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INTERNAL CATEGORICITY
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ABSTRACT. The article surveys the problem of the determinacy of reference in the
contemporary philosophy of mathematics focusing on Peano arithmetic. | present
the philosophical arguments behind the shift from the problem of the referential
determinacy of singular mathematical terms to that of nonalgebraic/univocal theories.
| examine Shaughan Lavine’s particular solution to this problem based on schematic
theories and an ‘internalized’ version of Dedekind’s categoricity theorem for Peano
arithmetic. | will argue that Lavine’s detailed and sophisticated solution is unwarranted.
However, some of the arguments that | present are applicable, mutatis mutandis, to
all versions of ‘internal categoricity’ conceived as a philosophical remedy for the
problem of referential determinacy of arithmetical theories.
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The central problem?

The central problem of this article concerns the determinacy of reference for
those mathematical theories whose intended subject matter is a certain mathematical
structure?. More precisely, the philosophical problem that we are considering is how
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! The philosophical issue that | will address in this paper is an instance of what Shaughan Lavine
defined in his manuscript, Skolem was wrong, as the ‘central problem’. Since Lavine’s detailed
and sophisticated argument will be the focus of my paper, | kept his way of naming the issue.

2 Of course, there are mathematical theories, such as group theory, ring theory, etc whose
axiomatizations are not supposed to pick up a unique structure modulo isomorphism. Following
(Shapiro 1997), | shall call such theories, ‘algebraic’, leaving the characterization ‘non-algebraic’ for
those mathematical theories whose axiomatization is supposed to determinately refer to a unique
structure up to isomorphism, such as Peano Arithmetic, analysis, etc. For reasons of clarity
(Button and Walsh 2018) contrast algebraic theories with univocal ones.
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can a theory such as Peano Arithmetic (PA) manage to characterize, up to isomorphism,
its intended subject matter, that is, the natural number structure that we all know
and love. A few qualifications are needed in order to unpack the central problem,
one methodological, and the rest philosophical.

(1) The problem arises for some profiles of positions in the philosophy of
mathematics with some discernable epistemological and ontological features.

Ontologically, the problem arises for a structural realist in the philosophy
of mathematics. | will call such a position platonism, although | am aware that that
forces the label ‘platonist’. What ‘realism’ means in this context is the combination
of three traits, existence, independence, and abstractness of mathematical objects.
The first two traits are formal, and concern the status of mathematical objects, while
the latter is material and regards their nature. The belief that mathematical entities are
bona fide existing objects with distinctive properties defines the existence trait, the
belief that these objects are not our creation, defines the independence trait, and
the belief that mathematical objects have a non-spatial, non-temporal, acausal
nature forms the abstractness trait.

Epistemologically, the problem arises for what Button & Walsh? call a
‘moderate’ position. An easy way out of the problem of how we can determinately
refer to mathematical structures or objects is to attribute to the mind some mysterious
faculties, like a mathematical intuition, that enables the mind to glue the theories/
singular mathematical terms to the envisaged structures/mathematical objects. By
contrast, a moderate position presupposes the rejection of any talk of intellectual or
mathematical intuitions, or for that matter, any mysterious faculties of the mind, and
focuses only on philosophical positions capable of offering naturalistically approved
explanations. In our case, this means that the explanations have to be semantically
traceable. Accordingly, from a moderate perspective, if anything fixes the reference,
then the theory and its semantics ought to do it.

(2) I will talk of determinacy of reference of mathematical theories only up
to isomorphism for reasons that | will develop and explore in the next two sections.

(3) I will construe the informal talk of ‘mathematical structures’ as isomorphism
types, as is the practice of many mathematicians, thus restricting the analysis to
what Button & Walsh* call modelism.

% (Button and Walsh 2018, 6.3)
4 (Button and Walsh 2018, 38)
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(4) The methodological framework in which | will conduct the analysis is the
standard model-theoretic one and at times set-theoretic, customarily employed in
textbook presentations of first and second-order logic. | assume that the reader is
familiar with these frameworks.

In short, the philosophical setting is constituted by platonism, moderation, and
modelism, and the instruments of analysis are the standard model-theoretic ones.

The ‘push-through construction’ and the permutation argument

There are two arguments for focusing on the referential determinacy of
non-algebraic theories, rather than singular mathematical terms, and for considering
structures only ‘up to isomorphism’ as such referential candidates. The first one is
based on an elementary result from model theory, the ‘push-through construction’,
and it is known as ‘the permutation argument’®, while the second is based on technical
results in set theory regarding different, but equivalent set-theoretic reconstructions
of the natural number structure, and it is known as ‘Benacerraf’s identification problem’”.
Let us develop the two arguments, with an emphasis on the first one.

Before outlining the permutation argument, we need to state some
definitions and basic results in model theory.

In model-theoretic semantics, one typically assigns certain entities of the
domain M to each item of the signature® L:

i. toeveryconstantc; € L, an element ¢/ € M.
ii. toevery n-ary relation symbol R;€ L, a subset R CM".
iii. to every n-ary function symbol f; € L, a corresponding n-ary function,
s M > M.

Variables v;, i € N, are taken to range over the domain M.

Observe that these specifications can be viewed as a schematic referential
explanation of the constitutive items of L. More precisely, consider an L-structure
M= <M, ¢, R, fi* >. The structure explicates reference in a similar manner to
that of natural languages like English, by assigning to each constant ¢; € £ (L's

> The name originates with (Button and Walsh 2016, 284).

® Although permutation arguments have a long history — see (Button 2013, 25) our focus will be
on the permutation argument developed by (Putnam 1981, 33-5, 217-18).

7 (Benacerraf 1965)

& | will only consider at most countable signatures since nothing on the arguments involved in
the subsequent analysis relies on the cardinality of the signature.
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correspondent of a proper name) an element of the domain M, to each predicate
Ri € L (L's name of a property/relation) a certain subset, etc. In sort, reference for
singular mathematical terms is fixed by stipulation and it has a non-descriptivist
character. Based on the above specifications, one then recursively defines in model-
theoretic terms the notions of satisfaction and truth. For subsequent discussions, it is
important to note that truth is a relation between a structure #7'and an L-sentence
@, usually symbolized like this, /7= . The more general notion of satisfaction is a
relation between a structure A7 with an assignment s from the set of variables to
M, and a well-formed formula (wff from now on), symbolically A7, s = ¢@(¥), where
U is an n-tuple <v3, v, ...,v,> of free variables. In both cases, the relation = connects
a model-theoretic structure with a proper linguistic construct. | assume that the
reader is familiar with such definitions and with their generalization to L-theories,
not just particular sentences, in which case, we speak of the structure #7as a model of
any such L-theory T. Note that an L-model A7 of an L-theory T, makes true — in the
technical sense of model theory —all assertions in T which intuitively should be true, and
false the assertions which intuitively should be false. Briefly stated, for any T-sentence ¢,
ME @, if and only if (abbreviated iff from now on) ¢ is (intuitively) true.

Tacking stock, model theory provides explanatory referential schemas for
L signatures, recursive definitions of truth and satisfaction, which enables the
generalization to theories and models.

In model theory, one can easily construct an isomorphic copy of any such
structure M. The only requirements are that we have a set N with the same
cardinality as M and a bijection it : M - N — but these are not serious issues since
we can take N = M, and consider it a nontrivial permutation of M. A basic recipe for
constructing an isomorphic copy is the following:

Push-through construction: Let L be any signature, M= <M, ¢;/*, R, f >
any L-structure, and it : M = N any bijection. Define another L-structure, /"= <N,
¢, Ri%, fiV> by:

i. ¢=n(cH),
i. RiV={<n(m;y), n(my),..., m(my)>/<mi, m;, ..., mp> € R/}
ii.  fiMn(m:), n(mz),..., i(mn)) = n(f* (m1, my, ..., my)).

In these conditions, it defines an isomorphism, and we say that #7"and &/°
are isomorphic structures, in symbols A7 = V.

Isomorphic models preserve the truth-values of all formulas (hence, in
particular, of all sentences). If two L-structures M and J/ satisfy exactly the same
L-sentences, we say that the structures are elementarily equivalent, in symbols A= V.
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Resuming, we can say that if two structures are isomorphic, then they are elementarily
equivalent, which is a basic result in model theory often stated as a corollary of the
following theorem:

Theorem 1. Let M, JV, be any two £L-structures such that M = W, with it :
M => N the isomorphic bijection. For all Lformulas @(V), M, s E@(V)iff V, m os E@(V).

The proof of the theorem is by induction on the complexity of the formulas.

Now, the permutation argument is simply a philosophical usage of the
push-through construction in order to undermine the determinacy of reference as
explained above i.e. in the model-theoretic semantics. Suppose that one has
formulated a nonalgebraic/univocal L-theory T, such as Peano Arithmetic, with an
intended model A7. Obviously, stipulation alone cannot fix the reference of singular
terms such as ¢, f(c), etc., we can always specify another referential schema in
which the referents of all constants ¢;, predicates and functions R, f; of the L-theory
T are different from those in M. A far better candidate for referential glue is
represented by the truth-value of sentences. Maybe the truth-value of sentences
in which a certain singular term occurs imposes the reference of that singular term.
It is precisely this account of the determinacy of reference of singular terms that
the permutation argument dismantles. In the intended model A7, each singular
term has a definite referent; for example, the referent of c; in A7is a certain object
c:™. Apply the push-through construction to this intended model, with N = M, and
7T a nontrivial permutation of M. In the generated model, call it A7°, at least one
singular term has a different referent than the one assigned in A7, say the
interpretation of ¢; in A7 is a definite object ¢ which is different from c;#, the
interpretation of ¢; in M. If the truth-values of sentences were enough to glue
names to referents, then some truth-values of sentences containing c; will differ in
the two models, #7"and A7”. But the push-through construction ensures us that A7’
is isomorphic to A, and by the corollary to the theorem 1, A7 is elementary
equivalent to 7, that is the models are indiscernible with respect to the truth-
values of all the sentences. To illustrate this procedure, suppose that the signature
L contains the names of those celestial bodies within our solar system that have
been named so far, and the predicate ‘is a planet’(abbreviated P), while the
intended structure /A7 has a domain M that contains all celestial bodies within our
solar system (either named or not) and the other ingredients of the signature
interpreted in the usual manner. In A7, ‘Mars’ refers to the planet Mars, and the
sentence P(Mars) is true, i.e. M = P(Mars). Consider the nontrivial permutation it
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that swaps Mars with Phobos. If the story ended here®, then the truth value of
sentences containing the name ‘Mars’ would enable one to pick out the intended
referent, because, obviously M= P(Mars), but M, i ¥ P(Mars), where M, it is the
model obtained from A7 °by the  permutation of the domain M, without any other
adjustments to the predicate P. However, the push-through construction induces a
reinterpretation of the predicate P. In the pushed-through interpretation, P would
apply to Phobos, and all other planets minus Mars (rr leaves all named celestial
bodies un-swapped, except for Mars and Phobos). In this permuted model, call it
M™ in order to distinguish it from A7, i, the sentence P(Mars) is true, as expected.
Moreover, by the corollary to the theorem 1, A" attributes to all L-sentences
exactly the same truth-values as A7.

The permutation argument has the virtue of being easily extendable to
other logics, and one such extension to logics with modal operators was, in fact,
used by Putnam?® to argue that truth-conditions of sentences, not just truth-values,
underdetermine the reference of singular terms?’,

Concluding, the moral of the permutation argument is simply that truth-
values and truth-conditions cannot fix the reference of singular terms, and, for our
envisaged philosophical position, the question of what, if anything, fixes the
reference of terms remains pertinent and unanswered.

Benacerraf’s identification problem

Besides the permutation argument, there is another celebrated argument
that poses a problem for the determinacy of reference of mathematical singular
terms, although the main target of the argument is the ontological status of the
intended referents of mathematical singular terms. To be more precise, the
problem addresses the belief that the natural numbers are genuine objects.

The puzzle is properly stated in a set-theoretic foundationalist setting and
it focuses on the structure of the natural numbers. Suppose that one endorses the
project of reducing the whole mathematics to set theory. Such a project definitely has
some attractive philosophical consequences, for example, it unifies the ontology of the
whole mathematics, which just by itself is a significant philosophical achievement. In
short, suppose that one is committed to the following thesis:

° That is, without any other compensatory reinterpretations of the signature L.

10 (Putnam 1981)

1 For an elaborate discussion of this version of the permutation argument and two extensions
of the push-through construction see (Hale and Wright 1998 ).
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Set-theoretic foundationalist thesis (SF): Set theory is the foundation of
mathematics.

As | mentioned at the beginning of this section, suppose that one also
embraces the following:

Thesis (IT): The natural numbers are bona-fide objects.

Benacerraf’s identification problem is the observation that there is an
irreconcilable tension between (SF) and (IT), manifest in the particular case of the
natural numbers. In a standard set-theoretic framework, one can reconstruct the
natural numbers system in two elementary equivalent (modulo PA-truths), but
referentially incompatible ways.

The sketches of the two reconstructions presuppose that the reader is familiar
with Peano systems, specified as a triple <N, 0, s>, and with basic set-theoretic
concepts and techniques.

(A) The first reconstruction is due to Von Neumann'?, and is by far the most
popular one among working set-theorists. Concisely, in Von Neumann’s reconstruction,
we begin with the following definitions, 0 = @, and sy(x) = x _{x}. Consequently, we
obtain the following equalities: 0 =@, 1 = {0} ={@}, 2 = {0, 1} = {@, {B}}, 3={0, 1, 2} = {®,
{@}, {D, {@}}} and so on. Let Ny to be the smallest set containing 0 and closed under
the sy function (the Von Neumann ‘successor function’). Now, it can be proved that:

Theorem 2. <Ny, 0, sy> ETh(PA)

(B) The second reconstruction is Zermelo’s®3, and basically consists in defining
0 = @ and sz(x) = {x}. Obviously, in the zermelian reconstruction, 1 = {@}, 2 = {{@}}, 3 =
{{{@}}} and so on. Let Ny to be the smallest set containing 0 and closed under the
successor function sz . Again, it can be proved that:

Theorem 3. <N 0, sz> =Th(PA)

By theorems (2) + (3), <N, 0, sy> and <N, 0, sz> are elementary equivalent
(modulo PA-truths), although referentially distinct: for example, the set corresponding
to 2 in Ny is different from the set corresponding to 2 in Nz; moreover, there are
true statements, besides those of PA, which hold in one, but not the other: for
example, 3 €4 is true for <Ny, 0, sy>, but not for <Nz, 0, s7>.

Benacerraf’s identification problem, as it is called, may be stated simply as
‘Which set-theoretic objects are the natural numbers?’

12 Hence the subscript N in the subsequent notation.
13 Hence the subscript Z in the subsequent notation.
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Enter structuralism. Exit reference

Both the permutation argument and Benacerraf’s identification problem
received a lot of philosophical attention and scrutiny, and several responses were
proposed. For the purpose of this paper, | am going to state briefly and selectively
the relevant (for our discussion) standard philosophical countermove to these
problems, but before, | will mention a widely entertained consequence of the
above arguments with regard to the determinacy of reference of singular terms.

In the particular case of the permutation argument, a widely embraced
response'® was to argue that causal constraints can, and do fix reference. However,
in the case of mathematics, there seems to be no such causal constrains, so, the
problem of the determinacy of reference holds ground in mathematics. Consequently,
the reference of singular terms is taken to be genuinely indeterminate:

For the objects of pure mathematics, there are no contingencies and no causal
connections; so the inscrutability strikes us full force. Inscrutability of reference
arises from the fact that our thoughts and practices in using mathematical
vocabulary are unable to discern a preference among isomorphic copies of a
mathematical structure®®.

The standard countermove, especially in the recent philosophy of mathematics,
to the permutation argument and Benacerraf’s identification problem was to resort
to a structuralist conception of mathematics. Shapiro, Resnik, Hellman, Benacerraf,
developed structuralists positions with different ontological, epistemological and
semantical flavors. Each of these positions have, however, some common themes,
which, for present purposes, are encapsulated as follows: (I) structures are the
subject matter of mathematics, and (Il) the ‘objects’/places in a structure have no
other properties except those prescribed by the structure itself'®.

A couple of important consequences follow from (I). From a structuralist
point of view, it really does not matter whether two models or two set-theoretic
reconstructions of the natural numbers are referentially incompatible, as long as

1 The literature regarding Putnam’s argument is impressive, | mention only few authors who
developed this line of response: (Lewis 1984) (Devitt 1983), (Field1972), (Field 1975).

15 (McGee 1997, 38)

16 As a caveat, one should not think that (Il) entails that all structuralists are committed to the
existence of mathematical objects, or even structures. The commas in ‘objects’, and the
alternative ‘places in a structure’ should pinpoint in the direction of a conditional/ontologically
neutral reading. However, the structuralists who believe in the existence of mathematical
objects, also think that these objects have no internal nature.
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they are isomorphic. All that matters is that they have the same ‘structural properties’.
According to structuralism, then, it makes sense to talk about reference only ‘up to
isomorphism’Y’, thus rendering objects and mathematical reference to objects
irrelevant. Discarding objects does not pose a threatening problem insofar as truth
is concerned, for structuralists can argue that

If our thoughts and practices in using the vocabulary distinguish an isomorphism
class of equally good candidates for what the terms refer to, this will be enough
to establish a determinate truth value for each of the sentences, even though
it doesn't pin down the referent of any term. Inscrutability of reference does
not imply inscrutability of truth conditions.*®

Briefly, truth-value determinacy follows from the determinacy of structures,
construed as isomorphism types. The thesis that each sentence has a determinate
truth-value is known as ‘semantic realism’, and a theory’s semantical capacity to
refer to a unique structure is ensured by categoricity. So, what McGee says is that,
for structuralist purposes, categoricity is sufficient for ensuring semantic realism?°.

This philosophical vein converges with the practice of mathematics:
mathematicians seem to be uninterested in the ontological status and nature of the
mathematical objects; they discern structures only up to isomorphism, especially
algebraists, and focus on the truth of mathematical statements, rather than other
ontological issues. | take these attributes to be marks of structuralism, of course,
not exclusively.

Resuming, if structures are the focal point of mathematics, then all the
philosophical problems related to objects are irrelevant or unwarranted. All batteries
of concerns about the ontological status and nature of mathematical objects, as well
as the problem of the determinacy of reference for singular terms that follows from
viewing objects as such referential candidates, are benign (if not irrelevant or
unwarranted) with respect to what really matters in mathematics, the truths that the
structures entertain. Kreisel, as quoted by Dummett?°, aptly described this move as a
move from the problem of the existence of mathematical objects to that of mathematical
objectivity.

17 A caveat is in order here; there is a version of structuralism, developed by Stewart Shapiro
called ante-rem structuralism, which zooms in reference up to singular terms — for more details
see (Shapiro 1997).

18 (McGee 1997, 38)

19| explored the details and controversies regarding the connection between categoricity and
semantic realism in (Ludusan 2015).

20 “the problem is not the existence of mathematical objects but the objectivity of mathematical
statements”. (Dummett 1996, xxviii)
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Now, it seems that structuralism manages to answer both philosophical
problems regarding reference. First, it bypasses Benacerraf’s identification problem
by insisting that what matters in mathematics are structures, not objects, and
secondly it rejects the problem of the indeterminacy of reference of singular terms
by rendering it mathematically and philosophically insignificant.

Reference’s new structuralist clothes. Enter categoricity

Mathematical structuralism seems to tackle a few philosophically significant
problems by shifting the focus from objects to structures. In this way, structures
become the bearers of all the mathematically and philosophically relevant properties,
such as, for example, the determinacy of the truth-values of sentences, which, as | have
mentioned in the previous section, now fully relies on the determinacy of structures.
So, a considerable philosophical and mathematical load is placed on structures, which
justifies the need for decent ontological, epistemological and semantic explanations
regarding structures.

| will disregard the discussions around the ontological status of structures, and,
as | have stated in the first section, | will adopt a moderate epistemological position.
With this background, | will address a significant semantic problem concerning
structures. The problem is the old conundrum about the determinacy of reference,
pitched, this time, at the level of theories: what, if anything, fixes the reference of
nonalgebraic/univocal theories? The reader will recognize this as the central problem.
In accordance with the moderation assumption, the explanation cannot invoke
innate faculties or intuitions that enable one to pin down the intended reference of
such a theory. The explanation, if there is one, has to rely solely on the theory’s
transparent semantical capacities to determinately refer to a unique structure up to
isomorphism. Now, the mathematical way in which one secures that a nonalgebraic/
univocal theory pins down a single structure up to isomorphism, is by proving that
the theory is categorical.

Thus we say that any two isomorphic structures are identical up to isomorphism
and it is in this sense categoricity gives us a kind of uniqueness result. It tells us
that for all intensive purposes, our theory picks out a unique structure?*.

21 (Meadows 2013, 524)
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Atheory Tis categorical if any two models A7, A of T are isomorphic, M = V.

In conclusion, in order to fulfill the philosophical promises of structuralism,
nonalgebraic theories have to refer determinately to unique structures, which, in
turn, is secured by providing categoricity results for each such theory.

Categoricity and first-order logic

Categoricity theorems depend heavily on the logical frameworks in which
they are conducted, and effectively this means moving beyond first-order logic. As
it is well known, the defining properties of first-order logic make it an unsuitable
candidate for proving the categoricity of theories that have models with infinite
domains. Model-theoretic results characterizing first-order logic tell us that categoricity
in first-order logic can only be obtained for theories with finite models. Suppose
that a first-order theory T expressed in a language of cardinality A, A > X, has an
infinite model of cardinality k, Kk > A. The upward Lowenheim—Skolem theorem tells
us that T has models of every cardinality k', K’ k while the downward Lowenheim—
Skolem theorem tells us that T has a model of cardinality &,. Consequently, the two
theorems indicate that such a theory T cannot be categorical.

In the case of PA such negative results are reinforced by the use of
compactness theorem in order to produce continuum-many pairwise non-
isomorphic structures with the same cardinality that satisfy PA%2,

A caveat should be addressed here: of course, we can resort to first-order
set theory as the metatheory in which we can prove the categoricity of PA, but the
standard argument against this maneuver is that this will push the problem from
the categoricity of PA to that of the first-order set theory. First-order set theory has
non-isomorphic models, non-standard models, and the categoricity of PA proved in
this setting only ensures the uniqueness of the referential structure of PA within
each model of set theory, not across different models.

Parsons and Lavine certainly recognize this fact:

Thus, of the set theory in which we have proved Dedekind's theorem, there will
also be nonisomorphic models. And nonisomorphic models of set theory can
give rise to nonisomorphic models of arithmetic. Consider now two models M1,

22 For details regarding the construction of such models see (Kaye 1991) and the responses of
Joel David Hamkins and Andreas Blass on the following thread on mathoverflow:
https://mathoverflow.net/questions/92099/how-many-models-of-peano-arithmetic-are-
isomorphic-to-the-standard-model-and-how.
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and M2 of set theory, and let w1l and w2 be their sets of natural numbers.
Dedekind's theorem is a theorem of set theory; hence it is true in each of M1,
and M2. But what that tells us is that within M1 any structure satisfying [PA2]
is isomorphic to w1 (with the obvious structure), and similarly for M2. But it
does not tell us that w1 is isomorphic to w2; indeed, since non-well-founded
models of set theory can be constructed [...], they need not be isomorphic?.

Take two models of set theory with nonisomorphic systems of natural numbers,
and the proofs of [DCT and quasicategoricity of ZFC] carried out within each
one of them only shows that any models of PA™ or ZFC<*) within that one must
be isomorphic. Those proofs do not show that the natural numbers in the sense
one [sic!] of the two models need be isomorphic to those in the other, let alone
that the sets in the sense of one of the two models need be isomorphic to those
in the other?*,

In short, appeal to categoricity means moving beyond strictly first-order
logic.

The mathematics of Dedekind’s categoricity theorem

A natural medium for proving categoricity theorems is second-order logic,
which has enough resources to categorical characterize not only Peano Arithmetic,
but also endless mathematical structures. From now on, | will focus on the structure
of the natural numbers and its standard axiomatization encapsulated in Peano systems
(see below).

Moving to second-order logic with standard semantics?®, also called full
second-order logic, enables us to fix categorically Peano Arithmetic (PA2)?®. Dedekind
already proved?’ in 1888 the categoricity of PA2, formulated in what we today would
regard as full second-order logic. In order to have a better grasp of what the categoricity
proof presupposes | will present Shapiro’s?® modern reconstruction of Dedekind’s original
proof restricted? to Peano systems.

2 (Parsons 1990: 17)

24 (Lavine 1999, 65-66)

% |n second-order logic with standard semantics we allow the second-order quantifiers to range
over the powerset of the domain of the first-order variable.

26 As formulated in second-order logic, of course.

%7 (Dedekind 1901)

28 (Shapiro 1997, 82-83)

29 This restriction is for simplicity purposes, the rest of the operations and relations of Peano Arithmetic
can easily be defined in Peano systems and proved to obey their standard Peano axioms.
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Definition 1. A Peano system is a triple P = <N, 0, s > which satisfies the
following conditions (PA2):
i) Vx -(0 = s(x))
i) VxVy ((s(x) =s()) > (x =¥))
i) VX(X0AVx(Xx » Xs(x)) » VxXx), where X S N.

Note that the only significant change between a Peano system formulated
in first-order logic and one formulated in second-order logic is the induction axiom.

Theorem 4. Dedekind categoricity theorem (DCT): If P4 = PA;, and Pg = PA;,
then P, = Ps.

Proof: Let Py = <Nj, 04, Sa > and Pg = <Njg, 05, sg > be two Peano systems.
Define

F=N{I SNy, XNg «04 0g >€landif <x,y >€l,
then < su(x),sg(y)>€l}
It is clear that F is not empty, for the Cartesian product NaXNjs itself would

constitute such a set, and, further, by H} comprehension such a set exists.

Now, let’s prove that F is an isomorphism between N4 and Ns. We divide
the proof in two parts. First, we show (A) that F is a bijective function, and then (B)
that it is isomorphic.

(A) For F to be a bijective function F: Na - Ns, we must first show that it is a
function, i.e. to show that

(1) dom(F) = Ny.

(2) If <x, y> € Fand <x, z> € F, theny = z.

(1) We begin by defining the domain of F,
dom(F) = {x € Na/ 3y € Ng such that <x, y> € F}.

By induction on dom(F) we will prove that dom(F) = N,. Base case: obviously,
04 € dom(F) [for there is Og such that < 04, 0g >€ F]. Induction step: assume that
x € dom(F); accordingly, there is an element y € N such that <x, y> € F. It follows,
by the definition of F, that <sa(x), ss(y)> € F, which, by the definition of dom(F), let
us conclude that sa(x) € dom(F). By induction, we get that dom(F) = N,.
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(2) As in the previous case, the proof is by induction. Define the set’:

X={x €N, /3y € Ngsuchthat <x,y>€ FandVz € N,
if <x,z>€F,theny =2z}

Base case: Suppose that 04 & X. By definition, <04, 05> € F, so, if 04 & X,
there must be a z # 0g such that <0,4, z> € F. Consider the set Y = F—{<0,4, z>}; clearly
Y € F. We will prove that F € Y. (). Obviously, <04, 05> € Y [since <04, 0z> € F and
z#0g]. (). If <x, y> €Y, then <s(x), s(y)> € Y [since by i) of definition 1, s(x) # 04]. By
(I) and (), F € Y, contradicting the fact Y € F. In conclusion, 04 € X.

Induction step: From the supposition that x € X, we'll prove that s(x) € X.
So, assume that x € X. This means that there is a unique y such that <x, y> € X. By
the definition of F, <s(x), s(y)> € F, so, if we suppose that s(x) & X, then thereisz #
s(y) such that <s(x), z> € F. Now, consider the set Z= F—{<s(x), z>}. As in the previous
case, we will prove that F € Z, thus contradicting the fact Z c F. (lll). <04, 05> € Z
[again, <0,4, 05> € F and by i) of definition 1, s(x) # 04). (IV). Assume that <a, b> € Z.
Then <a, b> € F. By the definition of F, <s(a), s(b)> € F. Now, there are two
possibilities: either a = x, or a # x. If a # x, then, by ii) of definition 1, s(a) # s(x), so
<s(a), s(b)> € Z. If a = x, then, since x € X, there is a unique y such that <x, y> € X, so
b =y. But, by the assumption that s(x) & X, there is z # s(y) = s(b) such that <s(x),
z> € F,so<s(a), s(b)> € Z.

By (lll) and (1V), F € Z which contradicts the fact that Z C F. In conclusion, if
X € X, then s(x) € X.

(1) and (2) assure us that Fis a function, F: Na - Ns. Now, it remains to prove
that F is bijective. This is done, as in the previous poof, in two steps, proving that:

(3) Fis injective.

(4) F is surjective.

(3) Consider the set X ={x € Na/ Vy € Na ((F(x) = F(y)) = (x=y))}
The proof is by induction on N, along the same lines as in the first proof
given above.

(4) Consider thesetX={y € Ng /3x € Ny A F(x) =y}

The proof is by induction on N along the same lines as in the first proof
given above.

(B) The isomorphism of F follows directly from its definition.

30 This set corresponds to the property that characterizes a function i.e. that there is just one
element from the codomain corresponding to each element from the domain, or, as we
expressed this condition, if <x, y> and <x, z>, theny = z.
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The philosophy of Dedekind’s categoricity theorem

Dedekind’s categoricity theorem, as conducted in second-order logic (SOL),
is riddled with worries about its philosophical significance. The literature on the
relevance of DCT is impressive and still in the making. | will only mention several
philosophical worries that | discerned, emphasizing on the one that will concern us
further.

There are ontological worries, based on Quine’s criterion of ontological
commitment3?, that adopting full PA2 means committing not only to the existence
of numbers, but of arbitrary sets of numbers, in virtue of the semantics of the second-
order quantifiers*?.

There are epistemological worries, first, about the infinitary set-theoretic
presuppositions implied in the adoption of full PA2, and secondly, that commitment to
full SOL presupposes the determinacy and intelligibility of the powerset operation,
which is problematic®.

The worry that interests us is that of the relevance of DCT insofar as it
establishes the referential determinacy of PA, i.e. as it responds to the central problem.

DCT can provide a definitive answer to the central problem if the background
theory in which it is conducted, SOL, is determinate. As it is well known, SOL has two
distinct types of model-theoretic semantics: the full semantics, or standard semantics,
in which the proof of the theorem was carried, and the Henkin semantics. Without
delving too much into the technicalities and subtleties of the differences between
the two types of semantics, | will present the significant differences between them,
first, in terms of the fundamental feature that distinguishes the two approaches,
and secondly, in terms of the difference of metatheoretical properties of SOL equipped
with the two semantics.

The standard model-theoretic semantics presupposes that the second-order
variables X", n 21, range over the entire powerset §o(M"), n 21, of the corresponding
domain M". In contrast, in Henkin semantics, this presupposition is relaxed by
considering the domain of quantification for second-order variables X", n 21, a subset
M"; of the corresponding powerset go(M"), of M", M"; € (M"). As one can observe,
Henkin semantics are more general than standard semantics; in fact, standard semantics
is just a limit case of Henkin semantics, precisely when M",; = go(M"), for all, M"e; n 21.

31 “A theory is committed to those and only those entities to which the bound variables of the
theory must be capable of referring in order that the affirmations made in the theory be true” —
(Quine 1948, 33).

32 See (McGee 1997).

33 See (Weston 1976), (Field 2001, 352-354), (Field 1994).
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As a caveat, let us note that although there is just one standard semantics, there
are numerous incompatible Henkin semantics.

The central feature that distinguishes the two model-theoretic semantics,
namely, the domain of the second-order quantifiers has a significant impact on the
defining properties of SOL with full models or Henkin models. In standard second-
order logic, the three defining properties of first-order logic, compactness, Léwenheim—
Skolem, and completeness, fail, while SOL with Henkin models is characterized by
all three properties. It is for this reason that Henkin models are closer to first-order
logic than full SOL.

Obviously, the defining properties of SOL with Henkin models disrupt the
appeal to DCT as a solution for the central problem. The situation is similar to that
described three sections above, concerning DCT as proved in first-order set theory.
There, we emphasized that such a result establishes the categoricity of PA only within,
but not across different models of set theory, i.e. DCT is relevant modulo models of
first-order set theory.

The considerations that led to such a diagnosis namely that by the three defining
properties of first-order logic, compactness, Léwenheim—-Skolem, and completeness, any
theory couched in first-order logic (so, in particular set theory) has unintended models,
apply to Henkin models also.

Now, the simple availability of two types of semantics for SOL should not
be a problem for establishing the referential determinacy of PA2, if one can provide
an explanation with moderate epistemological credentials as to why full models are
preferable to Henkin models. But, unfortunately, it is doubtful that such an explanation
is even possible. Remember, the moderate cannot appeal to any idiosyncratic capacities
that would tie the mind to full models instead of Henkin models; all her available
resources are restricted to theories and their semantics. So, the moderate has to
explain her preference of full models by introducing more mathematical theory.
However, this move is highly problematic, firstly, because the further we move from the
referential determinacy of PA2, to that of the metatheoretical background in which
it was proved, and to that of the metametatheoretical background and so on, the more
philosophically dubious the supposed determinacies become. Secondly, such a move is
vulnerable to the initial objection: the introduced explanatory mathematical theory is
subjected to the same unintended reinterpretations as the previous (meta)theories
were. The latter line of arguing is Putnam’s just more theory maneuver. Speaking of
Putnam, he concisely described the problem with the philosophical relevance of
categoricity theorems in SOL:
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the ‘intended’ interpretation of the second-order formalism is not fixed by the
use of the formalism (the formalism itself admits so-called ‘Henkin models’ [...]),
and it becomes necessary to attribute to the mind special powers of ‘grasping
second-order notions’3*

Internal categoricity

The previous section highlighted that the use of DCT as a solution for the
central problem is bound to the determinacy of the semantics or of the models of
the metatheoretical background, which, in turn, is bound to the determinacy of
higher order mathematical concepts and/or theories, and such a regress seems
unbreakable. It is for this reason that in the ‘90’s a somehow radical solution® was
proposed: to reconstruct categoricity theorems in the purely ‘syntactic’/deductive
environment of the metatheory, thus bypassing any semantic notions. That means,
for example, to reconstruct DCT as a ‘pure’ theorem in SOL, and refrain from engaging
in semantic considerations about DCT or SOL. Such a move amounts to a certain
confinement of the categoricity results within the metatheoretical framework, hence
the name ‘internal categoricity’. Button & Walsh describe the manifesto of this
internalization movement like this:

The internalist manifesto. For philosophical purposes, the metamathematics
of second-order theories should not involve semantic ascent. Instead, it should
be undertaken within the logical framework of very theories under investigation.
Our slogan is: METAMATHEMATICS WITHOUT SEMANTICS 136

The plan for the rest of the paper is to focus on one such particular form of
internalism, that of Shaughan Lavine, as it is articulated in Skolem was wrong. Here
is how Lavine presents the rationale of his internalism:

In order to escape the apparent impasse [that DCT is dependent upon the
semantics of the metatheoretical background], it will be necessary to formulate
and prove categoricity theorems that do not make use of a background set

3 (Putnam1980, 481)

% The main figures of this movement are Charles Parsons, Van McGee, Stewart Shapiro, and
Shaughan Lavine.

36 (Button and Walsh 2018, 227)
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theory. The bulk of the rest of the book will be devoted to solving that problem,
but the key idea is simple: No one ever actually compares set-theoretic universes;
we compare theories of sets, which are syntactic, not set-theoretic, entities.
When we ascend to the level of language and ask the question, “When are two
theories syntactically theories of isomorphic structures”?, we shall see that that
is a question that has perfectly clear purely syntactic sufficient condition for a
positive answer that is free of any need for a background set theory®’.

In this context, | will discuss the potential philosophical uses of the internal
categoricity of arithmetic related to the central problem. The philosophical achievements
of this particular form of internalism are, however, applicable to internalism itself.

The interesting discussion is whether the internal categoricity results can
solve in a satisfactory manner the central problem or something akin to the central
problem. | say ‘something akin’ to the central problem, because internal categoricity
does not seem to have any bearings on the central problem, as | formulated it: the
central problem has a semantic character, regarding the relationship between PA
and its intended referent, while the central feature of internal categoricity has a
‘syntactical’ character, and couples syntactic entities. Nevertheless, | will argue that
the proponents of internalism advanced such arguments, thinking that internal
categoricity can solve the central problem. | will argue that such a move is unwarranted.
Next, | will go on to consider whether internal categoricity can establish the determinacy
of PA’s internal-structures. Again, the result is negative.

Schematic theories

The logical medium in which Shaughan Lavine proves an internalized version
of DCT is the full schematic theory of Peano Arithmetic, PA™. | should mention that
all three major figures of internalism use schematic induction and comprehension
to the effect of proving an internalized version of DCT, so the subsequent analysis
applies in a large degree to all versions of internalism. The apparatus of the schematic
theories that Lavine employs was theorized and developed to a different end by
Solomon Feferman®®. | will begin sketching the idea behind PA™ by distinguishing
several PA theories (schematic and ordinary). To this end, | will define in general
terms the composition of ordinary and schematic theories, and then, using this
definitional template | will discern and focus exclusively on different types of PA.

37 (Lavine 1999, 39)
38 (Feferman 1991)
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Definition 2. An axiomatic theory S = <., Axs, Rules> is taken to be specified
by three sets: the signature £s of S, the special axioms Axs of S (those in addition to
the logical axioms — Log Ax(.£s)), and the special rules Rules of S (those in addition to
MP and GEN*).

Definition 3. An ordinary (axiomatic) theory S is one for which Rules is empty
ie. S =<4, Axs>

Definition 4. By a schematic (axiomatic) theory S = S(P), we mean one for
which

(i) Lsipyis of the form LsU{P}, for some base language £, and
(i) Rulesi) consists of the single rule:

Lsipy-Subst: From @(P) infer ®(¢), in symbols, ®(P)/®(¢p), for any ®(P) and
@ in Form s(p), where Form ) = the set of all Lsp) -wffs.

Let us distinguish three types of PA according to these definitions.

Let PAo be the Peano Arithmetic base theory defined by the usual axioms
that state that O is a first element, the successor function is injective, and defines
addition and multiplication:

PAq— (base theory)

(i) ¥ -(0 = s(x))

(i) Vi Wy ((s(x) = s(y)) > (x=y))
(iii) vx ((x +0) = x)

(iv) Vs ¥y ((x +s(y)) = s(x +y))
(v) ¥ ((x-0)=0)

(vi) v ¥y ((x - s(y)) = (x - y)+x))

The discerning factor between several PA theories is the schematic
induction axiom, formulated using a schematic variable symbol P:

Ind(P): (P(0) A Vx(P(x) > P(s(x)))) - Vx(P(x))

The induction axiom is accompanied by a corresponding substitution rule,
which will define a hierarchy of theories. Its basic template is:

L-subst: Ind(P)/Ind(X@(x)), where Ind(X(x)) indicates the result of substituting
@(t) € Lfor each occurrence of P(t) in Ind(P), renaming bound variables of Ind(P)
and ¢ in order to prevent collisions with the free variables of t.

39 Short for modus ponens and generalization.
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The difference between ordinary PA, schematic PA® and full schematic
PA®™ manifests itself as soon as we consider extensions of signatures, say an
extension L of Lepo, L 2 Leao:

Ordinary PA in an extension L 2 Lpag is: <Lpao, PAo U {Ind(X¢(x)),
®(x) € Leno}>*

Ordinary schematic theory PA® in an extension £ 2 Leao: <Leaop),
PAo U {Ind(P)}, Lpao-subst rule>

Full schematic theory PA™ in an extension £ 2 Lpao: <Leao(p),
PA, U{Ind(P)}, Lip)-subst rule>

As one can observe, the full schematic theory PA" is the only one that
allows derivations of instances of induction containing open wffs from the extended
signature ¢@(x) € L. The ordinary PA, contains an infinite number of induction
axioms, one for each @(x) € Lpao, and is immune to extensions of the signature, while
PA®) contains a single induction axiom, from which one can infer only instances
containing open wffs in the old signature ¢(x) € Lpao. It is no surprise, then, that PA
and PA® are deductively equivalent, although different in elegance (PA has an
infinite number of axioms, while PA® only a finite number). So, the preference of
PA over PA® is a matter of aesthetics. Also, let us note that the induction schema
with its associated generous substitution rule from PA") behaves as an open-ended
induction schema that can be defined as follows:

(Indyy2): (@(0) N Vi(p(x) = @(s(x)))) > V(p(x)), for all (x) €E£
and all £ 2 Lpa

In a similar fashion, one can adapt the second-order comprehension schema:
CS2: X Wx(X(x)<>@(x)), for all p(x) € Lsuch that X &€ FV(¢p)
to obtain:

CS(P): 3X Wx(X(x)¢>P(x)), Lpy-subst rule, with the proviso that
forall p(x) € Lipyand all £ 2 Lyp), X &€ FV(¢p)

In the literature around internal categoricity, this open-ended character of
schemas is the focal point of discussions and critiques. Note that all instances of
(Inds2), or for that matter of Ind(P) in PA® are first-order. This is relevant for our
moderation assumption.

40 As one can easily observe, there is no L-subst rule.

50



DETERMINACY OF REFERENCE, SCHEMATIC THEORIES, AND INTERNAL CATEGORICITY

Now, Parsons*!, McGee*?, and Lavine™ all argue for adopting a full schematic
perspective as a way of bypassing all the philosophical shortcomings of PA2. The
reasons for adopting a schematic perspective are both philosophical and technical.
On the philosophical side, McGee and Lavine argue that schematic induction is the
only one that accords with arithmetical practices.

Note that insofar as the theory PA™ differs from the theory PA®), it is the former
theory that is a superior codification of our informal intentions concerning
arithmetic: we intend induction to apply to any predicate of numbers, not just
those definable in elementary number theory. No one ever hesitated to apply
induction in the context, for example, of analytic number theory, as they should
have done if our intentions were better codified by the theory PA®), a theory
that fails to foreclose the intuitively absurd possibility of our coming to define
a noninductive predicate of the natural numbers, that is, a predicate W of the

natural numbers such that W(0) AVx(W(x) > W(Sx) A Ix-W(x) holds on the

natural numbers.**

Note that what Lavine is implying here is that only the full schematic PA®
can prohibit the definition and incorporation of such ‘an intuitively absurd’
predicate, thus, that only PA® can characterize the standard model of arithmetic.
This will become relevant for the argument that | will develop after the next section.
McGee also insists on the virtues of open-ended schemas, arguing that in a rational
reconstruction of how we learn arithmetic, a fundamental step, if not the fundamental
step, is precisely mastering (Ind/2)*.

Now, the technical reason. The fundamental technical reason for adopting
PA™ is that it enables the addition of new predicates with appropriate axioms in
the schema of induction. In fact, precisely this type of extensions motivate the
adoption of PA™. Suppose that one is trying to define by primitive recursion a
function (and prove the legitimacy of such a definition), say, natural number
exponentiation on a group. Then, one can do that in PA™ in a series of steps:

(i) enlarge the signature so that it consists of the signature of Peano
Arithmetic, PA Group theory, GT, and two predicates, U and U’ corresponding to
the ‘intended’ domains of the two theories: £ = Lpa U Lgr U {U, U’}

41 (Parsons 1990)

42 (McGee 1997)

4 (Lavine 1999)

44 (Lavine 1999, 15-16)
4 (McGee 1997)
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(ii) relativize the quantifiers, constants, and function symbols to the
predicates U and U’. The resulting theories are symbolized as PA" and GV

(iii) add the axioms governing the new relation symbol E (For readability
reasons | skipped the relativization procedure):

Vx E(O, x, e),
vh bx Vy(E(n, x, y) > E(s(n), x, y &9 x).

With this device active,

The proof that E is a function can now be carried out in the familiar way in the
theory that is the union of PA*Y and GY, and the definition of E. There is no need
for any additional background theory, and the success of this hybrid theory,
which requires the full induction schema, is compelling evidence that PA®V is
the appropriate formalization of arithmetic: surely no one will try to claim that
natural number exponentiation on groups is intrinsically set theoretic*®.

The internal categoricity of PAY

In the course of analysis of Lavine’s detailed argument for internal categoricity,
I am going to follow closely his presentation. This will be helpful not only for the
accuracy of the analysis, but also for also for pointing precisely my critiques.

Essentially, Lavine project is to prove internal categoricity in the same
manner as the one just described: enlarge the signature to include a copy of the
signature of PA*, relativize the quantifiers, constants, functions to their corresponding
‘domains’ say U, U’, merge the two theories so that we end up with a theory that is
PA* U PA*Y, and then add a relation / that defines an internal or syntactical
isomorphism between PA*Y and PA*V".

The addition of PA* doesn’t raise any consistency or satisfiability problems, for
it can be easily specified in an extension by definitions of PA* thus:

bx(U’x > Ux)

0'=0

Wx(s’(x) €>s(x))

vy ((x+'y)=(x+y))
vy ((x-"y)=(x-y))

46 (Lavine 1999, 20)
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Generally, the expansion of a schematic theory with a new relation is not
uncontroversial, as Lavine himself notes*’. Consequently, a fundamental challenge
for the schematic approach to internal categoricity is precisely to formulate general
acceptable conditions for such an expansion. Informally, Lavine’s proposal is that
the conditions of acceptability have to be such that the addition of new relations
leaves the domain of the theory intact:

It is therefore natural to ask when the addition of a theory A to a full schematic
theory T*) adds a new relation without changing the domain. | shall call such an
addition an acceptable addition.

Technically, the conditions of an acceptable addition that Lavine proposes
imply extending the schematic theory to include a form of inflationary fixed-point
logic, particularly, inflationary fixed-point logic that includes monotone fixed-point
operators defined by positive formulas. In this way, one obtains a minimal
extension of first-order logic that allow closure under inductive definitions.

With this setting in place, Lavine defines / to be:

P vx' (I(x, x) <> Vy<x Fy'<x(Ily, y’) A Wy'<’x” Fy<x) Ily, y')).

As Lavine remarks, ‘the definition of | is a definition of a fixed point of an
operation defined by a positive formula, and that it is therefore an acceptable
definition’*.

Now, in order for a relation / to be a syntactic or internal isomorphism
between two PA® systems it has to satisfy the following conditions*’:

1. (Vx)(U(x) > Jy (U'ly) N (V2)(U'(z) > (I(x, 2) <> z=Yy))))

(l'is a function from U to U')

2. (Vx)(U'(x) > F(Uly) A (V2)(U'(z) > (I(z, x) <> z2=y))))

(I is one-to-one and onto from U to U’)

3.1(0, 0'),

4. (V) )(PY)( 7y )(U(x) AU'(X) AU(y) AUY') Allx, ') Ally, y') >
s(x) =y & s'(x)=y’)

5. (V)W) Vy)(Vy')( vz)( Vz')(U(x)AU'(x)AU(y)AU (y) AU(2) AU (2°) Al x, )
My, y')Al(z,2')> x+y=z>x"+'y'=2)

6. (Vx)(V&)(Vy)(Vy')( Vz)( V2 )(U(x)AU'(x')AU(y)AU (y') AU(2) AU (2')Ni(x, ')
Ally, y')Al(z, 2') > x-y=z> x"-'y'=2').

47 (Lavine 1999, 45-46)
“8 (Lavine 1999, 57)
4 As Lavine defines them.
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Conditions 3-6 define the homomorphism property of /, and, taken together,
the conditions 1-6 define properly speaking the internal or syntactical isomorphism
between PA®Vand PAMY'

Now everything is in place to prove:

Theorem 5. (internal-DCT): Let T be the theory with some language £ that
is the union of the theory PA™V and the theory PA™Y. Then one can acceptably
define a new binary relation | such that | is a syntactic isomorphism.

The proof consists, basically, in mimicking DCT’s proof outlined in a previous
section.

This theorem is theorem 4.6 in Lavine’s manuscript. He also proves using
the same recipe the quasicategoricity of ZFC; that is his theorem 4.7.

The philosophy of the internal categoricity of PA®V

So, the question is, ‘What is the philosophical relevance of (this version of)
internal categoricity?” What does Lavine expect to get from such a result? This section
focuses on the analysis of Lavine’s arguments for the philosophical significance of his
version of internal categoricity.

The fundamental benefit of using this particular internalized version of DCT
is, as Lavine emphasizes throughout his manuscript, that it involves only an
uninterpreted first-order background:

Our actual theorems 4.6 and 4.7 are theorems of the first-order predicate
calculus that do not presuppose any set-theoretic notions. Unlike [DCT and
Zermelo’s quasicategoricty theorem], which had proofs that relied on notions
of a background set theory, theorems 4.6 and 4.7 may—and indeed must—be
viewed as theorems of an uninterpreted background first-order logic, one
introduced without benefit of a background set theory.

This, in itself, represents an important philosophical achievement, especially
in the context of a moderate epistemic position. However, this is only the start of
the real philosophical challenge, which is to show if and how this particular version
of internal categoricity provides a solution to the central problem. Now, as | have
mentioned previously, it is a type confusion®® to think that an internal categoricity
result can provide a solution to a problem expressed in ‘external’ semantic terms.

50 As (Button and Walsh 2018, 226) put it.
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However, Lavine’s manuscript is an elaborate argument for the legitimacy of such
a connection: he articulates a general form of our ‘central problem’, and constructs
a detailed argument for solving it, based on internalizing DCT and Zermelo’s
guasicategoricity theorem; as a side note, the title of the manuscript should be a
significant giveaway. So, | will first argue generically that such a connection is
unwarranted, then | will reconstruct Lavine’s main argument for solving the central
problem via the categoricity of PA™Y and show that his argument fails.

Let us begin by noting that internalized-DCT is about the behavior of the
predicates U, U’, constant symbols, 0, 0’ and function symbols, s, s’, +, +' etc, which
all are syntactic entities. Any such system (U, 0, s, +, -) behaving according to the
Peano axioms constitutes the syntactical counterpart of a PA structure; accordingly,
I will call it an internal-structure. Consequently, what internalized-DCT effectively
shows is that any two internal-structures of PA® must behave in the same arithmetical
way. Or, in other terms, internal-DCT shows that one cannot accept two different
internal-structures inside the same PA™),

Now, how is this going to help solving the central problem? Well, one line
of thought is that once we have proved internalized-DCT, we can bestow a semantical
dimension to PA®, prove that the only model of PA® is the standard model of
arithmetic and, thus, solve the central problem. Unfortunately, this strategy does
not work, for as soon as one engages semantical attributes, the old problems of the
semantical relativity of the metatheory come back. In this context, what internal-
DCT establishes is, at best, categoricity within PA®) models, not across such models.
Lavine seems to engage in such considerations®, for example when he qualifies
internal-DCT as a stronger theorem than its (external) counterpart —proved as
theorem 3.3 in his manuscript — or when he explicitly says that “[o]lnce we have
proved it, we shall be able to use theorem 4.6 in place of theorem 3.3, thereby
avoiding the use of a background set theory”>2. One can infer legitimately that the
internal versions of the categoricity theorems are stronger than the external ones
if one engages in semantical considerations (but not exclusively — see below another
interpretation): as | have just mentioned, internal-DCT establishes categoricity
within Henkin models or PA®) models, so, in particular, it establishes the categoricity
in “full’ models also, for full models are limit-cases of Henkin models.

51“Theorems 4.6 and 4.7 should not be confused with the weaker theorems that look just like
them and are proved in verbatim the same way that presuppose a background set theory”.
(Lavine 1999, 64)

52 (Lavine 1999, 51, fn 7)
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Lavine’s argumentative strategy, however, is different. The way in which he
connects internal-categoricity to the central problem, if | understand him correctly,
is the following.

The fundamental assumption that his argument is based on is the neutral,
prior, and independent character of first-order logic. Explicitly, this assumption
presupposes that we have a cogent understanding of first-order logic, prior to any
semantic considerations, and that first-order logic is unproblematic®. From this
assumption it follows that understanding first-order logic precedes any set-theoretic
or model-theoretic perspectives, which are always an afterthought. It is decisive for
Lavine’s argument that we should carefully distinguish between ‘pure’, stronger
results, obtained within first-order logic by deductive means alone, and their ‘weak’
counterparts, polluted by a set-theoretic or model-theoretic interpretation. Whenever
first-order logic is embedded in a semantic environment, the pure results become
contaminated, and, thus, weak — because of their dependence upon the semantic
environment. It is in this way that | construe Lavine’s remarks about the strength of
the internal-categoricity theorems — as indicative of the distinctness and strength of
the first-order results. As exegetical evidence, | will quote Lavine’s eighth footnote:

In that it is central to my solution of Skolem’s problem that the categoricity
theorems are outside any prior model or system of set theory and can therefore
be applied to any of them, | am implicitly endorsing Wright’s “diagnosis”: “there
is an informal set-theoretic result . . . which we can prove about this model,
which is not to be identified with the corresponding result within the system
when the latter is interpreted in terms of this model . .. ” [Wri85, p. 132]. The

result to which Wright is referring is Cantor’s theorem>*,

| further interpret this prevalence and distinctness of the ‘pure’ results
obtained in first-order logic as playing a pivotal role in the development of our
various mathematical conceptions®. The subsequent argument that | am going to
develop against Lavine’s strategy for solving the central problem does not essentially
depend on this latter interpretation; nevertheless, | will assess whether the interpretation

53 “In providing a solution to the central problem | may therefore presume that there is a clear
antecedent understanding of first-order logic and that first-order logic is free of unwarranted
presuppositions”. (Lavine 1999, 7)

> (Lavine 1999, 65, fn 8)

%5 In this, | take it, he follows Crispin Wright’s proposal that Cantor’s diagonal argument “plays a
role in the formation of our conception of what the intended interpretation of set theory is.
Its role is [...] to lead the determination of an inchoate concept of set in a particular direction”.
(Wright 1985, 132-133)

56



DETERMINACY OF REFERENCE, SCHEMATIC THEORIES, AND INTERNAL CATEGORICITY

can save Lavine’s strategy, and show that the argument so construed is sound, but
points to a different conclusion, that is, it misses its intended target, the central
problem. Resuming, all the results obtained by means of first-order logic alone have
a cogent character, with universal applicability, that should be sharply distinguished
by the same results when interpreted in semantical terms. Allow me to emphasize
this argumentative joint: because of the autonomous, cogent, understanding of
first-order logic, results proven in such a setting ‘can therefore be applied to any
[model or system]’*®, and should not be confused with the same results after adding
a semantical dimension. In particular, any first-order result concerning theories of
arithmetic precedes and subverts the same result interpreted in model-theoretic/set
theoretic terms. Consequently, the categoricity of arithmetic, established in first-
order logic, takes antecedence to any model-based (post)interpretation.

Now, the second assumption of Lavine’s argument, and | cannot overstate
its importance, is that referential indeterminacy is always a byproduct of model-
based considerations. It is only when we add a set-theoretical/model-theoretical
dimension to a schematic theory T, that the indeterminacy of reference for 7"/
strikes.

Thus, the argument goes, all worries regarding the referential determinacy
of arithmetic, which arise exclusively from semantic considerations, dissipate, for
the first-order categoricity of arithmetic is prior to any such considerations, and, as
such, takes antecedence. The referential indeterminacy of arithmetic is a byproduct
of embedding the arithmetical theory in different models, and, as such, is insolubly
tied with the semantical perspective. But the internal-DCT, being a first-order
result, undercuts the ulterior, model-based, problem of the referential determinacy
of PA, As one can easily observe, the only missing piece of the argument is a first-
order proof of DCT. And this is exactly what internal/syntactical categoricity of PA"
is supposes to provide. This, | believe, is an accurate gloss of Lavine’s argument:

Our actual theorems 4.6 and 4.7 are theorems of the first-order predicate
calculus that do not presuppose any set-theoretic notions. [...] Since the
theorems are prior to any choice of any system of natural numbers or of any
theory of sets, they can be used to compare any proposed systems and theories
whatever. The theorems thus guarantee that if we even regard it as coherent
to raise the possibility that either PA® or ZFC™ could fail to characterize its
subject matter, and therefore grant that it is coherent to contemplate multiple
copies of PA® or ZFC™, that alone is enough to prove that the requisite
characterization has been achieved. | am inclined to take the argument just

56 (Lavine 1999, 65, fn 8)
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given at face value: | think that it does show that Skolem was wrong— PA™ and
ZFC<*) characterize the natural numbers and the sets up to isomorphism, and
do so in a non-question-begging way.

Now, | will raise two distinct types of critiques to Lavine’s argument. The first
type of critique regards the justifications provided for the purely internal character
of DCT, and the second type regards the soundness of Lavine’s argument, even
conceding that internal-DCT is a ‘pure’ first-order result.

| will begin with the former critique. To this end, let me summarize Lavine’s
argument that internal-DCT is a first-order result as is developed through the
manuscript. (1) He defines from the very beginning a model-theoretic semantics for
PA®) and proves that the only model of PA® is the standard model of arithmetic,
acknowledging that the philosophical relevance of the theorem is dependent upon
the semantics’ set-theoretic assumptions. Consequently, he proceeds to reconstruct
the proof of the theorem in a set-theoretic-free environment. (2) To this end, he
engages in setting the conditions of acceptable additions (of relations and theories)
to PA™ so that (3) he can define the relation / and show that it is acceptable, and,
finally, (4) prove that I is a syntactic isomorphism, i.e. establishing internal-DCT.

Now, depending on one’s philosophical views, all steps have weak spots,
but | am going to concentrate on the first two, that are more relevant for Lavine’s
particular version of internalism. First, Lavine’s model-theoretic sketch of the proof
of the categoricity of PA™ is extremely dubious®’. The proof has two parts, the first
one consists in observing that the standard model of PA is a model of PA®), and the
second consists in proving by reductio that PA®) cannot have a nonstandard model
M. To that effect, Lavine presupposes that M is a nonstandard model of PA® and
then considers an expansion M['y] for a Leaw)U{/} signature, where / is interpreted
as the standard part N € M of the domain M of M. Of course, applying Ind(P) to /,
by the corresponding substitution rule, yields that M € N. Contradiction.

This proof, | must confess, confounds me, for if one has at her disposal a
predicate / which determinately refers to the standard part N, then why the detour
through schematic theories and/or induction in order to establish the categoricity
of PA? One can just add the predicate / with its intended interpretation to PA1 and
prove in whatever metatheory she prefers the categoricity of arithmetic, by
rejecting all nonstandard models. The point is that once one has at her disposal the
means for referring to the standard model of arithmetic, one also has free of charge
the referential determinacy of PA, so the argument based on the proof begs the
question. It is like including in the logical vocabulary the predicate N with its intended

57 This line of critique is similar to the one presented by (Field 2001, 355) in another context.

58



DETERMINACY OF REFERENCE, SCHEMATIC THEORIES, AND INTERNAL CATEGORICITY

interpretation; of course, this maneuver will single out the standard model of arithmetic,
but nothing substantial was proved, you already had the referential determinacy of
PA.

The second point of the critique is two-folded. First, there is the issue of the
justification of the choices that led to the particular formulation of the conditions of an
acceptable addition to PA™, and then that of their accurate statement or definition.
The driving idea that underlines the choices for what constitutes an acceptable
addition to PA® is to singularize the standard model as the unique referential
structure of PAM. This explains why Lavine considers informally that an acceptable
addition of a relation should preserve the domain of the model. This is also why he
specifies formally®® that sets of universal formulas (i.e. formulas that are of the form
VXxd(x)) are acceptable additions to a schematic theory: for universal formulas are
preserved under substructures, and, obviously, the standard model is the smallest
model of all possible models, i.e. is the initial segment of all models. So, it is clear
that all the choices involved in setting the conditions of an acceptable addition to
PA™ were a priori biased in favor of the standard model. Again, a case of begging
the question. And, again, it has less to do with schematic theories and more to do
with the model-theoretic ways in which we beefed up schematic theories for a
particular goal.

The model-theoretic means employed in specifying the conditions of an
acceptable addition are the subject of my second critique. As one can easily observe, in
all instances, the formulation of the conditions of an acceptable addition is set-
theoretic and the proofs involved are model theoretic. Lavine acknowledges this as
a shortcoming of his approach and solves it by appeal to another schematic theory,
PAPR (Peano arithmetic with primitive recursion), which combines PA with
primitive recursive arithmetic. Now, the assessment of that solution constitutes the
topic of another paper, and | am not going to add anything to that discussion here. The
issue is a fragile joint of Lavine’s argument, for it is extremely problematic to maintain
the ‘pure’ syntactic first-order character of internal-DCT, fundamental to the argument,
yet, in proving the result to rely extensively and heavily on model-theoretic or set
theoretic specifications. Here is how Lavine summarizes the discussion:

For present purposes, [the criteria for determining what can be added to full
schematic theories] are to be regarded merely as ex post facto justifications,
and perhaps generalizations, of principles concerning acceptable additions that
we take as basic, intuitive, and well-established parts of mathematical practice:

58 in his theorem 4.3
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We can add any universal theory consistent with arithmetic to arithmetic, and
we can add fixed points of operations defined by positive formulas to any full
schematic theory. [...] The notion of acceptability is an intuitive one that cannot
be made mathematically precise without set-theoretic apparatus to which am
not entitled at this stage of the argument, but all | shall use in the rest of this
book is that the definition of a fixed point of an operation defined by a positive
formula is an acceptable addition to any full schematic theory.>®

So, Lavine argues that the model-theoretic/set-theoretic infused formulations
and proofs of the conditions of an acceptable addition are to be seen as mathematically
rigorous articulations of intuitive principles of mathematical practice, but this is far
from being a sound or even convincing argument. | must confess, | find it difficult to
base the intuition behind the standard model of arithmetic on the intuition behind the
acceptability of adding to a schematic theory T* sets of universal formulas consistent
with the base theory T, or the intuition behind the model theoretic/set theoretic
devices that allow formulations of inductive definitions. The history of mathematics
shows pretty clearly that the structure of the natural numbers is the source of our
concepts of induction and recursion, not the other way around. However, he
deploys another dodging maneuver: even though he is not entitled to set-theoretic
resources in this stage of the argument, he can in the last resort, prove the
guasicategoricity of ZCF* and then safely use the set-theoretic apparatus needed
for the formulations and proofs of the conditions. For example, he states that after
proving the internal quasicategoricity of set theory,

one can just introduce the other intended structures using familiar second-
order axiomatizations, with the second-order quantifiers now explained without
circularity in terms of the set theory that has already been introduced. Thus,
set theory is the central case.®®

This is somehow ironic. Lavine’s main argument of the manuscript is that
the categoricity of arithmetic can be proved independently of any set theoretical
background. Nevertheless, it seems that in his own project, in order to prove the
categoricity of arithmetic, one has to establish first the categoricity of set theory.
Besides the irony, the point of my critique is that once one has proved the
guasicategoricity of set theory, the categoricity of arithmetic follows immediately,
but that has nothing to do with schematic theories, nor with the pure syntactical
first-order-logic character of the proof. Once we have established the quasicategoricity

%9 (Lavine 1999, 54-55)
€0 (Lavine 1999, 40)
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of set theory, we can prove DCT easily in any adequate background we like,
including in a set theoretical background. This will erase the difference between the
latter ‘traditional’ proof and Lavine’s internal one: for proving the categoricity of
arithmetic, both take the detour through the quasicategoricity of set theory.
Nothing significant has been achieved. Before concluding this type of critique, let
me point to another difficulty related to the last remarks: the conditions of an
acceptable addition are used in the proof of the quasicategoricity of ZCF*, and there
one can conspicuously perceive their circularity, for there isn’t any other theory
whose categoricity once established allows the use of the resources in discussion.

The second type of argument regards the relevance of Lavine’s argument
granting that he successfully proved the internal categoricity of PA® in a non-question
begging way, using only first-order logic resources. Well, if my gloss of Lavine’s argument
is accurate, then, | will argue that Lavine’s particular solution of the central problem
fails.

| start by reiterating the fundamental assumptions of Lavine’s argument, 1) the
prior, autonomous, semantic-free character of first-order logic, and 2) that referential
indeterminacy is a byproduct of ulterior, model-based considerations. To this
skeleton, add the meat of producing a first-order proof of the internal categoricity
of PAY, The result is that the internal-categoricity of PA®) takes precedence, so that
the indeterminacy-inducing interpretations derived from embedding PA™ in a set
theoretic or a model-theoretic environment have no effect. It is this last part of the
argument that | find highly problematic, so much so, | will argue, that it leaves the
central problem unanswered. | begin my argument constructing a scenario involving a
schematic theory T and a model of set theory. Consider an unaware inhabitant of
such a model that accepts T™. She endorses Lavine’s assumptions about the prior
and autonomous character of first-order logic, and of the ulterior model-based
referential indeterminacy of 7. She proves the internal categoricity of 7", thus
assuring herself that 7" manages to refer to a unique intended structure. However,
in light of the model-based considerations that proliferate deviant, nonstandard
models and structures, she would like to expose the referential mechanism by
which T pins down its referent. Note that she is not driven by skepticism regarding
the referential determinacy of T, she firmly believes that T manages to successfully
refer to its unique intended structure. She just wants to explain how T accomplishes
this. Of course, the mechanism of reference should not appeal to enigmatic faculties
of the mind, but be restricted to moderate-approved resources, i.e. those that the
theory and its semantics consist of. The moderate means by which T selects the
intended structure from all deviant referential competitors consists in utilizing the
first-order proof of the internal-categoricity of 7. Now, the central problem shows
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its teeth, for the internal categoricity of T is consistent with there being many models
with non-isomorphic structures as perfectly legitimate referential candidates. She
cannot resort to the first-order character of the proof of internal categoricity, for
this is also consistent with the existence of models of set theory containing non-
standard models of T™. That is, nothing in Lavine’s assumptions or argument
precludes the possibility that she is living on such a set-theoretic multiverse.

Mathematically, in such a set-theoretic multiverse, everybody could easily
establish internal-DCT for PA™, thus, establish the isomorphism of all the structures inside
their models corresponding to PA™, without establishing external, ‘true’ isomorphism. In
fact, this is the distinctive mark of internal categoricity as Jouko Vaananen®! defines it.

So, although she buys everything Lavines argues, she still cannot exclude,
by any referential means offered by the internal categoricity in first-order logic, the
set-theoretic possibility of there being more than one up to isomorphism structure
as the referent of T™". Note, again, that she does not doubt that T refers to the
intended structure, and that all other concocted structures are deviant, non-
intentional ones. She is not motivated by skepticism. She just wants to clarify the
referential means by which T accomplishes this selection task. It is at this point
that she acknowledges that all the available referential mechanisms fail to glue T
to its intended referent. The reason, again, is that the available referential mechanisms
are consistent with a scenario in which T™ refers to a concocted nonstandard
structure, even though she recognizes the artificiality of the nonstandard structure
and its dependence on the standard one in its construction.

Let me conclude my critique by presenting the gist of the argument in other
terms. One can illustrate the point of my argument using Kripke’s®? Wittgensteinian
paradox involving plus-quus, or Goodman’s®® green-grue puzzle. | will choose the
former. Suppose that someone has learned in a standard, normal, way, how to
perform additions. She is confident that her use of ‘plus’ or ‘+’ denotes the standard
mathematical function of addition. This stage of my illustration corresponds to
learning that 7 has a first-order internal categoricity proof by a corresponding
character. Returning to Kripke’s example, imagine that by an encounter with a
bizarre skeptic, our heroine learns about the deviant referential candidate of ‘+,
name it ‘quus’®, a function that agrees with addition up to the largest number used
in her past computations, but deviating form addition for all other larger numbers.
At this stage of the illustration, the corresponding character from my argument

61 (Vadninen 2012, 98-99), (Vaininen and Wang 2015, 125)
62 (Kripke 1982)

83 (Goodman 1955)

6| follow Kripke’s baptism of the deviant function.
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learns about the existence of deviant, nonstandard, but adequate referential candidates
for T™. Returning to Kripke’s example, the non-skeptical problem that she begins
to contemplate is what is the referential mechanism by which ‘+’ denotes the
addition function and not the quus function. Again, she is not skeptical, she doesn’t
believe that the referent of ‘+’ is quus, she just wants to provide an explanation for
the referential relation between ‘+’ and addition. But all the moderate-available
means at her disposal could not pick addition as the sole referent of ‘+’. There is
nothing in the usage of ‘+' that could discern between addition and quus. Similarly,
all the referential moderate means— the internal categoricity of T in first-order
logic—available to the corresponding character are consistent with many non-isomorphic
referents of 7. The point is that the afterthought concerning referential determinacy
always comes back to haunt the pre-established harmony of internal categoricity.

Now, | have to tie one more loose end. Remember, in the interpretation
that | proposed above any result obtained in first-order logic informs and permeates our
conceptions and our subsequent considerations, because first-order logic is this prior,
autonomous, unproblematic, devoid of any semantical assumptions, medium. | don’t
believe that resorting to such an interpretation solves the conundrum of the referential
determinacy of arithmetic. In fact, it misses the target, and leaves the conundrum
posed by the central problem unanswered. What Lavine accomplished, at best, is
to indicate that the natural number structure is a presupposition, and not a
philosophical thesis to be argued for. In mathematical practice, the standard model
is regarded as a presupposition, N just is the structure for which induction holds for
all XS N. This, of course, is a resolution by stipulation, and in that quality, it needs
no further justification. Well, if this is so, then what Lavine’s argument shows is that
our conception of arithmetic is from the very beginning bound by certain constraints to
admit just one structure. That may be so, but then, how can such an argument solve
the central problem? The central problem is about how the resources of a theory
of arithmetic can pin down the structure of the natural numbers, not about how
our conception of arithmetic is so shaped that the uniqueness of the natural
numbers is already built in.

In conclusion, Lavine’s detailed and sophisticated argument misses its intended
target, the central problem. First, the argument fails to adequately respond to the
challenge raised by the central problem. Secondly, the argument is riddled with
philosophical question-begging or relevance difficulties, which, | argued, are
insurmountable.
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