
STUDIA UBB MUSICA, LXIII, 2, 2018 (p. 9 – 20)
(RECOMMENDED CITATION)
DOI:10.24193/subbmusica.2018.2.01

9

INTERACTIVE SOUND TOOLS AND ENGINES

ADRIAN BORZA1

SUMMARY. The compositional algorithms are recognized as solutions to
music problems which appear in computer programming. They are small to
large-sized patches designed for analyzing, for example, the direction,
size, and the magnitude of change of a melodic interval; analyzing the rest
between two MIDI events; analyzing the register, duration, delta time and
dynamics of MIDI events; analyzing the number of notes of a chord;
storing, limiting and sorting pitch or intensity values; processing MIDI
events; making chord progressions; compositing a canon; tracking a
musical MIDI score.

Keywords: Computer Music, compositional algoritm

Introduction

The practical goal of this paper is to help increase creative thinking
since a musician will focus on compositional algorithms and programming
practices applied in Computer Music. Therefore, we introduce several Max
patches as solutions to problems which often appear in programming.
These patches, named sound tools and engines, are classified according to
keywords and functional categories. For example, the class Register refers
to two programs called range and range.sel. The patch range identifies the
pitch numbers of a MIDI event within a range of notes and the patch
range.sel signals the pitch value within a defined register. They have in
common particular keywords: pitch, range, and register.

The second objective is to assist musician to understand the
concepts, terms, and practices associated with Max, and to acquaint him
with a software development methodology in general, with the intent of
better planning and managing his effort. However, it is assumed that the
reader has accumulated knowledge of basic concepts of music theory and
a rudimentary understanding of computer and software.

1 He is an Associate Professor at the Gheorghe Dima Music Academy, Str. Ion I.C. Brătianu,

nr. 25, Cluj-Napoca 400079, Romania. Email: aborza@gmail.com

ADRIAN BORZA

10

Conventions

The names of the Max objects are displayed in colored style, like this.
Messages and lines of code are displayed in Courier New bold style, like this.
Additional names, filenames, and relevant concepts are displayed in italic style,
like this. A Max patch refers to a single small- (tiny-) mid- or a large-sized
program made in a Patcher window. The patch is saved under a filename and
extension, like.this.maxpat. An abstraction is a patch file saved under a filename
and extension, like.this.abs.maxpat. The abstraction is used as a Max object
(i.e. object box) inside the main patch.

Musician’s abstractions

We are going to present several categories of author’s small-sized
encapsulated programs, called musician’s abstractions. They are designed
in a modular practice so that the formally initiated programmer-musician
and the debutant student make interactive programs in the shortest
possible time.

These abstractions offer solutions to the following musical issues:
analyzing the direction, size, and magnitude of the melodic interval change;
analyzing the size, and magnitude of the harmonic interval change;
analyzing the rest between two sound events (MIDI); analyzing the number
of notes of a chord; analyzing the register, duration, delta time and
dynamics of sound events performed on a MIDI keyboard; storing, limiting,
transposing and sorting of pitch values; storing, limiting, and sorting of
intensity values; recording and processing of sound events (MIDI) by
augmentation and rhythmic diminution, by decreasing and increasing the
tempo; making chord progressions; humanizing or diversifying the chord
structure, with regard to the attack and the intensity of the notes;
compositing of a two-voice canon, synchronized and unsynchronized;
tracking and automated accompanying of musical score (MIDI).

The musician’s abstractions are structured on the functional criterion,
illustrating common properties and actions within structural networks.
Abstractions are ordered alphabetically and are accompanied by keywords.
Functional categories are Keyboard, Global Transport, Register, Score Following,
Canon, Pitch, Sequencer, Transposition, Interval, Velocity, Duration and Time,
Humanize, Chords and Progressions, and MIDI. The diagram contains a
descriptive name and abstraction definitions. A brief description of the main
abstractions is also given.

INTERACTIVE SOUND TOOLS AND ENGINES

11

Table 1
Keyboard: interaction

kslider.interactive Interactive Keyboard

Table 2
Global Transport

gt.control Control the Global Transport

Table 3a

Register: pitch, range
range Identify the pitch numbers of an event within a range
range.sel Signal the pitch value within a register

Table 3b
The patch range.sel signals once, with

a message of type bang, the pitch value
of a MIDI event according to the low and
high limits typed-in the number objects.
The patch is restored to its original state
once the pitch surpasses the limits.

A MIDI event is any note, harmonic
interval or chord.

Input: raw MIDI data, int.
Output: bang.

Table 4

Score Following: live performance, synchronization
follow Listen to a live music performance
follow.sync Listen to a live music performance and synchronize events

Table 5
Canon: quantization

canon Make a canon of 2 voices
canon.sync Make a canon of 2 voices quantized to a time-boundary

ADRIAN BORZA

12

Table 6a

Pitch: range, threshold, velocity
pitch.past Signal when a threshold is exceeded
pitch.sel Signal the pitch value of an event
pitch.vel.limit Limit the pitch or velocity numbers to the 0–127 range

Table 6b

The program pitch.vel.limit

prevents incoming pitch and
velocity values from surpassing
the 0–127 range.

It also identifies and signals,
with a message of type bang,
the numbers within that range.

Input: int.
Output: int, bang.

Table 7a

Sequencer: controller, keyboard
seq.control Control the seq object
seq.ctrl Control a sequencer using a keyboard controller and the notein
seq.ctrl.midiin Control a sequencer using a keyboard controller and the midiin

The patch seq.ctrl.midiin deals with basic commands for the seq

object such as recording (record), stop (stop) and playback (start).
Pressing C4 (72) key on a keyboard controller, the patch records incoming
MIDI events, pressing C#4 (73) it stops the sequencer, and pressing D4
(74) it plays back previously recorded data. The patch uses the midiin
object for input MIDI data. Input/Output: raw MIDI data.

INTERACTIVE SOUND TOOLS AND ENGINES

13

Table 7b

Table 8a

Transposition: pitch
transpo Move up or down the pitch numbers of an event
transpo.abs The abstraction of the program transpo
transpo.abs.init The interface of the abstraction transpo.abs
transpo.gui Move up or down the pitch numbers of an event with a constant

value stored in the preset object

The patch transpo.gui moves up or down the incoming pitch values

of a MIDI event by a constant number typed-in the number object. The
result is constrained to the minimum and maximum limits of 0 and 127,
respectively. If the result is outside this range, is replaced by 0 or 127. The
user interface contains the preset object for storing and retrieving transposition
values. Input: raw MIDI data, int, mouse movement. Output: raw MIDI data.

ADRIAN BORZA

14

Table 8b

Table 9a

Interval: direction, harmonic, melodic, pitch, size
int.chord.sort Split pitch values into int or list numbers
int.dir Identify the direction of a melodic interval
int.dir.change Signal when the direction of a melodic interval is changed
int.dir.size Identify the direction and size of a melodic interval
int.size.2n Identify the size of a harmonic interval
int.table Store the pitch values of a MIDI event into a table

Table 9b

The patch int.table stores

in the itable object and
displays the pitch values of a
MIDI event. It also filters out
incoming values less than C1
(36) and greater than B4 (83).

Input: raw MIDI data, int,
symbol.

Output: int (36–83).

INTERACTIVE SOUND TOOLS AND ENGINES

15

Table 10a

Velocity: decrease, increase, range, voice
vel.gui Identify and split the velocity values of an event in ranges
vel.inc.dec Increase or decrease the velocity of an event
vel.rec Store the velocity values of a single voice
vel.sel Signal the velocity range of an event
vel.table Store the velocity values of an event into a table
velocity Identify the velocity values of an event according to a range

Table 10b

The patch vel.rec filters harmonic intervals

and chords, and then stores the velocity
numbers of MIDI notes which are identified
within a single voice. A velocity value stored
inside the funbuff object is recalled by typing
its address number in the number object.

Input: raw MIDI data, int.
Output: int.

Table 11a

Duration and Time: augmentation, diminution, speed, tempo
aug.dim Augment or diminish the duration by a float number
aug.dim.gui Augment or diminish the duration by a fixed amount
tempo.sec Decrease or increase the speed of a sequence in seconds
tempo.ticks Decrease or increase the tempo of a sequence in ticks

delta time, duration, silence, voice
dur.sil Identify duration and silence in milliseconds
dur.sil.dt Identify duration, silence, and delta time in milliseconds
dur.sil.dt.poly Identify duration, silence, delta time, and voice
silence Signal the silence between 2 events

ADRIAN BORZA

16

Table 11b

This program called dur.sil.dt.poly
recognizes the duration of an
incoming MIDI note, the silence and
delta time between two consecutive
notes of each allocated MIDI voice.
The voice is represented by a single
number assigned to the note on and
note off pair. It reports the results in
milliseconds counted for duration,
silence and delta time.

Input: raw MIDI data.
Output: int.

Table 12a

Humanize: chord, delay, velocity

hum.pitch.abs The abstraction of the program human.pitch
hum.pitch.abs.init The interface of the abstraction hum.pitch.abs
hum.vel.abs The abstraction of the patch human.vel
hum.vel.abs.init The interface of the abstraction human.vel.abs
human.audio An interface for abstractions called hum.pitch.abs and

human.vel.abs
human.pitch Simulate a human performance of a chord using discrete delay time
human.vel Simulate a human performance of a chord using discrete velocity
humanize Simulate a human performance of a chord using discrete delay time

and discrete velocity

The patch humanize combines features of the human.pitch and
human.vel programs to simulate a human performance. The patch named
human.pitch filters out incoming MIDI events, removing harmonic intervals
and chords, thus it allows passing a single voice. It also computes pitch
numbers in order to generate 3-notes chords by adding values typed-in the
number objects to the incoming value. Both first and second note of the
chord is delayed by a very small and different number of milliseconds in order to
simulate a human performance. Duration numbers remain unchanged. The
patch called human.vel randomly generates three velocity values of the
chord within a small range in order to simulate a human performance.
Input: raw MIDI data, int. Output: raw MIDI data.

INTERACTIVE SOUND TOOLS AND ENGINES

17

Table 12b

Table 13a

Chords and Progressions: interval, pitch, velocity
chord.3n Generate 3-notes chord
chord.rec Store and sort lists of pitch values
chord.size Identify the number of notes of an event
chord.size.8n Identify the size of intervals of an 8-notes chord
chord.sort.route Sort the pitch values for the route object
chord.sort.spray Sort the pitch values for the spray object
chord.vel Identify the velocity of notes of an event

chord progression
progress.abs The abstraction of the program progressions
progress.abs.int The interface of the abstraction progress.abs
progressions Make chord progressions

The program progressions generates 3-notes chords as a response

to the MIDI pitch values 60, 62, 64, 65, 67, 69 and 71, which represents
C3, D3, E3, F3, G3, A3 and B3. Their velocity and duration values are
identical with the input numbers of these parameters. Each received note
generates a different chord specified inside the file progressions.txt. The

ADRIAN BORZA

18

line of code holds an address followed by three pitch values: 1, 64 67
72; 2, 65 69 74; 3, 64 67 71; 4, 65 69 72; 5, 62 67 71; 6,
64 69 72; 7, 62 65 71;. Input: raw MIDI data, symbol. Output: raw
MIDI data.

Table 13b

Table 14a

MIDI: chord, driver, duration, note, text, VSTi

midi.bag Make notes with the bag object
midi.chord.3n Make 3-notes chord with the offer object
midi.driver Select installed MIDI drivers
midi.flush Make events with the flush object
midi.make Make events of fixed duration with the makenote
midi.makenote Make events of variable length with the makenote
midi.offer Make events with the offer object
midi.text Convert MIDI messages into text format
midi.vsti Send MIDI messages to a VSTi plug-in
midi.vsti.abs The abstraction of the patch midi.vsti
midi.vsti.abs.init The interface of the abstraction midi.vsti.abs

INTERACTIVE SOUND TOOLS AND ENGINES

19

Table 14b

The program midi.text filters and
converts MIDI messages into symbol
messages for pitch numbers identified
in incoming flow data. Pitch numbers
are stored as list messages in the
coll object in order to be used with the
programs called follow and follow.sync.

Input: raw MIDI data, int, symbol.
Output: raw MIDI data, list.

Conclusions

This paper highlights elements of formalization of musical language.
The musician-programmer deals, in most cases, with the abstraction and
transfer of rules and composition procedures. Working with high-level
musical concepts, the cognitive transfer is completed in mathematical and
logical operations.

The features of the computer object refer to what the Max object
means to a musician and how the object behaves in a program made by
him. This vision, from the outside, on the computer object belongs to the
musician concerned with what he represents and what is the object.

The attributes of the Max object also refer to what the object’s
resource file contains and how its source code works. This vision, from the
inside, is suitable for the musician interested in what makes up and how the
object code is running.

The Max object is the indispensable foundation for the construction
of compositional algorithms.

ADRIAN BORZA

20

REFERENCES

Cycling ’74, Max Fundamentals, 4.6, 2006.
Cycling ’74, Max Tutorials, 2016.
The MIDI Manufacturers Association, MIDI 1.0. Detailed Specification, 4.2, Los
 Angeles, 1995.

