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PORTFOLIO OPTIMIZATION ALGORITHMS

IONUT TRAIAN LUCA?

ABSTRACT. A milestone in Portfolio Theory is represented by the Mean-
Variance Model introduced in 1952 by Harry Markowitz. During the years,
mathematicians have developed several different models extending, improving
and diversifying the Mean-Variance Model. This paper will briefly present
some of these extensions and the resulted models. The aim is to search and
identify some connections between portfolio theory and energy production.
Analyzing the Mean-Variance Model and its extensions we can conclude that from
practical point of view the minimax model is the easiest to be implemented,
because the analytical solution is computed with low effort. This model, like
all others from Portfolio Theory, has a high sensitivity for mean. We consider
that this model fits to our goal (energy optimization) and we intend to
implement it in our future research project.
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1. Introduction

The optimal allocation of financial resources is of outmost importance.
Capital allocation can determine the development or the stagnation of an economic
sector, depending on investors’ perception and risk aversion.

A milestone in Portfolio Theory is represented by the Mean-Variance
Model introduced in 1952 by Harry Markowitz (see [21]). The main idea of
Markowitz’s theory is that portfolio diversification will reduce risk, measured
using variance, as a spread of returns around the expected return. The model
is formulated in such way that risk (variance) is minimized while expected
return does not fall below a predefined level, or maximizes the expected
return while risk (variance) does not exceed a predefined level.
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During the years, mathematicians have developed several different
models extending, improving and diversifying the Mean-Variance Model. This
paper will briefly present some of these extensions and the resulted models.
The aim is to search and identify some connections between portfolio theory
and energy production. We will insist on models which we consider appropriate
to provide some starting points for our goal.

2. Markowitz Model

Portfolio investment problem was first studied by the mathematician
Harry Markowitz, which published in March 1952 in The Journal of Finance his
paper “Portfolio selection” (see [21]) considered the mille stone of this field.

In constructing the entire theory of portfolio optimization, Markowitz
presumes that an investor will always chose a portfolio which offers a higher
profitability for the same risk or a portfolio which offers the same profitability
against a lower risk.

Risk
A
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portfolios

Efficient
portfolios

. Profitability

Figure 1: Risk and profitability
Source: Markovitz [21]

Markowitz proved, in a simple way, using tools of analytic geometry,
that an efficient method to reduce risk is to diversify the portfolio instead of
placing the entire amount in a single asset.

Let’s consider a portfolio of n assets denoted by S;j = 1, n. An investor,
owning the initial amount Vy, focuses the problem to determine which amount
to invest in each asset such that the profitability will be maximized and the
risk minimized.

Obviously, each considered asset S has a certain rate of return, denoted
R, which is a random variable. The expected rate of return for asset S; is
i =E[R]j=Tn
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Markowitz used variance (L; risk function) to measure the risk. The
evaluation of risk for the entire portfolio requires that correlation between
assets should be considered. If correlation exists, a change in an asset will
generate changes for correlated assets. As measure for correlation, the covariance
oj = E[(Ri — ri)(Rj — rj)], i,j =1,n is calculated. It's well known that the
covariance between a variable and itself results in variance.

Denoting by x; the amount invested in asset S; j = 1,n, the risk function

becomes:
n n

i=1j=1

Let V), be the initial wealth of investor and p the minimum return
expected from the investment. To limit the risk for asset S, investor is imposing a
maximum amount u; to be invested.

The mathematical model created by Markowitz (MV-Mean Variance
Model) (see [21]) is:

n

n
min Z Z O'ijxix]'

i=1j=1

rixj = pVy

n
] —
\ OSx]-Suj, j=1n
To validate the model, the following conditions have to be fulfilled:

Random variables R, j = 1,n are normally distributed;

Investor has a desire to reduce risk.

Although this model created by Markowitz in 1952 is considered to be
the foundation of portfolio theory, practitioners are rarely using it. The main
drawbacks considered as being the following:

1. Solving the problem is not easy due to quadratic objective function
and due to the complexity of covariance matrix, especially when
the number of considered assets is large.

2. Investors are considering variance as a non-appropriate measure
for risk. Their arguments are that an investor is not satisfied with a
small profit or loss; thus he/she is highly satisfied with a high profit,
therefore he/she behaves in a different manner toward the risk
and reward.
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3. The model is very sensitive to errors generated by random
variables and their expected value.
4. The model considers a single period portfolio, while almost all
portfolios are held over multiple periods or multi-period.
Analyzing the vast literature we have identified five directions that
extend, improve and diversify the mean-variance model:
e Extending the model from the single period to multi-period.
Including the transaction cost in the mathematical model.
Analyzing the sensitivity for input data.
Approximation schemes
Introduction of new risk measures.

In 1972, Merton (see [23]) computed the efficient frontier for Mean-
Variance model, using Lagrange multipliers, in a special case when short selling is
allowed (no sign restriction on x;, j = 1,n).

3. Multi-period time horizon approach for Mean-Variance model

By extending the portfolio optimization model to multi-period time
horizon, investor has the opportunity to reoptimize the portfolio at some precise
time moments. Unfortunately the literature does not offer any indications how
the investor should act in the case of reoptimization.

The existing algorithms provide tools for the initial optimization of
portfolio; thus the investor could not interfere until the end of the period. In
1967, Smith (see [33]) extended the methodology used for initial configuration
of multi-period time horizon portfolios to include intermediate time moments,
allowing investor to reoptimize the portfolio during its lifespan.

In 1968, Mossin (see [25]) proves that at each moment of time ¢,
t = 1, T the amount invested in each selected asset depends on the wealth at stage
tt=1,T. Also, he proved that: (i) investment decision for stage t, t = 1,T — 1
can’t be computed before the result of stage t-1 is known and (ii) decision for
stage t, t = 1,T — 1 considers not only the information regarding returns for
stage t, but also information regarding returns for stages t+1, ...T. In the same
paper Mossin studied the impact on decision of number of stages until end of
the period.

Due to non separability of variance, it is not easy to extend the classical
Mean-Variance model for multi-period time horizon. Mathematicians like Merton
(see [22]), Samuelson (see [29]) and Fama (see [11]) have developed models
which used expected utility as objective function. The expected utility is considered
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to include besides the wealth at each time stage t, the amount used by investor
to cover his current costs. They study the relation between investment decisions,
consumption decisions and total wealth. We remark that in Portfolio Theory
appears the idea of bicriteria problems.

The utility function had overcome some of the difficulties of extending
the model to multi-period time horizon, but the use of total or average return
still remains a part of the difficulties. In order to overcome this problem, in
1971 Hakkanson (see [14]) developed a model which is using the average
compound return.

In 1974, Elton and Gruber (see [9]) realized a very precise inventory of
models developed until that moment, specifying for each model the conditions
imposed on the objective function, and the probability distribution for rate of return
(normal, symmetric stable, log normal, Stable Paretian, none). Using dynamic
programming, they developed a multi-period time model which maximizes the
utility of an investor which uses at each time stage ¢, t = 1, T part of the wealth to
cover current costs and the rest to continue the investments. They remark that
multi-period time model behaves similar to the single period model. In a different
paper (see [10]), also from 1974, Elton and Gruber analyze how geometric mean
and expected utility of multi-period returns behave as selection criteria for
portfolio. Also, they analyze which is the impact on portfolio performance of the
number of reoptimizations made by the investor.

Only in 2000 the analytical solution for multi-period time model was
computed. The result is due to Li and Ng (see [20]). They returned to the
classical formulation of Markowitz model which maximizes the expected final
wealth while variation of total wealth does not exceed a predefined level, or
minimizes variation of total wealth, while expected final wealth does not fall
below a predefined level.

The mathematical model for the problem is

(max E(Vr)
lvar(VT) <o
(D n
Vt+1 :th’jrt’j + Vt_zxt’j T't'l, t = 1,T_ 1
j=2 j=1

or
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min var(Vy)

E(V;) = ¢
(2)

n

n
lvt_l_l = Z xt,jrt,j + Vt - xt,j T‘trl, t = 1,T -1
j=2 j=1

The significance for all notations involved is presented in Section 5.3.
To solve the problem, Li and Ng [20] have used a principle somehow
similar to Lagrange multipliers to develop the following problem:

fmaX(E(VT) - wvaT(VT))

Vt+1 = th,jrt,j + Vt - zxt,j T'tll, t = 1,T - 1
j=2 =

where w € [0, ).

An equivalent problem for (3) is solved and thus the solution for (3) is
computed. Considering the relation between problems (1),(2) and (3), the
efficient frontier for multi-period Markowitz model is computed.

4. Transaction cost, sensitivity to input data and approximation
schemes

As part of extending the Markowitz model to multi-period time horizon,
mathematicians have considered to include transaction costs in the model.
Through transaction costs we understand the brokerage fee, the cost incurred
by analysis, and any other cost generated in the process of deciding upon
placing or not an order, including the price difference generated by the delay
in executing an order. Financiers and mathematicians argued that the optimal
solution computed with zero transaction costs may be different from the solution
when transaction costs occur. In the literature this idea was developed by
Constantinides (see [7]), Perold (1988, see [27]), Amihud and Mendelson (1988,
see [1]), Dumas and Luciano (see [8]).

Perold [27], respectively Amihud and Mendelson [1] have a more
financial oriented approach by analyzing the impact of execution and opportunity
cost, respectively of liquidity and marketability of the assets on portfolio
construction. Constantinides [7], respectively Dumas and Luciano [8] favored
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a mathematical approach. They developed multi-period models with infinite
horizon and studied the influence of transaction costs on optimal solution. While
in Constantinides [7] model the investor is calculating the transaction costs at
each time stage as a fixed percentage from the total wealth, in Dumas and Luciano
[8] model the transaction costs are consumed only at end moment of time.

The sensitivity of solution to input data was studied by Best and Grauer
(see [3] and [4]), Chopra, Hensel and Turner (see [6]). They have studied the
sensitivity of solution to changes of mean and/or coefficients in problems
restriction. The general conclusion is that an optimal solution is extremely
sensitive to mean and some adjustments of input data may improve the
solution.

Approximation schemes were developed to overcome difficulties
(computing the covariance matrix for example) created by specific form of
portfolio optimization problem. Contributions to this direction are due to
mathematicians like Sharpe (see [30], see [31], see [32]), Stone (1973, see
[34]), van Hohenbalken (1975, see [35]).

Sharpe (see [30]) created an index model. He introduced and computed
an index for all assets evaluated for investment and instead of calculating the
correlations for all pairs of assets, the correlation between each asset and the
index is calculated, reducing the time allocated for the operation. More recent,
the index models have been further developed by Lee, Finnerty and Wort (see
[19]), Huang and Qiao (see [15])

In 1971, Sharpe (1971, see [17]) remarked that “if the essence of the
portfolio analysis problem could be adequately captured in a form suitable for
linear programming methods, the prospect for practical application would be
greatly enhanced.” This remark opened the way of linear approximation of
Mean-Variance Model on which also Stone (1973, see []) has contributed.

Van Hohenbalken (see [35]) created a model which makes successive
approximations of the constraint set.

5. Introduction of new risk measures

Using variance to evaluate the risk creates serious difficulties both in
computing the covariance matrix and extending the single period Mean-
Variance model to multi-period time horizon. It is well known that variance is
a square function. Analyzing the graph of x? and |x| functions reveals a similarity,
which led mathematicians to develop new measures for risk.
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F(x)=x"2
g{(x)=abs{(x)
N

Figure 2: x? and |x| functions
Source: author’s own work

5.1. Mean absolute deviation model (MAD)

In 1988, Hiroshi Konno (see [17]) proposed to use absolute deviation
as a measure for risk (L1 risk function). The risk for a portfolio of n assets is:

n n
2R = ) 1%
j=1 j=1

If R;is normally distributed, then the two measures for risk (measure

of Markowitz and measure of Konno) are equivalent.
The model created by Konno and Yamazaki (see [18]) in order to

optimize the investment is:

n n
minE Z Z
]: ':1
n
{ Z % 2 PV
=
n
k OijSuj, j=1Ln

Being a linear programming problem, this model eliminates the
difficulty of solving the problem which appeared to the Markowitz model.
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5.2. Minimax model for single period portfolio selection

Generally, the risk is perceived as a variation between total profitability
and total expected profitability. Markowitz used variance to evaluate this
variation, which means that

2
n n
w=E Zijj —erxj
j=1 j=1

Instead of calculating the expected value for this deviation, it might be
considered the probability that the deviation is greater than a predefined
value. This means

n n
P Zijj —Erjxj =€
— .

J= Jj=1

To keep the variance as low as possible, it’s enough to keep the above
probability as low as possible.

Using the Markov inequality P(X = a) < %E(X) we obtain:

n n 1 n n
P ZR]xJ erx] =€ SEE ZRJX] ETJXJ <

j=1 j=1 j=1 Jj=1
1 n n n
EE ZR]—er Xj S—ZE(|R]xJ %)) <

j=1 j=1 j=1

n max E(|Rjx; —1%;)
£

Using this argument, Cai (see [5]) introduced a new measure for risk:

Weo = max E(|Rjx; — 7))

Which is the meaning for this risk proposed by Cai? For each individual
asset, the absolute deviation between profitability and expected profitability is
calculated and the maximum of all these values is the portfolio risk.

Which is the link between risk defined by Markowitz (w) and risk
defined by Cai (ww)? If ws is small then also the variance (w) is small. If the
variance (w) is small, there is not a guarantee that w,, is small.
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Using this risk measure, Cai introduced a new portfolio optimization
model, known as Minimax model (see [5]) and formulated as:

IIMB

(PO

xj =0, j=1n

It’s obviously that (PO 1) is a bicriteria optimization problem.

Denoting by q; = E(|R; — 1;|),j = T, n the expected absolute deviation
for R, risk becomes:

= ma X
Weo 135%]

Solving this problem means to determine the amount to be invested in
each asset, as such that the total wealth is maximized and the investment risk
is minimized. From mathematical point of view, the solution is an efficient
point, defined as:

An admissible solution x is efficient if there does not exist an admissible
solution y such that:

max max q;x
1<J<nq13’1 1<J<nq11

j=1 j=1

Formulated in natural language, it is not possible to have another
allocation with a smaller risk and a higher profitability.
To simplify the bicriteria problem, it can be rewritten it as:

n
min| y; — Z
(POB 1) (9% = j=1n
n
zxj = VO
=
xj 20, j=1n
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Referring to a result of Yu, from 1974, which links bicriteria and
parametric problems, (POB 1) is rewritten as:

( n
min |y — (1 — A)Z 7jX;
j=1

(PO 1) {H =Y J=1dn
Zx]' == VO
j=1
ijO, j=1n

Proposition 1 (Yu, 1974) (see [41] and [5])

(xy) is an efficient solution for (POB 1) if and only if there exist A €
(0,1) such that (x,y) is optimal solution for (PO(4) 1).

A is the investor’s acceptance for risk. The investor will accept a higher
risk when A is closer to 1.

Considering the equivalence between (PO 1) and (POB 1), the result
of Yu is extended between (PO 1) and (PO(4) 1). For a fixed A, the optimal
solution of (PO(A) 1) is the efficient solution for (PO 1). An efficient frontier
will be obtained by solving the problem (PO(A) 1) for any A € (0,1) which
means that, for any risk tolerance, the investor will determine the amount to
be invested in each asset.

The Minimax Model created by Cai has the advantage of providing an
analytical solution, which makes the model easy to be utilized by practitioners.
Moreover, the model allows the investor to avoid the calculation of covariance,
which requires an important effort for large portfolios. Unfortunately,
Minimax Model does not allow short-selling, which facilitates solution in Mean
Variance Model. The short-selling impact on the solution is not known. Also
the impact of bounding the amount invested in each asset on the solution is
not known.

Solving the (PO(A) 1) problem is a 2 step process.

First, all assets are ranked by the expected rate of return and then the
selected assets for the investment are chosen.

Second, the amount invested in each asset is computed. To compute
this amount, the risk for each asset is evaluated and the invested amount is
computed such that the exposure is similar for all assets. Through exposure
we understand q;x;,j = 1,n.
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For a fixed A the solution for problem (PO(A) 1) is computed. The
following theorem provides the solution.

Theorem 2 (solution for parametric problem) (see [5])
For VA € (0,1) the solution for parametric problem (PO(2) 1) is:

1
Vo 2 1 e
(1) Xj =14, a) J

LEF
0, JEF

-1
1
) Y=V (Z E)

leF

where F is the set of assets to be invested and is computed as following:

If 3k = 0,n — 2 such that:

Ty — Tho1 A
3 <
(3) . 17
™ ~Th-2 | Tn-1 7 Th-2 A
(4) + <
dn dn-1 1-4
(5) ™ — Th—k + -1~ Th-k ot Tn—k+1 ~ Tn—k A
dn qn-1 n-k+1 1-4
™m —Th-k-1 , Tn-1 — Th—k-1 N -k — Thn—k-1
qn dn-1 An-k
(6) 3
>
1-41

then F={nn—1,..,n—k};
else F={nn-1,..,1}
This is the meaning for the relation
T — Thoq < A
qn 1-1
Rewriting the above inequality as (1 — A)(r;, — 1,—1) < 1q,, we deduce

that, if the inequality holds then the return rate for asset S, is big enough to
make the asset attractive.
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Theorem 2 gives the optimal solution when all assets are risky. Risk free
assets can not be neglected (for example government securities) but they small
rates of return. Without loss of generality, risk free asset will be on position 1
in the ranking process. To determine whether the risk free asset is selected or
not for investment, the following inequality has to be checked

Tn—7"1+7”n—1—7‘1+m+7”2 —-n <L
n Gn-1 @ 1-4

If the inequality holds, the entire amount will be invested in the risk
free asset.

Having the optimal solution for parametric problem (PO(A) 1), efficient
solution for portfolio optimization problem (PO 1) has to be computed.

Denoting by
T, —T,_ Tho1 — Ty_ Th_ — Ty_
ﬁk’,:n nk+n1 nk+m+nk+1 nk’k=1’n_1
Adn qn-1 n-k+1
Bo=0

inequalities (3), (4), (5) and (6) will be

- - - >__
31<1_A; BZ<1_A' 1_1' Bk+1_1—l
Obviously By < B1 < - < Bn_2 < Bn-1

To compute the set F of assets to be invested, k has to be determined such

that:
<— >—
ﬁk 1_/1' ﬂk+1_1_/1
Solving the above inequalities we have B <) < Brrr and denoting
P 5 1+Bk 1+Bk+1
by A = ﬁ A = 1+Zﬁ' we get Ae(Ay, Ay |-

According to Theorem 2 the set of assets to be invested is
F={nn—1,..,n—k}where k = 0,n — 2 and the invested amount and risk will

be computed using (1) and (2). This means that for each A in (/_10, ZO], @1,11],
(/_1n_2,1n_2] solution for parametric problem (PO(A) 1) is computed. For interval

(in—1jn—1] solution coresponds to case F = {n,n — 1, ...,1} from Theorem 2.
Has the parametric problem (PO (1) 1) a unique solution? Cai proved that
solution is unique on intervals(&k,zk), while for A = Zk problem has multiple

63



IONUT TRAIAN LUCA

solution, which is obtained by considering for investment the first asset which
was eliminated in the ranking process. The amount invested in this asset will come
from reducing the amount invested in the other considered assets. Diversifying the
portfolio will determine a risk decrease and also a total wealth decrease. Risk
decrease will be A,,, where

0<A,< 4 ——
1+ Ypep 2
4
The value chosen by investor for A, will have a huge impact on final
solution.
Following theorem gives the efficient frontier for portfolio optimization
problem (PO 1).

Theorem 3 (solution for portfolio optimization problem)(see [5])

Efficient frontier for portfolio optimization problem (PO 1) is computed
by considering n intervals (&k,/lk), k=0n—1with Ay = A4, k=0,n-2,
for which the following holds:

1. Foreachk = 0,n— 1, problem (PO 1) has a unique solution on interval
(lel/lk)-
The amount invested in each asset is:
-1
Vo 1 .
«_)— Z— , JEF
X =9 \& 9
0, J&F
where F = {n,n—1,..,n—k}.

Total portfolio risk is:

Total wealth is:
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2. Foreachk =0,n— 2 and for A = A} = Ayy1 problem (PO 1) has
multiple solutions.

The amount invested in each asset is:

x;i — 4, jeF
x) =14, l=n—k—1
0, else
where F = {n,n—1,..,n—k}.
Total portfolio risk is:
Y=y -4,
Total wealth is:
A
720 =2z" - A, k
1— A
Where:
y*
0<A,< =
1+ Yjer T
A
A==, jeF
4;
jeF

If the portfolio contains also a risk free asset, then the solution is
presented by the following theorem.

Theorem 4 (solution for portfolio optimization problem in case of
risk free asset) (see [5])

The efficient frontier for portfolio optimization problem (PO 1) is
computed by considering n-io+1 interval (A, %), k =0,n— 15 — 1 with
A = Ak+1, k = 0,n — 15 — 1 for which the following are true:

1. For k =0,n—1y— 1, problem (PO 1) has unique solution on intervals
(ks Ac)-
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The amount invested in each asset is

-1
Vo 1 .
«_ )— Z— , JEF
Y TN\ &0

0, jJ&F

with F ={n,n—1,...,n —k}.
Total risk of portfolio is

and total wealth is

1 -1
r.
SO
jeF UG\
2. Foreachk =0,n—1,— 1and for A = A, = A4 problem (PO 1) has
multiple solutions.
The amount invested in each asset is
x]f‘ — 4, jeF
x) =14, l=n—-k-1
0, else

withF ={n,n—1,..,n—k}.
Total risk of portfolio is

Y=y -4,
and total wealth is
A
720 =z* — A, ke
1— A
where
0= AyS : An-k-1
1+ Yjer T
A
A==, jeF
aj
jeF
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3. Forinterval (/_1n_i0, 1) problem (PO 1) has unique solution.
The entire amount is invested in riskless asset, so x;, = V.
Total portfolio risk is y=0.

Total wealth is z = 1; V.

The following diagram presents an optimization process for a portfolio
of 4 assets.

Portfolio of 4 risky assets

. Ss S. S, 8, 5 5, 5558
! s s : |
Ao },,[ Ay s ] Az FR T A3 A
¢ 55 5% 55 53 5§ 55 58 5P

5.3. Minimax models for multi-period portfolio selection

Yu model

The first analytical solution for a multi-period portfolio problem was
obtained by Li and Ng (see [20]). The problem, which actually is an extension
of Markowitz Model from single period to multi-period, was briefly presented
in Section 3.

A second analytical solution was obtained by Yu, Wang, Lai and Chao in
2005 (see [40]).

The main difference between those two models is given by the way the
mathematical model is developed.
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In Li and Ng model, the investor seeks either to maximize the total
wealth while risk is less than or equal to a defined level or to minimize the risk
while the total wealth does not decrease under a defined level.

In the model of Yu, investor seeks to minimize the risk and to
maximize the total wealth.

The two groups of researchers are defining risk in different ways. Li
and Ng are defining risk as variance of total wealth, while Yu is defining risk as
a sum over all periods for maximum of absolute deviation calculated for each
individual asset.

Analyzing the two different approaches it comes out that Yu’'s model is
more conservative, due to the fact that it does not allow short-selling.

An investor which owns an initial wealth Vy will invest it in a portfolio
of assets Sy, Sz ... Safor a time horizon 1,2,..., T. Knowing that investor may step
in and reallocate the amount between assets only at the moments 1, 2, ... t, ... T-1,
he has to compute the amount Xej, t = ﬁ,j = 1,n allocated to each asset Sj,j =
1,7 such that at time period T the total wealth will be maximized and total risk
will be minimized.

Each asset S, j = 1,n has at time moment ¢, t = 1,T a certain rate of
return, denoted by Ry. Expected value for the random variable Ry, is ry. At each
moment of time investor will not introduce and will not extract money from
the system, so the following holds:

n
Vt—l :thj, t= 1,T
j=1

By R; = (R¢1, Re2, -, Reny) is denoted the vector of rates of return at
time moment ¢, and x; = (x, X¢5, ..., X¢,) iS the vector of the amount invested in
each asset.

At the end of each time period, the investor is computing the total
wealth according to

Vt = Vt—l + Rtxt,t = ﬁ.

The investment risk at each time moment ¢, t =1,T is computed
according to

we(xe) = max E(|RyiXxei — T4iXei
t( t) 1sj<n (l tjrtj tjrtj D
and the total risk for the investment is

Wy = We—q + g}%}%E(|Rtjxtj — 1exej])
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Using the above notations, the mathematical model will be:

min(wr, —E (Vy))
Ve =Vi_q + Rexy, t=1,T
Wt = Weq + 1r£1]aS>§IE(|Rtjxtj — T¢jXtj ), t=1T
(PO2) | n
Vt—lzzxtj' t=1T
j=1
\x¢j =0, t=1T,j=1n

Analyzing the objective function, is clear that we have a bicriteria
optimization problem. In order to simplify (PO 2) we introduce the following
constraint

E(|Rtjxtj - thxt]’|) < Zt,j = L_nand t = 1,T

this conducts to the following equivalent problem

(min(wr, —E(Vr))

Vt = Vt—l + Rtxt, t= 1,T

Wt = Weq t 74, t=1,T

(POB 2) < E(lRt]xt] - rtJthl) S Zt' ] = 1,n,t = 1,T

n

Vt_1=zxtj, t=1,T
j=1

xthO, t=1T,j=1n

The equivalence between (PO 2) and (POB 2) is sustained by following
proposition.

Proposition 5 (see [40]).

If (x,z) is an efficient solution for (POB 2), then x is the efficient solution
for (PO 2).

If x is the efficient solution for (PO 2), then (x,z) with z = (24, z, ..., Z7)
and z; = max E(|Rt]-xtj - rt]-xtjD, t =1,T is the efficient solution for (POB 2).

1<jsn
To solve the bicriteria problem (POB 2) the result of Yu (Proposition 1)
is employed and (POB 2) is converted in a parametric optimization problem.
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For any A € (0,1) the following problem is obtained:

(min(Awr — (1 — DEVy))

Vt = Vt—l + Rtxt, t = T

Wt = Weq + 24, t=1T

(PO(X) 2) VE(IRejxej —mepxejl) Sz, j=Tmt=1T

n

Vt—lzzxtjv t=1T
j=1

\x:; =0, t=1T,j=1n

The solution for (PO(4) 2) is computed using retrospective analysis of
dynamic programming method. The corresponding Bellman functional equation
is:

felw, Vo)) =dwe — (1 -1V, , ¢t
ft—1(w¢—1,Ve—1) = min E(ft(wtr Vt)) ,
(xt.2¢)

~

1,
1,T

To simplify the notation used to evaluate the individual risk of each
asset at any moment of time, the following will be used:

G =E(|Rej —my|)t =TT, j=1n

The problem which has to be solved for time stage T is

(min(Awr — (1 — DEVy))
Vr =Vr_1 + Rrxy
(I.)T = wT—l + ZT

JE(|Rpjxerj —rrjxe|) S zp, j=1m
n

Vi = 2 XTj

j=1

LijZO, }=1,_7'l

Assuming wr_4 and V_; known and using Bellman functional equation,
the following problem is obtained
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min E(fT((‘)Tv VT)) = min[AMwr_q +z7) — (1 =D Vr_g + 1r7X7)]

qrXr < Zt
n

3
Vi = Z XTj

j=1
ij > 0,

~
I

l_\
S

this is similar to the problem of Cai.

To solve it, first all assets will be ranked according to their expected rate of
return and the set of assets to be invested, denoted F, is computed. Next, the
amount to be invested in each asset is computed. By (x7, z7) is denoted the optimal
solution of the problem. Replacing this solution into Bellman functional equation
we obtain:

fr-1(wr_1,Vr_1) = min E(fT(wT' VT))
(xT.2T)

n
= A(wT—l + Zr;) - (1 - A) VT—l + z T'zj;j
j=1

-1
1
=AM wr—1 +Vry (Z _>
dri

leF
n V. 1 -1
— (1 - /1) VT—l + z TT]' T_.l (z _>
= qrj = qri

= Mwr-1 +Vrqar) = (1 = D Vr_y + Vr_qarbr)

= Awr_y + Wr_yar — (1 = DVr_y — (1 = DVy_jarbr

= Awr_y = Vr4[(1 =) + (1 = Darbr — Aay]

= Awr_y = Vr4[(1 = D)(A + arbr) — Aar] = Awp_y — Vr_yc7

where

cr =[(1=DA +arbr) — Aar] = cry1(1 + arby) — Aar
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Proceeding to the next stage (7-1), the problem to be solved is

(min(Awr_; — (1 = DEWVr_y))
V1 =Vr2 + Rr_1X74
Wr-1 = Wr—2 +Z7_

. E(IRr-1jxr-1; = Tr-y%r-14]) S zr-1, j=Tm
n

Vp_y = Z XT-1,j

j=1
\X7-1, =0, j=1,

S

Assuming wy_, and Vr_, known and using Bellman functional equation,
together with some constraints from problem at time stage T-1, the objective
function becomes

min(/le_l -(1- /DE(VT—Q) = min (E(fT—l((‘)T—lr VT—1)))
= min(Awr_; — E(Vr_1)cr)
= min(A(wr—, + zr—1) + cr(Vr_z + rr_1%7_1))

and the parametric optimization problem to be solved is:

min[A(wr_z + zr_1) + cr(Vr_p + rr_1x7_4)]

qr-1X7-1 =< Z1-1

(POo(A) 2, T n
-1 Vi = Z XT_1,j
=1
Xr-1; 20, j=1n

The structure of this problem is somehow similar to that of Cai. The
difference is given by ¢ value, which in the model of Cai is replaced by (1 — 1).

The principle of solving this problem is similar to that of Cai, meaning
that first, the set of assets to be invested is computed, and after that the
amount to be invested in each asset is determined. The solution is presented
in the following theorem.
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Theorem 6 (solution for parametric optimization problem at time
stage T-1) (see [40])

The optimal solution for parametric optimization problem (PO(A) 2,T — 1)

is
( -1
Vr—2 Z ! jerF
XT-1,j = \qr-1,j s dr-1,j '
0, JEF
-1
. 1
zr—1 =V Z .
=0 qr-1,j

where F is the set of assets to be invested and is computed as follows:

1. Ifcr > 0 (case similar to Cai), then:
if 3k = 0,n — 2 such that:

Tr—-1n — TT-1n-1 < i

dr-1n Ccr
Tr—in — TT-1,n-2 n Tr—1n-1 — TT-1n-2 < A

dr-1n dr-1n-1 Cr

Yr—in — TT—1n-k n Yr-1n-1 ~ Tr-1n-k n

dr-1n qdr-1n-1 dr-1n-k+1 Cr
r—1n — "r-1n-k-1 . "T-1n-1 — "T-1n-k-1 r—1n-k — "T-1,n-k-1
, , n , , ot , ,

Tr—in-k+1 — TT-1n-k < i

A
2 —_
dr-1n dr-1n-1 dr-1,n-k Cr

then F ={n,n—1,..,n—k},
else F={nn-1,..,1}

2. Ifcy =0,thenF ={n,n—1,..,1}.

3. Ifcr <0, then:
If3k = 0,n — 2 such that:
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Yr-11 —Tr-1,2 A

- > J—

dr-11 Cr
Yr-11—7"r-13  Tr-12 —T7-13 A
+ > —

qr-11 qr-12 Ccr
Yr-11 — Tr-1n-k-1 , 'r-1,2 — "r-1,n-k-1 Troin—k-2 = "r—1n—k-1 _ 4
+ +ot > —
qdr-11 qdr-1,2 dr-1n-k-2 Cr
r-11 —Tr-1n-k , "r-12 — Tr-1n-k Tr—1n-k-1 — 'T-1n-k A
+ + -+ <—
qdr-11 qr-1,2 qdr-1n-k-1 Ccr

then F ={1,2,..,n—k —1},
else F=1{1,2,..,n}k.

Continuing the above algorithm for all time stages, the optimal solution is
computed.
Total wealth at the end of time stage T is

EWr) =Vp_qg +rpxp = Vo +1x] +10x5 + -+ rp_qX7_q + TpXT
= Vo +Voaby) + ryx; + -+ rp_qgx7_1 + 1rpx7
== Vl + V1a2b2 + e + TT_lx;:_l + rTx;:
= Vo(l + albl)(l + azbz) e (1 + aTbT)

and total risk for the investor is

(A)T =wT—1+ZT =(l)0+Zl+Zz +"'+ZT =V0a1+22 +"'+ZT
= V0a1 + V1a2 + -+ ZT
= V0a1 + V0(1 + albl)az + Vo(l + albl)(l + azbz)a3 + -
+ Vo(l + albl) (1 + aT_le_l)aT =

T-1 i
= V0a1 + Z ai+1VO 1_[(1 + a]b])
i=1 j=1

The following diagram presents step by step the algorithm employed to
compute the optimal solution:
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where

G is the predefined level for average return of portfolio.

model,

Amihud Y., Mendelson H., Liquidity and Asset Prices: Financial Management Implications,
Financial Management, vol. 17, no. 1, 1988, pp. 5-15

Bellman R.E,, Dreyfuss S.E., Programare dinamica aplicata, Editura Tehnica Bucuresti, 1967
Best M.J., Grauer R.R, Sensitivity Analysis for Mean-Variance Portfolio Problems, Management
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Young model

The minimax model created by Robert Young (see [37]) maximizes the
minimum over all time stages of expected return, subject to restrictions that
average return of portfolio exceeds a predefined level and the total amount
invested at each time stage does not exceed the available amount. The
mathematical model of the problem is presented below

n
max 1n X+iT+q
j=1in 1—2 'y

t=1

6. Conclusions

Analyzing the Mean-Variance Model and its extensions we can conclude
that from practical point of view the minimax model is the easiest to be
implemented, because the analytical solution is computed with low effort. This
like all others from Portfolio Theory, has a high sensitivity for mean.
We consider that this model fits to our goal (energy optimization) and we
intend to implement it in our future research project.
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