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ABSTRACT: Strategic decision-making in multi-agent interactions inside the Iterated 
Prisoner's Dilemma (IPD) is investigated in this work using Monte Carlo simulations. 
Building on Axelrod's work, we present a second-generation tournament with stochastic 
components, including unpredictable game lengths, to evaluate strategy adaptability 
and resilience. We analyze how uncertainty influences strategic performance by using 
a comparison between instances with fixed and uncertain times. We identify, using 
a descriptive approach, methods demonstrating important behavioral differences 
between deterministic and uncertain settings. The results provide understanding of 
adaptive learning, response dynamics, and strategic flexibility, so helping to build 
strong collaborative strategies for artificial intelligence and decision-making systems. 
Our results highlight the limitations of exclusively deterministic methods and suggest 
the necessity for adaptive approaches to improve long-term cooperative success. 
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1. Introduction 

An essential feature of multi-agent interactions is strategic decision-making, 
who game theory offers a strong structure for examining such choices. Being much 
investigated to understand cooperative and competitive behaviors in repeated 
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interactions, the Iterated Prisoner's Dilemma (IPD) is one of the most well-known 
models in this field of study (Chong et al., 2007). Robert Axelrod's innovative work 
revealed a collection of computational competitions evaluating the success of 
different approaches in the IPD, therefore generating important new perspectives on 
the development of collaboration.(Axelrod, 1984) 

Building on this foundation, the current work investigates a second-generation 
Axelrod tournament (project, 2015) using improved computational frameworks and 
uncertainty factors to evaluate the adaptability and robustness of many agent 
strategies. Unlike the original tournament, which mostly concentrated on deterministic 
interactions, our work incorporates stochastic aspects, such unpredictable game 
lengths, to investigate how strategies function in non-deterministic situations. 

Using Monte Carlo simulations, we methodically evaluate the performance of 
a diverse set of strategies under both fixed and uncertain conditions (Thomopoulos, 
2013). We examine important indicators including win rates, utility differences, and 
adaptive resilience to find which tactics hold true when the game environment veers 
from strict determinism and which ones get vulnerable. The results establish the 
effects on perpetual success in repeated games of adaptive learning, a response 
dynamic, and strategic flexibility. 

This work wants to develop and investigate a second-generation Axelrod 
tournament (Axelrod, 1984) including stochastic components, such unpredictable 
game lengths, so improving the realism of strategic interactions. It makes use of 
Monte Carlo simulations to evaluate agent adaptability of several approaches, 
therefore measuring agent resilience in uncertain environments. Finding important 
performance metrics—including win rates, utility variations, and adaptive resilience—
that impact long-term strategic success under both deterministic and non-deterministic 
settings is a major focus. 

Investigating how response dynamics and adaptive learning structures 
support cooperation or allow exploitation in iterative game environments is another 
objective. The study also compares conventional and most recently suggested 
approaches to evaluate their performance in handling uncertainty, therefore 
revealing important information on strategic resilience and adaptability (Chiong & 
Jankovic, 2008). Furthermore, it looks at how unpredictability in game parameters 
affects emergent strategy efficacy and how stochastic perturbations affect the 
stability and evolution of cooperative behaviors. 

By using Monte Carlo methods to improve prediction accuracy and strategy 
evaluation, the study also seeks to maximize computational models for predicting 
recurrent interactions under uncertainty. At last, it aims to provide a basis for practical 
applications in artificial intelligence and decision-making by establishing rules for 
creating strong cooperative strategies that can resist different and changing strategic 
environment. 

Through following these objectives, we want to improve our understanding 
of strategic decision-making in complex multi-agent interactions and provide a 
framework for future research on fostering cooperation in uncertain environments. 
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2. Theoretical background. Definitions. Notation 

2. 1. Normal-form games  
Normal-form games represent a fundamental model for studying strategic 

decisions. A normal-form game is defined as a tuple: 
 

𝜞𝜞 = (𝑵𝑵,𝑨𝑨,𝒖𝒖)     (1) 
where: 

• 𝑵𝑵 is a finite set of players, |𝑵𝑵| = 𝒏𝒏, with 𝒏𝒏 ≥ 𝟐𝟐. 
• 𝑨𝑨𝒊𝒊 is the set of pure strategies for each player 𝒊𝒊 ∈ 𝑵𝑵. 
• 𝑨𝑨 = ∏ 𝑨𝑨𝒊𝒊𝒊𝒊∈𝑵𝑵  is the Cartesian product of all strategies. 
• 𝒖𝒖𝒊𝒊:𝑨𝑨 → ℝ  is the utility function, assigning a numerical outcome to each 

strategy profile. 
 
Games where players make decisions at the same time without knowing 

what other players are thinking work well with this structure.(Ben-Porath, 1990) 
 A Nash equilibrium is a fundamental concept in game theory, representing 
a strategy profile where no player can gain by unilaterally deviating from their 
strategy. Formally, a strategy profile (𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖∗ ) a Nash equilibrium if: 
 

𝒖𝒖𝒊𝒊(𝒔𝒔𝒊𝒊∗, 𝒔𝒔−𝒊𝒊∗ ) ≥ 𝒖𝒖𝒊𝒊(𝒔𝒔𝒊𝒊, 𝒔𝒔−𝒊𝒊∗ ), ∀𝒔𝒔𝒊𝒊 ∈ 𝑨𝑨𝒊𝒊.     (2) 

 
 In other words, given the strategies chosen by the other players, each player's 
strategy is optimal, meaning that no player has an incentive to deviate. Nash equilibria 
exist in all finite games with mixed strategies (Nash, 1950) The concept is applicable 
to various strategic contexts, ranging from basic two-player games to complex multi-
agent systems. In the context of normal-form games, Nash equilibria can be classified 
as either pure or mixed. A pure strategy Nash equilibrium occurs when all players 
choose a single, deterministic strategy, while a mixed strategy Nash equilibrium 
involves players randomizing over their available strategies according to a probability 
distribution. Finding Nash equilibria in complex games often requires computational 
tools. One common method involves the use of Nash mappings, which are 
mathematical constructions that transform the problem of finding equilibria into 
solving fixed-point equations. Nash mappings are essential for identifying equilibria, 
particularly in games with infinite or continuous strategy spaces (Zhou et al., 2011). 
Zhou et al. explain that Nash mappings rely on fixed-point theorems, such as 
Tychonov's fixed-point theorem, which guarantee the existence of fixed points under 
certain conditions (Tychonov, 1935). The mapping ensures that for any starting point 
in the strategy space, there is a corresponding equilibrium point at which no player 
can independently enhance their payoff. This theoretical framework is essential for 
examining games with extensive strategy spaces and continuous payoff functions. 
Algorithms like the Lemke–Howson algorithm and best-response dynamics are 
frequently used to calculate Nash equilibria. Best-reaction dynamics involve the 
iterative adjustment of each player's strategy to optimize their response based on 
the dominant strategies of the other players. This process may converge to a Nash 
equilibrium in numerous instances, although this outcome is not invariably assured. 
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The importance of Nash equilibria extends simple theoretical examination. 
Nash equilibria provide a paradigm for forecasting the results of strategic interactions 
in practical applications throughout economics, political science, and computer 
science. They are utilized to simulate competitiveness in the market, negotiation 
scenarios, and multi-agent decision-making in distributed systems. 

 

2. 2. Dominant strategies and Iterative elimination 

Dominant strategies play a crucial role in decision-making within strategic 
games. A strategy is considered dominant if it provides a player with a higher or 
equal payoff regardless of the actions of other players (Rothe, 2010) In Axelrod’s 
tournaments, iterative elimination of dominated strategies explains why inflexible 
strategies, such as constant defection, perform poorly in uncertain environments. 
Akin explains that zero-determinant (ZDS) strategies allow players to fix the 
relationship between their payoffs and those of their opponents, which can either 
stabilize cooperation or enable exploitation (Akin, 2016) ZDS strategies were 
extended by Press and Dyson (2012) and play a significant role in the evolutionary 
dynamics of repeated games. 

 

2. 3. The classic example: Prisoner’s Dilemma 

The Prisoner’s Dilemma is a classic example of a normal-form game and is 
central to studying cooperation and defection between players. Each player must 
simultaneously choose between cooperation (C) or defection (D), with outcomes 
depending on the combination of their decisions. 

The payoff matrix can be represented as: 
 

Table 1. The payoff matrix 
X/Y C D 

C R S 
D T P 

Where: 
𝑹𝑹 is the reward for mutual cooperation; 
𝑷𝑷 is the punishment for mutual defection; 
𝑻𝑻 is the temptation payoff when a player defects while the other cooperates; 
𝑺𝑺 is the sucker’s payoff for cooperating when the other defects. 
 
These payoff relationships must satisfy: 
 

𝑻𝑻 > 𝑹𝑹 > 𝑷𝑷 > 𝑺𝑺 and 𝟐𝟐𝑹𝑹 > 𝑻𝑻 + 𝑺𝑺.     (3) 

 
Alternatively, the payoff vectors for each player can be expressed as: 
 

𝑺𝑺𝑿𝑿 = (𝑹𝑹,𝑺𝑺,𝑻𝑻,𝑷𝑷) and 𝑺𝑺𝒀𝒀 = (𝑹𝑹,𝑻𝑻,𝑺𝑺,𝑷𝑷).   (4) 
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The expected payoffs 𝒔𝒔𝑿𝑿  and 𝒔𝒔𝒀𝒀  for players 𝑿𝑿 and 𝒀𝒀, given a probability 
distribution 𝒗𝒗 over the four possible outcomes, are: 

 

𝒔𝒔𝑿𝑿 = ⟨𝒗𝒗 ⋅ 𝑺𝑺𝑿𝑿⟩ and 𝒔𝒔𝒀𝒀 = ⟨𝒗𝒗 ⋅ 𝑺𝑺𝒀𝒀⟩.   (5) 

 
In the Prisoner’s Dilemma, strategy 𝑪𝑪 corresponds to cooperation, where 

both players receive the reward 𝑹𝑹 when they cooperate. Conversely, strategy 𝑫𝑫 
(defection) leads to the temptation payoff 𝑻𝑻 for the defector and the sucker’s payoff 
𝑺𝑺 for the cooperating player. The mutual defection outcome results in the punishment 
payoff 𝑷𝑷 for both players. 

The condition 𝟐𝟐𝑹𝑹 > 𝑻𝑻 + 𝑺𝑺 implies that mutual cooperation provides a payoff 
higher than splitting the total rewards of outcomes where one player defects and the 
other cooperates. The cooperative outcome (𝑪𝑪,𝑪𝑪) is a Pareto optimum, meaning that 
no other outcome can make one player better off without making the other worse off. 

However, players face a dilemma due to the dominance of strategy 𝑫𝑫 . 
Regardless of what the other player chooses, defection yields a higher payoff for the 
defector. As a result, both players rationally choose 𝑫𝑫, leading to the (𝑫𝑫,𝑫𝑫) outcome 
with a suboptimal payoff 𝑷𝑷 for each. 

In real-world scenarios, additional factors, such as reputation or external 
enforcement mechanisms, can modify these payoffs to promote cooperation. For 
instance, if one player defects and causes harm to the other, retaliation may reduce 
the desirability of defection below 𝑹𝑹 . Anticipation of such consequences may 
encourage both players to honor agreements to cooperate. 

 

2. 4. Repeated Prisoner’s Dilemma 

In a repeated version of the Prisoner’s Dilemma, players encounter each 
other multiple times. The game can either have a fixed number of rounds (finite 
horizon) or continue indefinitely (infinite horizon). The difference in the horizon 
fundamentally affects the strategies employed by players. 

In finitely repeated games, players know when the game will end, which 
often results in backward induction. Since defection is dominant in the final round, 
players reason backward to defect in all previous rounds (Myerson, 1991). 

When the game is infinitely repeated or has an unknown ending, cooperation 
can emerge as a rational strategy. The incentive to cooperate arises from the 
potential future benefits of mutual cooperation. Two main concepts for evaluating 
payoffs in infinitely repeated games are: 

 
1. Average reward: Given an infinite sequence of payoffs 𝒓𝒓𝒊𝒊𝟏𝟏, 𝒓𝒓𝒊𝒊𝟐𝟐, … for player 

𝒊𝒊, the average reward is: 

𝐥𝐥𝐥𝐥𝐥𝐥
𝑵𝑵→∞

𝟏𝟏
𝑵𝑵
∑ 𝒓𝒓𝒊𝒊𝑵𝑵
𝒋𝒋=𝟏𝟏 (𝒋𝒋).     (6) 

 

2. Discounted reward: Given an infinite sequence of payoffs 𝒓𝒓𝒊𝒊𝟏𝟏, 𝒓𝒓𝒊𝒊𝟐𝟐, … for 
player 𝒊𝒊, and a discount factor 𝟎𝟎 ≤ 𝜷𝜷 ≤ 𝟏𝟏, the discounted reward is: 
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𝐋𝐋𝐥𝐥𝐥𝐥
𝑵𝑵→∞

∑ 𝜷𝜷𝒋𝒋𝑵𝑵
𝒋𝒋=𝟏𝟏 𝒓𝒓𝒊𝒊(𝒋𝒋).     (7) 

 
Strategies like Tit for Tat, which involves initial collaboration followed by 

imitating the opponent's previous action, effectively maintain cooperation in repeated 
games (Axelrod & Hamilton, 1981). 

Tit for Tat is considered a Nash equilibrium under certain conditions, 
particularly when the discount factor is high enough, making future payoffs valuable. 

The folk theorem provides further insight into repeated games, stating that if 
players are sufficiently patient, a wide range of outcomes, including mutual cooperation, 
can be sustained as Nash equilibria (Leyton-Brown & Shoham, 2008). 

Good strategies for the iterated Prisoner’s Dilemma have been characterized 
by Akin (2016) as those that stabilize cooperation and ensure Nash equilibria. When 
both players use a good strategy, neither player can gain by unilaterally changing 
their strategy. Markov strategies, including memory-one plans, play a central role in 
this context. For example, Tit for Tat is a memory-one strategy where a player’s 
response depends on the opponent’s previous action. 

Meng Chen-Lu (2001) highlights that Tit for Tat and its variations, like 
Generous Tit for Tat, are essential for promoting ongoing cooperation in iterated 
games, in particular uncertain context. Nash mappings help identify stable strategies 
in complex situations, providing players with opportunities to optimize their long-term 
behaviour (Zhou et al., 2011). 

Nachbar argues that through progressive learning and feedback-based 
adjustments, players can converge to Nash equilibria even when their initial 
strategies are suboptimal (Nachbar, 2005). 

 

2. 5. Strategies in determined vs. uncertain environments 

An essential component in analyzing repeated games is the distinction 
between deterministic and uncertain contexts. In determined environments, where 
the game's duration is known in advance, dominating strategies could be successful as 
participants anticipate the conclusion. On the other hand, in uncertain environments, 
adaptive strategies like Tit for Tat or exploration-exploitation models are generally 
more robust (Leonardos Stefanos, 2012). 

Meng (2001) emphasizes that in complex environments with a large number 
of players or unpredictable interactions, an agent’s performance depends on its 
ability to adapt. Adaptive algorithms, such as genetic algorithms, are crucial for 
optimizing behaviour in the face of diverse opponent strategies. 

Ben-Porath (1990) highlights the computational complexity of establishing 
optimal response algorithms in recurrent games with mixed strategies. Computing 
and verifying optimal responds are frequently non-polynomial problems; however, 
they can become polynomial when the support size of mixed strategies is restricted.  

 

2. 6. Axelrod's Second Tournament 

Axelrod's second tournament extended the scope of his initial experiment by 
incorporating a larger set of strategies and introducing new conditions such as uncertainty 
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regarding the number of game rounds. This allowed for a more comprehensive evaluation 
of strategies in the Iterated Prisoner's Dilemma (IPD) and provided deeper insights into 
the mechanisms that drive cooperation and competition (Axelrod, 1984) Unlike the first 
tournament, where Tit-for-Tat dominated due to its simplicity and reciprocity, the second 
tournament tested both reciprocal and adaptive strategies that adjusted dynamically to 
their opponents' behavior (Axelrod & Hamilton, 1981) 

Key aspects of strategy that contribute to success in frequent experiences 
are highlighted in theoretical studies of Axelrod's tournaments. Among the key 
concepts that Axelrod's study has demonstrated are: 

 
(i) Niceness: Strategies that avoid initial defection generally provide 

superior long-term payoffs. (Axelrod, 1984)  
(ii) Provocability: Effective strategies must respond to defections in a way 

that discourages exploitation. 
(iii) Forgiveness: The capacity to reestablish collaboration following the 

punishment of a defection helps in preventing extensive cycles of 
payback. 

(iv) Clarity: Easily interpretable strategies allow opponents to predict the 
consequences of their actions, stabilizing interactions 

 
In instances with a fixed number of rounds, inflexible strategies like Tit-for-

Two-Tats, which delay retaliation until two successive defections occur, shown 
robust success. However, their inherent a lack in responding to defection made them 
especially vulnerable to manipulate by adaptive tactics like as Second by Tester. 
The latter exploited this tolerance by strategically defecting in specific cases, aware 
that immediate punishment would be missing. This opportunistic behavior enabled 
adaptive methods to achieve a greater cumulative payoff by exploiting the predictable 
responses of more rigid adversaries. Similarly, Grudger, which permanently punishes 
any opponent who defects, struggled in dynamic environments where adversaries 
could introduce strategic resets that neutralized its punitive approach (Tutzauer, 2007). 
On the other hand, strategies that adapted to changing conditions, such as Second 
by Tester and Second by Gladstein, thrived under uncertainty. These strategies 
adjusted their responses based on game history, allowing them to maximize payoffs 
in environments where the end-game was unpredictable. Vincent & Fryer (2021) 
further demonstrated that FSM-based strategies, which evolve through algorithmic 
optimization, could outperform even established heuristics like Tit-for-Tat by fine-
tuning their behavior to different types of opponents. 

Axelrod's second tournament findings, along with later theoretical improvements, 
highlight that adaptation is the essential factor for success in unpredictable situations. 
Strategies that strictly follow predetermined rules, such as Grudger or Tit-for-Two-
Tats, are vulnerable to exploitation by adversaries capable of adapting their behavior 
(Axelrod, 1984). 
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3. Our approach to Monte Carlo simulations 

3. 1. Definition of a Supergame 

A supergame is defined as the repeated execution of N iterations of a 
simultaneous one-shot game (in our case, the Prisoner's Dilemma). The total utility 
is computed as the discounted sum of utilities across all one-shot games: 

 

𝑼𝑼total = ∑ 𝜷𝜷𝒊𝒊−𝟏𝟏𝑵𝑵
𝒊𝒊=𝟏𝟏 𝒖𝒖𝒊𝒊,      (8) 

 
where 𝑢𝑢𝑖𝑖 is the utility at stage 𝑖𝑖 and 𝛽𝛽 is the discount factor with 0 ≤ 𝛽𝛽 ≤ 1. 

 
Simulation of agent interactions 
 
In a confrontation between two strategies or agents (e.g., Tit-for-Tat vs Tit-

for-Two-Tats), the agents play K iterations of a supergame: 
 
𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟏𝟏: The proportion of wins, losses, and ties for each agent over 𝑲𝑲 

supergames. 
𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟐𝟐: The average payoffs for each agent across 𝑲𝑲 supergames. 
 
To simulate uncertainty, the random variable 𝑵𝑵  is generated from a 

distribution with mean 𝝁𝝁𝑵𝑵 and standard deviation 𝝈𝝈𝑵𝑵. The distribution 𝓓𝓓 can be: 
 
Normal distribution: 

𝑵𝑵 ∼ 𝓝𝓝(𝝁𝝁𝑵𝑵,𝝈𝝈𝑵𝑵)      (9) 

 
where 𝝁𝝁𝑵𝑵 is the mean and 𝝈𝝈𝑵𝑵 is the standard deviation. 

 
Uniform distribution: 
 

𝑁𝑁∼𝒰𝒰𝒰𝒰,𝑏𝑏       (10) 
 
where the mean and standard deviation are given by the formulas: 
 

𝝁𝝁𝑵𝑵 = 𝒂𝒂+𝒃𝒃
𝟐𝟐

  (11) 

𝝈𝝈𝑵𝑵 = 𝒃𝒃−𝒂𝒂
√𝟏𝟏𝟐𝟐

  (12) 

 

3. 2. Comparison of fixed and uncertain cases 

For each 𝒌𝒌 in {𝟏𝟏,𝟐𝟐, … ,𝑲𝑲}, the uncertain supergame is played by randomly 
selecting 𝑵𝑵′ from the distribution in Equation (2). The corresponding 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟏𝟏 and 
𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟐𝟐 are computed and compared to the results from the fixed case. 
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Experimental setup 

We select a set of 𝒎𝒎  agents (strategies), denoted as Agent𝟏𝟏, Agent𝟐𝟐, 
… , Agent𝒎𝒎. The results are stored as: 

Case I: Fixed 𝑵𝑵. Results are stored in a matrix 𝑴𝑴case_I, where each entry 
above the diagonal represents 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟏𝟏  and 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐫𝐫𝟐𝟐  for the bilateral supergame 
between Agent𝒊𝒊 and Agent𝒋𝒋. 

Case II: Uncertain 𝑵𝑵. Results are stored in a matrix 𝑴𝑴case_II with the same 
structure as 𝑴𝑴case_I. 

 

Calculating distance metrics 
The following metrics are used to measure discrepancies between Case I 

(fixed number of stages) and Case II (uncertain number of stages). 
 

Discrepancy for "won" (victories) 
𝑫𝑫won(𝒊𝒊, 𝒋𝒋) = |woncase I(𝒊𝒊, 𝒋𝒋) − woncase II(𝒊𝒊, 𝒋𝒋)| 

 

Where: 
𝑫𝑫won(𝒊𝒊, 𝒋𝒋)  represents the absolute difference between the number of 

victories for the pair of agents �Agent𝒊𝒊, Agent𝒋𝒋� in the two cases. 
The results are sorted in descending order to select the pairs of agents with 

the largest discrepancies, up to a threshold threshold = 𝟏𝟏𝟎𝟎. 
 

Discrepancy for "lost" (losses) 
𝑫𝑫lost(𝒊𝒊, 𝒋𝒋) = |lostcase I(𝒊𝒊, 𝒋𝒋) − lostcase II(𝒊𝒊, 𝒋𝒋)| 

Where: 
 

𝑫𝑫lost(𝒊𝒊, 𝒋𝒋) represents the absolute difference between the number of losses 
for the pair of agents �Agent𝒊𝒊, Agent𝒋𝒋� in the two cases. 

The results are sorted in descending order to select the pairs of agents with 
the largest discrepancies, up to a threshold threshold = 𝟏𝟏𝟎𝟎. 

 
Notation:  

• woncase I(𝒊𝒊, 𝒋𝒋): the number of victories for the pair �Agent𝒊𝒊, Agent𝒋𝒋� in 
case I (fixed number of stages). 

• woncase II(𝒊𝒊, 𝒋𝒋): the number of victories for the pair �Agent𝒊𝒊, Agent𝒋𝒋� 
in case II (uncertain number of stages). 

• lostcase I(𝒊𝒊, 𝒋𝒋): the number of losses for the pair �Agent𝒊𝒊 , Agent𝒋𝒋� in 
case I. 

• lostcase II(𝒊𝒊, 𝒋𝒋): the number of losses for the pair �Agent𝒊𝒊, Agent𝒋𝒋� in 
case II. 

 
Axelrod's tournament framework provides a valuable platform for studying 

the interactions and strategies of agents in repeated games, particularly the Iterated 
Prisoner’s Dilemma (IPD). This subsection focuses on the qualitative behavior of 
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specific agent pairs under conditions of uncertainty about the number of game 
stages. By introducing uncertainty, we investigate whether strategies originally 
developed for fixed-stage environments demonstrate adaptability or vulnerabilities. 

 
 

4. Results. Some relevant examples explained. 
 
Second by Tester and Tit For 2 Tats 

 
Behavior: Tit For 2 Tats, known for its leniency in tolerating a single 

defection, is exploited by the adaptive strategy of Second by Tester. Specifically, 
Second by Tester leverages the tolerance built into Tit For 2 Tats, which delays its 
retaliation and allows an opportunistic exploitation pattern. 

Cause of discrepancy: The fundamental cause lies in the adaptability of 
Second by Tester. Unlike Tit For 2 Tats, which applies a rigid, predefined retaliation 
rule, Second by Tester dynamically adjusts its behavior to maximize payoffs under 
varying conditions. This adaptability is particularly advantageous in environments 
where the end of the game is uncertain. 

Impact of uncertainty: Under conditions of uncertainty, Second by Tester’s 
performance gains are amplified. This is due to the variability in game length, which 
increases the opportunities for exploitation. The increased discrepancies highlight 
the potential for adaptive strategies to thrive in variable conditions while exposing 
the limitations of rigid, rule-based strategies like Tit For 2 Tats. 
 
Second by Gladstein and Tit For 2 Tats 

 
Behavior: A similar pattern emerges in the interaction between Second by 

Gladstein and Tit For 2 Tats. Gladstein’s strategy, characterized by its adaptive 
responses, takes advantage of Tit For 2 Tats’ predictable tolerance for initial defections. 

Observation: The introduction of uncertainty magnifies the discrepancy between 
these two strategies. Gladstein’s ability to adjust to changing game dynamics enhances 
its effectiveness, while Tit For 2 Tats’ static rule set makes it vulnerable. 

Impact of uncertainty: The amplified discrepancy underscores the role of 
adaptability in uncertain environments. While Tit For 2 Tats performs reliably under 
fixed conditions, its lack of dynamic response mechanisms makes it susceptible to 
exploitation when the game’s duration becomes unpredictable. 
 
Grudger and Second by Colbert 

 
Behavior: Grudger, a highly rigid strategy that perpetually punishes any 

defection, interacts with Second by Colbert, which introduces resets to destabilize 
its rigid retaliation mechanism. This interaction highlights the limitations of strict 
punitive strategies in dynamic environments. 

Cause of discrepancy: The rigidity of Grudger is a critical weakness. Its 
unyielding approach fails to account for strategic resets, which Second by Colbert 
effectively uses to reset the game’s cooperative dynamics. By doing so, Second by 
Colbert neutralizes Grudger’s retaliatory strategy and destabilizes its long-term 
effectiveness. 
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Impact of uncertainty: In uncertain environments, Grudger’s inability to adapt 
is further exposed. The resets introduced by Second by Colbert exploit the variability 
in game length, leading to significant performance discrepancies. This demonstrates 
that strategies overly reliant on fixed retaliation rules are ill-suited to uncertain conditions. 

 
 

5. Discussions and conclusions 

In this section, we analyze and interpret the results of the second-generation 
Axelrod tournament simulations conducted in environments with both certainty and 
uncertainty regarding the number of game stages. The main focus lies on 
understanding how agents adapt (or fail to adapt) to the uncertainty about the game's 
end stage and how this impacts their performance. 

 

5. 1. Discussions about essential metrics and observations 

We evaluated agent behavior by computing critical metrics, especially 
looking at the differences in average utilities—referred to as “Diff P1” and “Diff P2”—
between certain environments and those that introduce uncertainty regarding the 
end stage. These metrics establish a quantitative basis for identifying and evaluating 
performance differences in these distinct scenarios. The analysis presented in 
Figure 1 identifies the top 10 significant discrepancies in utility for P1. It demonstrates 
that certain agents, including "Second by Getzler" and "Second by Tester," show 
important sensitivity to the introduction of uncertainty, illustrating the influence of 
environmental conditions on their strategies. 

 
Figure 1. Top 10 Discrepancies in Utility for P1 Across Certain and Uncertain Environments 
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A significant correlation was identified between the discrepancies in utilities 
and adaptability metrics, as illustrated in Figure 2. This suggests that agents' ability 
to adapt plays a pivotal role in their performance across varying environmental conditions. 
For example, strategies that are heavily dependent on end-game scenarios, such as 
“Second by Tester,” exhibit pronounced drops in utility when uncertainty is introduced, 
underscoring their reliance on predictable termination points. In contrast, more resilient 
strategies, such as “Grudger,” demonstrate remarkable stability and maintain consistent 
performance regardless of the level of uncertainty, reflecting their inherent robustness 
and less dependence on end-stage predictability. 

 
Figure 2. Correlation Matrix of Wins, Losses, and Utilities 

 
 
The difference in average utilities between the two environments is another 

important result that provides insight on how flexible and resilient various tactics are. 
Figure 3 illustrates these differences, highlighting specific patterns in performance. 
Strategies characterized by significant adaptability, such as "Tit for Tat," display 
minimal fluctuations in their average utility, indicating a reliable and stable reaction 
to environmental changes. This stability shows their intrinsic resilience and ability to 
function efficiently in both certain and uncertain conditions. In contrast, techniques 
characterized by rigid or deterministic decision-making frameworks, such as "Second 
by Tester," show significant reductions in utility when tested in unpredictable situations. 
These significant losses highlight their reliance on stable conditions and their restricted 
capacity to adapt to dynamic changes in the game framework. This disparity emphasizes 
the importance of flexibility and adaptability in strategy design, particularly in contexts 
where environmental conditions are unpredictable or volatile. 
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Figure 3. Average Utility Discrepancies Between Certainty and Uncertainty Environments 
 

 
 
Figure 4 provides a thorough analysis of the distribution of utility values 

across scenarios defined by certainty and uncertainty, illustrating the fundamental 
dynamics of strategy performance. Strategies such as "Tit for Tat" show a compact 
utility distribution, indicating exceptional consistency and durability in their performance. 
Narrow distributions suggest that these techniques remain mostly unaffected by 
fluctuations in external variables, rendering them appropriate for both predictable 
and unexpected situations. In contrast, the "Second by Tester" strategy demonstrates a 
significantly wider utility distribution under uncertainty, indicating increased variability 
in its effectiveness. This wider distribution indicates a deficiency in robustness and a 
greater susceptibility to environmental variability. The difference in value distributions 
among different solutions highlights the essential importance of adaptability in 
reducing the negative impacts of uncertainty. Strategies characterized by narrower 
distributions usually show consistent decision-making frameworks, while those with 
broader distributions may lack mechanisms to stabilize performance in the face of 
unpredictable changes. This approach highlights the necessity of including both 
stability and adaptability in the formulation of strategies for situations characterized 
by various levels of predictability. 

Figure 5 presents a comprehensive examination of the difficulties encountered 
by particular strategies in adjusting during transitions between environments characterized 
by certainty and uncertainty. This visualization highlights the differing levels of adaptation 
across strategies, providing essential insights regarding their performance resilience. 
The "Second by Tester" strategy demonstrates a substantial decline in efficacy while 
switching to an uncertain environment, indicating a possible overfitting to deterministic 
circumstances. This significant decline in performance indicates that the strategy is 
excessively dependent on predictable termination points and lacks the adaptability to 
respond to dynamic or less controlled scenarios. 

These observations highlight the necessity for finding solutions that provide 
constant performance under different environmental situations. Strategies that 
demonstrate a significant decrease in utility under uncertainty may be useful in static 
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or deterministic environments but are inappropriate for dynamic and unpredictable 
circumstances. This discrepancy analysis functions as an essential instrument for 
detecting strategy that are too specialized or restricted in their flexibility. 

 
 

Figure 4. Utility Distributions in Certainty and Uncertainty Scenarios. 
 

 
 
 

Figure 5. Discrepancy Analysis: Certainty vs. Uncertainty 
 

 
 
5. 2. Conclusions 

The above visualizations provide important insights into the performance 
dynamics of agents across different environmental situations, highlighting their adaptation, 
resilience, and limitations. Strategies like “Tit for Tat” and “Grudger” exemplify robustness, 
constantly providing stable and reliable performance regardless the volatility in their 
operating environments. These strategies demonstrate an effective combination of 
collaboration and flexibility, rendering them especially appropriate for volatile and 
uncertain situations where stability is important. 
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In contrast, strategy like “Second by Tester” and “Second by Getzler” reveal 
considerable weaknesses due to their evident dependence on deterministic 
frameworks and predictable game characteristics. These tactics demonstrate significant 
decreases in efficiency under uncertainty, indicating a fundamental inflexibility in 
their structure. Their incapacity to maintain constant performance under changing 
settings highlights essential areas for improvement, especially the necessity for 
reducing dependency on fixed ending points and deterministic frameworks. 

An in-depth examination of these inconsistencies reveals opportunities for 
improving agent algorithms, highlighting the potential for innovation in various critical 
domains. Integrating probabilistic methods for making decisions may allow agents to 
navigate environments characterized by inherent randomness more effectively, 
enhancing adaptability. Moreover, the formulation of hybrid strategies—integrating 
resilient components from strategies such as “Tit for Tat” with innovative decision-
making frameworks—presents a viable option to increase both flexibility and 
resilience. These improvements could allow agents to operate efficiently in both 
controlled environments and complex real-world situations marked by uncertainty 
and dynamic interactions. 

Future research should focus on systematically refining these strategies to 
address their current limitations. This may include using sophisticated computational 
methods, such as machine learning, to model and improve agent behavior across 
diverse environmental situations. Furthermore, investigating methods to adapt 
strategic decision-making in response to real-time feedback might significantly 
enhance agents' capacity to react to evolving environments. By furthering these 
domains of investigation, we may improve the broader field of game theory and 
agent-based modeling, promoting developments that beyond academic study and 
reach practical applications in economics, artificial intelligence, and other disciplines. 
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