and they
are modelled as functions acting on the entire space, meaning that every
transformation must be applicable to every object.

In geometry, the study of an object, of a specific space involves the
description of its possible transformations. Geometers study a space by describing
its possible transformations. A musical space can be approached as a mathematical
one, since an object, including a musical one, is defined by its symmetries. So we
analyse those properties that remain invariant under its possible transformations;

18 C. Callender & I. Quinn, & D. Tymoczko, op.cit., p. 2.
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and a pattern in space by asking what transformations leave the pattern
unchanged, what symmetries the pattern has.

Now symmetry, as Saunders Mac Lane notes, “is neither geometric nor
algebraic; or perhaps both”*°. Its essence, as Thyssen and Ceulemans pointed out,
is “[T]hinking difference and identity together”?°. It doesn’t have to depend on
numbers, and it basically shows that algebra and geometry have in common some
underlying, more abstract, form: the abstract structure of a mathematical group,
which is particularly important when applied to music because it allows us to
see/conceive things that we otherwise would not be able to see. This property of
groups to make visible the hidden connections and ultimately to reveal hidden
connections among phenomena is probably not far from Paul Klee’ principle, “Not
to render the visible, but to render visible”.

Group theory describes the way that sets and pitches relate and how they
can be transformed from one to the other, it shows how different musical voices
move against and through each other and, ultimately, how sound, including the
silences, creates or is organized into a musical space.

The basic musical transformations — which constitute the elements of a
group and can be used to analyse both tonal and atonal music — are: translations,
rotations, reflections and glide reflections, although in practice, composers usually
use only reflection on two lines and rotation through 1802. The transpositions and
inversions (of intervals, chords, melodies, or voices in counterpoint) mentioned
above also form a group in the mathematical sense of the word.

All these transformations form a group by the act of group composition,
of interacting with each other.

Another way would be to take a set of functions whose inputs are major
and minor chords and whose outputs are major and minor chords.

With regard to the dimensions of the space in which to study these
transformations, they are described in terms of the basic theoretical musical
concepts mentioned above. What varies are the dimensions chosen in a specific
analysis. Most often, there are two dimensions - time and pitch, or loudness and
pitch, although some focus on sounds defined by their continuously changing
time, pitch and loudness, i.e. as points of a 3-dimensional manifold.

But there are some limits in the analogy. Helmholtz noted a difference
between the geometric manifolds, where it is possible to compare distances
between points everywhere (“i.e. we can freely move a rigid measurement body

19 Saunders Mac Lane, Mathematics. Form and Function, Springer-Verlag, 1986, p. 19.
20 p, Thyssen & A. Ceulemans, Shattered Symmetry. Group Theory from the Eightfold Way to the
Periodic Table, Oxford University Press, 2017, p. 33.
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everywhere over the manifold”), and the physiological manifolds, the 2-
dimensional acoustical manifold for example, where there is no comparability of
distances between points everywhere, where “[T]wo sounds of the same pitch
and different volumes are not comparable to two sounds of different pitch but
the same volume”?..

In recent years, some researches?®? proposed an approach that would
subsume a great variety of previous geometric models. They started by expressing
different musical terms as symmetries of an n-dimensional space, where each
dimension representing a voice in the score and then creating specific mathematical
spaces, singular quotient spaces, named or bifolds, by identifying (or “gluing
together”) points in R".

There are many musical examples?® expressing these transformations that
do not change the distance between two points in the plane, isometries that do
not alter the scale of distances (the metric). We take a musical motif — and many
tunes express an asymmetric one - as consisting of a set of notes described by a
pitch over time, that is, a subset of R?, the 2-dimensional space.

Rachmaninov’s remake of Paganini’s Capricio no. 24 for violin solo,
Rhapsody on a Theme by Paganini, Op.43, creates a chromatic inversion by changing
minor to major?* (variation 18), although he follows Paganini’s score bar by bar. He
also imposes a slight change in rhythm and, at one point, there is an octave jump.

Hindemith’s Ludus tonalis contains a rotational symmetry, through 180¢:
with the exception of the last chord, the final movement is the same as the first,
but rotated through 1802.

Brahms's Intermezzo in E minor, Op. 116, no.5 is an example that Callender
et al. use to show how a symmetry, though hard to spot in the musical notation, but
rather easy to hear, becomes obvious in the geometrical representation®. The
researchers identified two pairs of voice leadings, represented as vectors, to
measure the similarity of musical progressions. And since “the two pairs of vectors are
related by reflection, the figure also illustrates the Mébius strip’s nonorientability”2®.

21 see K. Mainzer, Symmetry and Complexity. The Spirit of Beauty of Nonlinear Science, World Scientific
Publishing, 2005, p. 80, passim.

22 See C. Callender & I. Quinn & D. Tymoczko, op.cit.; R. Wells Hall, “Geometrical Music Theory”, in
Science, Vol. 320, Issue 5874/ 18, Apr. 2008 pp. 328-329.

2 See, for example, Wilfrid Hodges, “The Geometry of Music”, in J. Fauvel & R. Flood & R. Wilson
(eds.), Music and Mathematics. From Pythagoras to Fractals, Oxford University Press, 2003, pp.
91-111.

24 The A minor of Paganini theme becomes Db major.

2 See the Supporting Online Material for Callender et al., op.cit.

26 |pidem, p. 15.
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3. Conclusion

Beyond the organizing ideas of rhythm, musical tone, pitch, loudness,
timbre, musical note, interval, then melody and harmony, there is a continuous
flow of sound permitting the configuration and the description of determinate,
discrete patterns known as music. That being said, it should also be emphasized
the fact that although the substratum of sound is present in music, it is present in
the diversity of languages as well.

Still further beyond this underlying stream of continuously changing
fluctuations there is the simple harmonic motion of vibrating objects, abstractly
and mathematically represented by the ideal concept of the timeless sine motion.
In other words, change and timeless form, constant ratios of continuous movement
and perceived rest permeates the various manifestations of music and the act of
its creation.

The employment of mathematics in analysing music unveils structures
that are inherent in all its expressions. As a result, it is possible to underlie musical
aspects otherwise less discernible, but also to secure a specific basis for the act
itself of creation. What is more, the use of the same mathematical theories and
models to pinpoint basic facts and principles in music and different sciences could
constitute a starting point to various philosophical interrogations. It certainly
refines Nietzsche’s idea of music as a continuous endeavour to get to a specific
intuition of things, to think the world in the most universal form of being.

The organization of vibrations as music into discrete patterns already
delineates a specific, sonorous space, to be mathematically characterized by
certain dimensions. The choice of basic musical objects delineates the space.

It is possible to acknowledge this space without the comfortable aid of
time, particularly when we approach music through its notation. In its notational
form and like any other scriptural act, including the mathematical one, it offers
clues and indications to connections not ‘visible’ as such.

We meet then another way to perceive its articulations. But the question
remains: is music grasped among its articulations, articulation of forces, not of
things*’, or through them? The understanding of the passage from sound to
music, to specific tonal structures, involves not only a thoughtful aesthetic
interrogation, but also an epistemological examination regarding the cognition or
perception of continuity.

27 To reprise Deleuze’s formula in his discussion of Cézanne. See Gilles Deleuze, Francis Bacon.
Logique de la sensation, Editions du Seuil, 2002
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Within this space with a determinate number of dimensions, to be
chosen, a musical object is reduced, in its description, to a determinate set of
points. But a point is also an idealized concept in mathematics, it doesn’t have
extension: the physical dot and the mathematical point are not identical.
Considering Dedekind’s definition of the real number?® as a cut, ‘gap’ in the
rational numbers, a “point” is a whole universe to someone who knows that it is
actually a cut in the infinite set of rational numbers”%.

In this complex process of abstraction, both music and mathematics curl
around in their expressions such as to signal various registers of understanding.
But their connection is just as salient in the moment when both come “alive”,
become “part of our experience”, to use Keith Devlin’s words: “the symbols on a
page are just a representation of the mathematics. When read by a competent
performer (...) the mathematics lives and breathes in the mind of the reader like
some abstract symphony”°.

So maybe the idea of music itself as a spatial structure of sonic forms
developing in time is a construction by which one seeks to grasp movements at
different levels of description, a process of discovery that must spiral though
models that prove continuously incomplete.
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