
STUDIA UBB MUSICA, LVI, 2, 2011 (p. 43-50)

CHOPIN INTERACTIVE

ADRIAN BORZA*

SUMMARY. How about performing Fr. Chopin’s Prelude Op 28 No 7 with
an interactive computer? This is how I began writing a Max/MSP patch for
interactive music performance. The computer listens to and performs along with
a musician. The patch reacts to different performing approaches of Prelude.

Keywords: Chopin, Prelude, Computer Music, Interactive Music Performance,
Max Programming, Live Coding

Listener Objects in Max
Max programming environment supplies several objects that are

capable to analyze a live music performance. For example, when a stream
of data is sent to a computer from a MIDI keyboard controller, Max objects
provide useful information about pitch, loudness, duration, tempo, and many
MIDI messages of the ongoing performance.

The Musical Instrument Digital Interface protocol doesn’t offer timbre
information to produce sounds by its own synthesis instructions. Therefore,
the sound generator or the synthesizer is commonly an external hardware,
a software synthesizer or VSTi, driven by MIDI.

In this study I will refer to the qualities of sound which were the premise
of conceiving my Max/MSP patch1 for interactive performance of Prelude
Op 28 No 7 by Fr. Chopin.

Listen to Pitch and Loudness
A convenient way to extract information about pitch, loudness, and

MIDI events, during a live performance, is the sophisticated borax object.
However, a simpler alternative in this circumstance would be to make use of
the basic features of notein. This object listens to and then it reports different
integers, corresponding to the MIDI Note On and Note Off messages of the
data input stream. It is thus pitch and loudness values.

Using the very same object, an analysis of pitch occurrence can produce
valuable data about duration, tempo, and synchronization, among others.

* Currently he is a professor at the Gheorghe Dima Academy of Music. Address: 25, I.C. Bratianu,

Cluj-Napoca. E-mail: aborza@gmail.com
1 Chopin Interactive Software (2010), assembled in Max/MSP/Jitter 5

ADRIAN BORZA

 44

Definitely, there is musical information that can be transferred from the musician
performance to the computer accompaniment. Let’s look more closely.

Note Duration and Note On

On one hand, duration is the time measured from the beginning of a
note (Note On) and the end of the same note (Note Off), considered as two
separate MIDI events. In contrast, tempo is governed by the length of time
elapsed from the beginning of a note (Note On) and the next note (Note On),
that is, delta time.

In Max, a Note Off is indicated by a Note On event with velocity equals
0. To calculate the time elapsed between Note On messages with non-zero
velocity, I employed the stripnote and the timer objects to execute the task.

On the other hand, Prelude makes use of just a few duration values,
and the accompaniment is quite robust from this point of view. Accordingly,
the algorithm for generating quarter notes, interactively, in close relation to the
tempo of the performance, takes into account this relative duration value,
filtering out other input values with the split object.

In the example bellow, note duration (computer) is acquired by
manipulating consecutive Note On messages (performer). Here’s the detailed
explanation of the algorithm (Fig. 1):

• notein object filters and converts MIDI message into Max number
message, received from the keyboard controller: the number sent out
through the first (left) outlet is the pitch value of the incoming Note On or
Note Off message; the velocity value is sent to the second outlet, 0 for
a Note Off message.

• stripnote object filters out the Note Off message received from notein,
and passes only the Note On message to its outlets; the pitch value is
transited to the left outlet.

• button object sends a bang message each time it receives the Note On
number from stripnote.

• timer object reports elapsed time, in milliseconds, between consecutive
bang messages, sent by button, in other words, between pitch values
with non-zero velocity value, received from the keyboard controller.

• split object filters time values sent by timer; if the incoming values fall
within the range specified in arguments, the object sends those numbers
out through the left outlet. In Andante tempo, it means that the output
numbers are any duration values ranged from dotted eighth note to
dotted quarter note, thus filtering appoggiatura, sixteenth notes, and half
notes of the ongoing performance.

• / (divide) object cuts 1/3 of the values received from split, and send them
to its outlet, in order to achieve for the computer score, in correlation
with split, a relatively independent duration values of the notes.

CHOPIN INTERACTIVE

 45

• makenote object generates a Note Off message after the amount of
time specified by / object; the pitch, which is discussed later, is paired
with the velocity value instantaneously received from notein.

Fig. 1

Note duration is acquired by manipulating Note On messages

Tempo, Synchronization and Note On
As long as the stripnote object acts like a filter applied to the input data

flow, revealing only the pitch values associated with the velocity values ranged
from 1 to 127, the task of the smart follow object, i.e. to compare the ongoing
performance with the recorded performance, is simplified by avoiding any
unwanted mismatches. It listens to, it identifies the notes’ pitch, it compares both
performances in terms of pitch, and then it notifies if the notes are matching
each other, as the live performance progresses.

At this point is created an ideal synchronization between the performer
score and computer score: in any flexible tempo the performer would play, even
with mistakes or gaps, the computer has to follow him, and it does. Every index
came from the follow object, and passed through the sel object, determines the
coll object to send immediately its recorded information, which represents the
pitch values of the accompaniment.

In this example, the solution to tempo and synchronization problems is
based on listening and processing the occurrence of Note On values. Here is
the detailed description of the algorithm (Fig. 2):

• follow object searches for the performace.txt file’s pitch numbers, ignoring
other information stored into the file; when the pitch value received from
stripnote matches the stored value, the index of the matched value is sent
out to the left outlet. A sample of performace.txt file is presented here:

1382 144 64 60;
2339 144 73 60;
3228 144 74 60;

ADRIAN BORZA

 46

4124 144 71 60;
5038 144 71 60;
6009 144 71 60;
where 64, 73, 74, and 71 are pitch values.

• sel (select) object selectively passes to its rightmost outlet the index
numbers received from follow; the object arguments represent single
notes, unaccompanied.

• coll object sends through its left outlet the information stored at specific
addresses into the score.txt file; this information embodies just the
pitch values of the notes, of the chords. An excerpt from score.txt file is
illustrated here, according to the format <address, message;>

 1, 0;
2, 40;
3, 0;
4, 52 68 64 62;
5, 68 64 62 52;
6, 68 64 52 62;

• unpack object breaks up the list of numbers stored after its address,
and sends each number to a separate outlet.

• makenote object generates a Note Off message after the amount of
time specified by / object, as I mentioned earlier; the pitch received from
coll is paired with the velocity sent by notein.

Fig. 2

The solution to tempo and synchronization problems is based on

processing the Note On values

Sustain Pedal and Note On
Another step towards achieving the goal of the interactive performance

software discussed here is the control of the sustain pedal. A sustain pedal
has two states. Because the state of the pedal is either active or inactive, any

CHOPIN INTERACTIVE

 47

value from 64 to 127 is interpreted as active pedal, and from 0 to 63 as inactive.
By means of the message object, the states can be controlled with particular
messages addressed to the vst~2 object: <midievent 176 64 127> to control
the active state, respectively <midievent 176 64 0> for inactive pedal.

Each time the follow object send an index number, the sel objects
compare that index with the numbers specified in their arguments, and then they
send bang messages, one at a time, if the numbers are identical. Consequently,
they trigger the messages for activating or deactivating the sustain pedal.

Fig. 3

Activating and deactivating the sustain pedal

Strengths and Weaknesses

Note duration, tempo, note or chord synchronization, and sustain pedal
control, associated with the computer score, are the result of computing in real-
time the time occurrence of pitch values, identified during performance of Prelude.

There isn’t a practical requirement to implement an algorithm for tempo
anticipation. Since tempo and synchronization are pitch - dependent, the
computer will staidly follow any elastic performance. The advantage is that the
performer and the computer are perfectly synchronized. Anyway, the approach it
might be disputed, since a human performance reveals the legitimacy of a slightly
delay of 5-10 milliseconds or more between the notes of a chord; otherwise
they are hardly noticeable by human ear.

2 The vst~ object is the host for a VSTi plug-in, a software synthesizer such as Steinberg The

Grand virtual piano. See also Fig. 4.

ADRIAN BORZA

 48

Every note or chord played by computer has the same loudness as the
performer’s instant loudness. The effectiveness of this solution resides in the
fact that there is no need for an additional object, besides a simple connection
between two existing objects. The simpler the patch, the speedier it is.

In order to avoid overlapping the same notes, when the computer
repeats a chord, their duration is a bit shortened. Thus, the virtual instrument
plays all the notes, without exception, back. It is a technological restraint.

The redundant duration values are filtered out from performance; only
a relative value of quarter note is transferred to the accompaniment, but it is
coupled with the next pitch or chord of the computer score. This naturally happens
when note duration is based on delta time. The benefit of this approach is that
it produces a relatively independent duration values. Nevertheless, the sustain
pedal, as is written into the original score, obliterates the diversity of note
duration discrete values. I preferred to make use of it in abundance, in view of
the fact that it can be automatically switched on/off, in a fraction of second.

As far as I am concerned, it takes several minutes to assemble the
software in Max (Fig. 4). As an example of live coding, the reader of this study
can find on the Internet3 a video recording of the process of writing in real-time
this Max patch.

Fig. 4

Max patch for interactive performance of Prelude Op 28 No 7 by Fr. Chopin

3 Chopin, Prelude Op 28 No 7, Max/MSP (1/2) at the address:
http://www.youtube.com/watch?v=iYOps3Gk_WU

CHOPIN INTERACTIVE

 49

Performer’s Score

The musical score performed by musician consists in a single melodic
line extracted from Chopin’s Prelude. This is the sound outline of Prelude, is the
discantus. The performer recreates the music by playing this score, listening to
computer feedback, imposing his own performance style.

In this respect, I have previously transcribed the recording4 of Sviatoslav
Richter’s performance, subsequently emulated in my interactive performance5
with the computer, which is described further.

As it appears from the Richter’s rendition, tempo oscillates very often,
modifying each beat of 3/4 bar with values between 31 and 89 (see Fig. 5). The
second musical phrase includes both extreme values. Intensity values are distinct,
ranging from 43 to 82 of 128 discrete MIDI values. There is a pattern that can
be identified: each melodic motif has its particular version of the crescendo-
decrescendo intensity curve. The culmination is located at the 12th bar.

Fig. 5

Transcription of Sviatoslav Richter’s performance:
sound outline, intensity, and tempo (downwords)

4 Richter the Master, Vol. 10: Chopin & Liszt – Chopin: Prelude for piano No. 7 in A major,

Op. 28/7, 00:00:53, Decca, 1st Jun 1988
5 Chopin, Prelude Op 28 No 7, Max/MSP (2/2) at the address:
 http://www.youtube.com/watch?v=ChfJ0GZXUYI

ADRIAN BORZA

 50

Conclusion

This paper has focused on some of the programming and musical
aspects related to the performer score and computer accompaniment, with
emphasis in listener objects in Max/MSP. The listener objects are capable of
analyzing an ongoing music performance, and of extracting information about
pitch, loudness, and diverse MIDI events. A Max/MSP patch is built with the
purpose of instantly transferring the information from the musician performance
to the computer accompaniment.

The entire process of performing Prelude with an interactive computer
was described here as being a precisely set of rules acting on specific incoming
data, embodied into a Max/MSP patch. The rules were conceived beforehand,
as part of an algorithm, through formalization. The computation is mechanical in
nature; the rules mechanically apply to date. The process of performing is thus
represented by a series of mathematical and logical operations with numbers.

REFERENCES

***, Max 5 Help and Documentation, Cycling ’74, San Francisco.
***, Richter the Master, Vol. 10: Chopin & Liszt, Decca.
***, The Complete MIDI 1.0 Detailed Specification, MIDI Manufactures Association

Incorporated, La Habra.
Borza, Adrian, MIDI Scripts, Lucian Badian Editions, Ottawa, 2008.
Chopin, Frédérique, Prelude Op 28 No 7, Breitkopf & Härtel.
Winkler, Todd, Composing Interactive Music: Techniques and Ideas Using Max, The

MIT Press, Cambridge, Massachusetts, 1998, 2001.

