
STUDIA UNIVERSITATIS BABEŞ-BOLYAI, MUSICA, LV, 1, 2010 (p. 49-58)

PROLEGOMENA TO INTERACTIVE MUSIC SYSTEMS

ADRIAN BORZA1

SUMMARY. This paper aims to discuss the interactive music system concept.
An operational computer with “intelligent” software “understands” the performer
actions and “follows” the score, being able to accompany the soloist, to transform
the sound, and to generate music, during the ongoing performance. It provides
the reader with compositional algorithms for the purpose of illustrating Max/MSP
programming methods and techniques.

Keywords: interactive music system, music software programming, algorithmic
composition, electronic music

Introduction
As I discussed in IAC: An Interactive Music System2, the features of

the Interactive music system are: interactive (depends on the input), works in
real-time (reacts instantly to the input), analyses (to data input) and reacts
(producing data output), flexible (adapts itself to changing performance situation),
algorithmic (uses compositional algorithms), formal system (represents the
formalization of musical language).

Message Passing and Data Flow

The flow of time is essential to interactive music, as music is considered
a temporal art. The question is: how the composer decodes, from a musical
perspective view, the features of the message and data flow, as a result of
interpreting the performer actions?

Deciphering the temporal flow consists, among others, in identifying
and formulating the compositional problem: to isolate in Max a particular
event from a series of musical events during the ongoing performance, with
the aim of triggering an action or a process. Most of the time, discerning the
matter, clearly and rigorously, should lead to find a suitable solution.

The approach to the compositional problem is algorithmic, without doubt,
by a logical inference control, in order to develop the compositional algorithm
that is the method or set of rules, which acts on various types of data.

1 Currently he is a professor at the Gheorghe Dima Academy of Music. Address: 25, I.C.

Bratianu, Cluj-Napoca, Romania. E-mail: aborza@gmail.com
2 Borza, Adrian, IAC: An Interactive Music System, Studia Universitatis Babeş-Bolyai, Series

Musica, LIV, 1, 2009, p. 125

ADRIAN BORZA

 50

Developing an efficient algorithm it leads to solve the problem, i.e.
judiciously selecting internal and external Max objects which are designed to
execute individual and precise tasks. Some objects are better than others, in
terms of action and communication. Once selected, the objects are graphically
interconnected, and then the compositional algorithm is tested and debugged.
This is a practical stage of the composition process, and all the composer’s
programming skills are emphasized. The composer will design and produce
countless Max compositional algorithms for a single problem; the ideal would
be to find the optimum. If there is an improper understanding of the problem
or the composer makes a clumsy decision on selecting and connecting the
objects, it may even affect the computer processing speed – vital for interactive
music. A general rule in programming is to find simple solutions to complex
problems.

Compositional algorithms
“Composer objects represent musical processes, known in computer

music as compositional algorithms. […] A canon (round) is a very old compositional
algorithm”3.

The interactive music system has inherent compositional algorithms;
however, the graphic user interface and the sound synthesis algorithms will
fulfil it. A comprehensive debate of compositional algorithms is beyond the
purpose of this document, while I have tried to give an introduction to interactive
computer music systems. The algorithms embodied into this study could be
useful to those unfamiliar with Max programming.

The following compositional algorithms are designed to react in real-
time, interactive to unpredictable events, such as music improvisation and
spontaneous composition. Another feature of the compositional algorithms
is mapping; the performer action is associated to the computer process, and
one musical parameter transforms another parameter. For example, the pitch
is captured and it changes the duration, the intensity is intercepted and it
modifies the delta time4, and so on. In this regard, see B. Mapping algorithm
that increases and decreases the speed of pre-recorded sequence on computer,
by means of the musical interval size, performed by soloist.

I have chosen to discuss in detail tree basic compositional algorithms
implemented in Max, which speak about unpredictable temporal message
and data flow. The following examples illustrate my personal programming
style and experience.

3 Winkler, Todd, Composing Interactive Music: Techniques and Ideas Using Max, The MIT Press,

Cambridge, Massachusetts, 1998, p. 173
4 The number of milliseconds elapsed since the previous Note On event (Zicarelli, David,

Max User’s Manual – Reference Manual, Version 4.6, 2006, p. 77)

PROLEGOMENA TO INTERACTIVE MUSIC SYSTEMS

 51

Practical problems
When identifying into a MIDI data stream
- any musical event, in the low range,
- a melodic ascending interval, between C 3 and C 4,
- a minor chord, in mp,
It must trigger
- the playback of the pre-recorded musical sequence
- the rhythmic augmentation/ diminution of the pre-recorded musical

sequence
- the melodic synchronization, event by event, of the pre-recorded

musical sequence (tempo, duration, and intensity synchronization)

A. Playback Control
1. Any musical event, in the low range,
2. Triggers the playback of the pre-recorded musical sequence

The Playback Control compositional algorithm (Figure 3) has a high

degree of generality; it endeavours to solve a wide range of synchronization
issues between performer and computer. This refers to the control of the
playback of any pre-recorded MIDI sequence, by the use of a musical event
– single note, melodic or harmonic interval, melodic structure, chord, cluster
etc. – performed in the low range of the MIDI instrument. The pre-recorded
sequence could be a musical micro-structure, a musical phrase, a series of
chords, or may have any structure, extension and complexity.

There is one significant analysis sub-algorithm operation (Figure 3, 1.),
since it produces the expected response at the time of the first sound of a
block of sounds emerges, avoiding in this way, unexpected interruption during
the playback of the pre-recorded sequence (see below for a detailed description
of the sub-algorithm).

By inserting additional commends and objects, the compositional
algorithm may be developed so as to automate the playback of a complete
series of pre-recorded sequences.

Fig. 3
Playback Control

ADRIAN BORZA

 52

 The analysis sub-algorithm operations are executed step by step, from
top to bottom and from right to left, in a critical order of a reliable functioning:

1.1. The notein object identifies and selects only the Note On and Note Off
messages which constitute the temporal flow of input data. The object
converts and transmits int messages that are integers corresponding
to the pitch of the sound.

1.2. The values of the int messages received by the <= object are
compared as they arrive with the number of his argument, 42. This
value represents the upper limit of the low sound rage, expanded
from 0 (C-2) to 42 (F # 1); C3 in MIDI system is central C. If it meets
the condition, i.e. numbers are less than or equal to 42, the object
generates one int message with value of 1, for each low sound, but if
the statement is false, the generated int message has the value of 0.

1.3. The sel object compares the values of 1 and 0 with its argument, 0. If
the tested int message is 0, then a bang message is sent through the
left outlet, otherwise, if the number of the int message is 1, then this
int message, rejected after testing, is sent through the right outlet,
pointing to low pitches.

1.4. The two cables are cross coupled with the onebang object, with
the argument 1, so that it allows passing a single int message, which
subsequently converted, will trigger the pre-recorded music sequence.
More precisely, the bang message, received by the right outlet,
designating that the pitches are not low, along with argument 1 of
the onebang object, initializes the object as if it has already received
a bang message through the right outlet, allowing a single pass of
int message, others are stopped. Consequently, it is converted to a
bang message, and is sent to the seq object (Figure 3, 2.), which
triggers the playback of the “phrase.txt” file. Thus it is possible to
isolate to the first sound of a musical event, or of a package of sounds;
middle and high pitches were rejected by the action of object <=,
described above in 1.2.

B. Mapping

1. A melodic ascending interval, between C 3 and C 4,
2. Triggers the rhythmic augmentation/ diminution of the pre-

recorded musical sequence

The Mapping compositional algorithm (Figure 4) is more selective and
is addressed to a particular synchronization situations and performer/ computer
interaction. The algorithm brings in the solution by identifying, from the multitude
of musical events produced by the instrument, an ascending melodic interval

PROLEGOMENA TO INTERACTIVE MUSIC SYSTEMS

 53

located in the first octave, between C 3 and C 4 in MIDI system, on one hand,
and it calculates the interval size, on the other hand. The aim is to control
the playback of the pre-recorded musical sequence, and also to modify it by
means of the rhythmic augmentation and diminution, proportionally to the
identified size interval. The sequence can be anything in an MIDI format. In
addition, the algorithm selects a harmonic interval, respectively the upper
interval of the chord structure of three or more sounds.

For developing purposes of the algorithm, it may be redefined the
selection type of the captured musical event in a restrictive way, to a melodic
interval, thus being ignored the chords and the harmonic intervals. An easier
solution is to automate the on/ off function of the sub-algorithm, using toggle
and gate objects, for example. Another approach, more advanced, is to filter
the events perceived as instantaneous, using the information produced by the
thresh object.

Fig. 4

Mapping

The calculus operations of the analysis algorithm (Figure 4, 1.):

1.1. The notein object allows transiting only the Note On and Note Off
messages which are sent by the MIDI instrument through the interface.
These messages are converted in int, and the numbers represent
the pitch.

1.2. The split object is looking and forwarding the numbers located within
the limits specified by its arguments, with values of 60 (C3) and 72 (C4).
As a result, the object ignores the int messages with values smaller
and equal to 59, likewise greater and equal to 73, therefore the pitch
who is not in part of the first octave.

ADRIAN BORZA

 54

1.3. In order to analyze two consecutive numbers, anal object saves and
transfer integers to the left, from state 2 to state 1, in a list message,
which is generated and sent to the outlet. This transfer is important
for the arithmetic calculation performed in Section 1.5.

1.4. The number object displays and transmits only the first numerical
value, by filtering and converting the list message in int message.

1.5. The - object (subtraction operator) performs the arithmetic computation
of two int messages. By the right inlet, it is inserted the first operand
(prior), received from the number object, without causing the computation.
The operand represents the Note On message. The second operand
(rear), which is a Note Off message, actually runs the subtraction
computation and sends the result, once the message is received
from the split object, by the left outlet.

Example

The message and data flow when Note On (60/C3) is transmitted:
>> int (60) from notein to split…
>> int (60) from split to anal…
>> list (3 arguments) from anal to number…
>> int (72) from number to -…
// comment: C4 is transmitted to the prior operand (right outlet) of

„subtraction” object //
>> int (60) from split to -…
// comment: C3 is transmitted to the rear operand (left outlet) of

„subtraction” object //
>> int (-12) from - to if…

The message and data flow when Note Off (60/C3 with velocity of 0) is
transmitted:

>> int (60) from notein to split…
>> int (60) from split to anal…
>> list (3 arguments) from anal to number…
>> int (60) from number to -…
// comment: C3 to prior operand //
>> int (60) from split to -…
// comment: C3 to rear operand //
>> int (0) from - to if…

1.6. The if object evaluates the expression it holds. The expression contains

a conditional statement: if the int message is greater than 0, then it
sends this value. If the condition is true, the positive numbers are
validated, representing ascending intervals, otherwise, values are

PROLEGOMENA TO INTERACTIVE MUSIC SYSTEMS

 55

ignored. Validated size intervals from 1 to 12, are used to determine
the augmentation and diminution proportion of the processing sub-
algorithm (Figure 4, 2.). As the interval value is higher, the duration
is less, and the rhythm gets faster; reciprocally, as the interval value
is lower, the duration is greater, and the rhythm gets slower.

C. Automated accompaniment
1. A minor chord, in mp,
2. Triggers the melodic synchronization, event by event, of the

pre-recorded musical sequence (tempo, duration, and
intensity synchronization)

This example of automated accompaniment (Figure 5) could join the
compositional algorithms family, with a long history in fact, which fulfil one
of the composer’s dreams: the computer, equipped with “intelligent” software,
“understands” the performer actions, and “follows” the performers’ score,
note by note, in sync with the computer’s score.

The Automated accompaniment compositional algorithm aims to
synchronize, in terms of tempo, duration and intensity, a random sequence
of minor chords in mp performed on the MIDI instrument, with a pre-
recorded melody played back by the computer. The main purpose of this
algorithm remains the analysis and configuration of the message and data
temporal flow received from the performer.

Fig. 5
Automated accompaniment

ADRIAN BORZA

 56

The calculus operations of the analysis of the algorithm (Figure 5, 1.):

1.1. The notein object filters the Note On and Note Off messages, converts
them into int messages, and sends them to the middle outlet, then
to the left outlet; numbers represent intensity and pitch values.

1.2. – 1.3. The < and > objects (relational operators) compare the values
of their arguments, 63 and 43. If the declarations are true, both objects
transmit from right to left one int message with value of 1. If the
declarations are false, the message sent has the 0 value.

1.4. The numbers are compared by the && object (logical operator). If both
input values are equal to 1, then the message int with value of 1 is sent
out, which means that the condition is confirmed. The number 1
indicates also that the intensity has values between 43 and 63 – the
relative values of mp. Otherwise, if one of the received numbers is 0,
the condition is false, then the && object sends out a 0.

1.5. The gate object acts as a “traffic controller”. On receiving the 1 value
in the left outlet from && object, gate object allows the transmission
of int messages entering the right outlet, received from the notein object,
that is transferring only the sounds in mp. The gate object stops the
other pitch values, if 0 is received in the left outlet from && object.

1.6. The quick thresh object is optimized to detect chords. In music theory,
one of the chord characteristics is simultaneity. But in the musical
practice, there are often delays countable in milliseconds between the
occurrences of sounds that make up the chord. In Max, these delays
between two consecutive Note On messages are expressed in delta
time values. The quick thresh object collects and sends the pitch values
validated by gate object, in the form of list message, if they occur within
a period of up to 40 milliseconds, calculated as time delta.

1.7. The message box object transmits 0 each time a pitch is identified.
1.8. The values of the list message are unpacked and sent after conversion,

one by one, as int message, through the four outlets of the unpack
object.

1.9. The expr object evaluates an expression alike C language. It calculates
algebraic sum of variables or random intervals that compound the
chord, which may be of three or more sounds: (x-y)+(y-z)+0.

1.10. The sel objects selects the result, i.e. int messages with values of -7,
-8 and -9, which are the minor triad-chords, in root position, second
inversion, respectively in first inversion, and then transmits, for each
value, a bang message. Every message helps to playback the pre-
recorded sequence stored in the “phrase.txt” file, by the specialized
follow object (Figure 5, 2.). Other results different from 0 are submitted
by the right outlet.

PROLEGOMENA TO INTERACTIVE MUSIC SYSTEMS

 57

How the Performer’s Chords and Computer’s Melody
Are Synchronized?
Note that there is a subordination relationship of the interactivity –the

computer follows the artist – despite the fact that, at first sight, we would be
tempted to attribute the melody only to performer.

Back to the synchronization mechanism, as mentioned in the paragraph
1.10., the minor triad-chord, in any state would be, in addition, any register
would be, but performed in close distribution, is triggering to send a bang
message, at the end of completing the operations of the sub-algorithm.

After the follow object is automatically switched in “follow” mode,
using the follow 0 message, in conjunction with the rejection of an event
which is different from the expected minor chord, the bang message of the
button object, coupled with the next command sent it to the follow object,
makes the playback of Note on messages of the “phrase.txt” file to advance
one step. At each a new bang message is sent, therefore, at each a new
chord is confirmed by the analysis sub-algorithm, the playback will advance
by one step to the next Note On message. From musical point of view, the
message passing and data flow are described as follows: the artist creates
and performs rhythmic formulas and chords, which drive a distinct tempo and
rhythm to the pre-recorded sequence. In Max programming, advancing from
Note On message to the next Note On is possible due to the follow object
instruction to omit all MIDI messages except Note On. The chord duration
performed on the instrument is transferred to the sequence played by computer,
using flash and sel objects, thanks to the Note Off messages sent as int
messages by the note in object. The intensity values of the note in object are
combined with the Note On values of the stored sequence, within the flash
object, and then are transmitted to the note out object. All of these operations
lead to synchronize, interactively and in real-time, in terms of tempo, duration
and intensity, the performer’s chords, created or improvised by the musician,
with the computer’s melody.

Conclusion
The interdisciplinary-specific Music and Technology professions are

considered worldwide to have a bright future. Over 110 universities and music
research centres from almost 30 countries have included in their academic
programs the interactive systems and the Max programming courses, with the
aim of diversifying their educational offer, focusing on the recent musicians’
needs.

In Romania, the introduction of such an innovative course would mean:

 attracting more students into existing specializations,
 increasing the competitiveness of graduates on the labour market,

ADRIAN BORZA

 58

 global educational integration (upgrading),
 and especially an opportunity for Romanian students to become

familiar with Max programming methods and practices.

Below I provide the reader with information regarding places, institutions/
departments and the names of the courses offered in August 2009, concerning
Max/MSP and interactive music systems: Paris, Institut de recherche et
coordination acoustique/musique – Interaction temps réel; Londra, Middlesex
University, Lansdown Centre for Electronic Arts – Interactive and Algorithmic
Systems; Zürich, School of Music, Drama and Dance – Live Electronics
and Interactive Composition with Max/MSP; Irvine, University of California,
Department of Music – Interactive Arts Programming; Montreal, McGill
University, Music Technology Department – Interactive Music Systems (MUMT
610); Zagreb, Center for Algorithmic Music – Composition and Multimedia in
MAX environment; Seul, Hanyang University, School of Music – MIDI and
Real Time Programming with Max and MSP.

REFERENCES

Borza, Adrian, Muzică şi calculator (Music and Computer), Editura Muzicală, Bucharest,
2008

Rowe, Robert, Interactive Music Systems: Machine Listening and Composing, The
MIT Press, Cambridge, Massachusetts, 1993

Rowe, Robert, The Aesthetics of Interactive Music Systems, in Contemporary Music
Review, 1999, Vol. 18, Part 3

Winkler, Todd, Composing Interactive Music: Techniques and Ideas Using Max, The
MIT Press, Cambridge, Massachusetts, 1998

Zicarelli, David, Max User’s Manual – Reference Manual, Version 4.6, 2006

